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ABSTRACT

While modern generative models are able to synthesize high-fidelity, visually ap-
pealing images, successfully generating examples that are useful for recognition
tasks remains an elusive goal. To this end, our key insight is that the exam-
ples should be synthesized to recover classifier decision boundaries that would
be learned from a large amount of real examples. More concretely, we treat a
classifier trained on synthetic examples as “student” and a classifier trained on real
examples as “teacher”. By introducing knowledge distillation into a meta-learning
framework, we encourage the generative model to produce examples in a way that
enables the student classifier to mimic the behavior of the teacher. To mitigate the
potential gap between student and teacher classifiers, we further propose to dis-
till the knowledge in a progressive manner, either by gradually strengthening the
teacher or weakening the student. We demonstrate the use of our model-agnostic
distillation approach to deal with data scarcity, significantly improving few-shot
learning performance on miniImageNet and ImageNet1K benchmarks.

1 INTRODUCTION

Over the past decade, generative image modeling has progressed remarkably with the emergence
of deep learning techniques. Modern generative models, such as the variants of generative ad-
versarial networks (GANs) (Goodfellow et al., 2014; Karras et al., 2018; Brock et al., 2019) and
variational auto-encoders (VAEs) (Kingma & Welling, 2014; Razavi et al., 2019), are able to syn-
thesize high-fidelity, visually appealing images, with successful applications ranging from super-
resolution (Ledig et al., 2017) to artistic manipulation (Zhu et al., 2017). However, when it comes
to their use in discriminative visual recognition tasks, these images are still far from satisfactory.
The performance of the classifiers trained on synthetic images is substantially inferior to that of the
classifiers trained on real images (Dai et al., 2017; Shmelkov et al., 2018).

In this paper, we make a step towards building generative models that are recognition task oriented,
thus enabling synthesizing examples in a way that helps the classification algorithm learn better clas-
sifiers. This is of great promise to deal with data scarcity in real-world scenarios, such as addressing
few-shot learning which aims to recognize novel categories from one, or only a few, annotated ex-
amples (Vinyals et al., 2016; Snell et al., 2017; Finn et al., 2017). Instead of matching training
data distribution or aiming for realism, our key insight is that the examples should be synthesized to
recover or stabilize classifier decision boundaries that would be learned from real samples.

More precisely, let us consider a 2-way 2-shot classification problem in Figure 1. We aim to learn
a good classifier (the purple boundary in Figure 1a) that distinguishes the two classes based on 2
training examples per class. Ideally, the hope is that the boundary in Figure 1a should be as close
as possible to the classifier (the red boundary in Figure 1b) that would be learned from a large set
of real samples (on the order of hundreds or thousands of). To this end, we synthesize additional
examples for each class based on its available 2 examples, so that the resulting classifier (the red solid
boundary in Figure 1c) produced by the synthesized examples together with the few real examples
remains unchanged from the desired classifier (the red dashed boundary in Figure 1b or Figure 1c).

To minimize the discrepancy between the classifier trained on synthetic examples and the classifier
trained on real examples, we leverage the idea of knowledge distillation proposed by Hinton et al.
(2015). While knowledge distillation was developed for model compression, in which a lightweight
“student” model is trained to mimic the behavior of a larger, high-capacity “teacher” model, here
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Figure 1: Knowledge distillation of generative models for few-shot learning. We aim to recognize two novel
classes from 2 examples per class (Figure 1a). The desired classifier is the one that would be learned from
abundant real examples (Figure 1b). To this end, we distill the knowledge of the desired large-sample (dashed)
classifier into a generative model, and thus enable it to produce additional examples from the few real examples
in a way that minimizes the discrepancy between the (solid) classifier trained on synthesized examples together
with the few real examples and the large-sample (dashed) classifier (Figure 1c). Real examples are shown as
squares, synthetic examples as triangles, and classifier decision boundaries as solid or dashed lines.

we focus on models of the same capacity but trained on different types of data. Specifically, we treat
the classifier trained on synthetic examples along with few real examples as the student, and treat
the classifier trained on a large amount of real examples as the teacher. Using the distillation loss
function (Hinton et al., 2015), our generative model is encouraged to produce such kind of exam-
ples that enable the student classifier to output the distribution of class probabilities predicted by the
teacher. To make the generative model applicable to a broad range of categories, we further incor-
porate the distillation process into a meta-learning framework as in (Wang et al., 2018). Through
meta-learning, we construct a variety of few-shot learning tasks from base categories with abundant
labeled examples, thus being able to learn a generic, category-shared generative model. For a novel
few-shot recognition task on unseen categories, we use the learned generative model to synthesize
additional examples and produce an augmented training set for learning classifiers.

While we show that the basic framework of meta-learning with distillation already performs well,
directly distilling the knowledge into the generative model might be still challenging. This is because
the decision boundaries of the student and teacher classifiers could be far away from each other at
the beginning of the training, if the teacher is produced by a large amount of real examples while
the student has access to only few real examples. To mitigate this issue, we propose to distill the
knowledge in a progressive manner and explore two different avenues of dual directions — (1) we
start with a teacher and a student trained on a small number of real examples, and we gradually
strengthen the teacher by re-training it with increasing number of real examples; (2) we start with
a teacher and a student trained on a large number of real examples, and we gradually weaken the
student by removing its real examples. During both of the processes, the generative model is trained
progressively as well by producing more synthetic examples. Finally, we introduce ensemble of
distillation and train independently several distillation processes on different student-teacher pairs,
thus leading to a diverse collection of generative models and effectively reducing the variance of
few-shot classifiers.

We demonstrate that our progressive distillation facilitates learning generative models to be directly
useful for discriminative recognition tasks, significantly improving few-shot learning performance
on both the widely benchmarked miniImageNet and much larger-scale ImageNet1K datasets. In
particular, our approach is general and model-agnostic, which can synthesize in different feature
spaces and can be combined with different meta-learning models to improve their performance.

2 RELATED WORK

Generative models. Largely initiated by generative adversarial networks (GANs) (Goodfellow
et al., 2014) and variational auto-encoders (VAEs) (Kingma & Welling, 2014), deep generative
models are now able to synthesize images which are difficult to distinguish from natural images
without close inspection (Mao et al., 2017; Arjovsky et al., 2017; Karras et al., 2018; Brock et al.,
2019; Razavi et al., 2019). Recently, generative models have also shown great potential as a way
of data augmentation for few-shot learning (Antoniou et al., 2017; Zhang et al., 2018; Gao et al.,
2018; Wang et al., 2018) and semi-supervised learning (Dai et al., 2017), but the improvement of
recognition performance is still limited (Shmelkov et al., 2018). The generation can be performed
either in image space (Chen et al., 2019b) or in a pre-trained feature space (Hariharan & Girshick,
2017) by using an auto-encoder architecture (Schwartz et al., 2018), GAN-like generator (Wang
et al., 2018), or the combination of GANs and auto-encoders (Xian et al., 2018; 2019). Our work
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is independent of these different types of generators, and we focus primarily on how to train the
generator to improve its use for recognition tasks by leveraging large amounts of auxiliary data.

Few-shot learning and meta-learning. Meta-learning, or the ability to learn to learn (Thrun,
1998), is a powerful framework for tackling the problem of learning with limited data. Most of
modern approaches fall into one of the categories between optimization and metric learning based
methods. Optimization based methods learn how to do fast adaptation to novel tasks, by using
memory based architectures (Ravi & Larochelle, 2017) or with very few gradient descent steps (Finn
et al., 2017). Adaptation could be done in the original feature space (Finn et al., 2017; Antoniou
et al., 2019; Antoniou & Storkey, 2019) or in an embedded space (Rusu et al., 2019). Metric learning
methods focus on learning a similarity metric between examples belonging to the same class. Several
distance functions have been explored, from the Euclidean distance (Snell et al., 2017) and the cosine
distance (Chen et al., 2019a; Gidaris & Komodakis, 2018; Dvornik et al., 2019) to more complex
parametric functions and metrics (Koch et al., 2015; Sung et al., 2018; Vinyals et al., 2016; Li et al.,
2019; Koch et al., 2015), or using an additional task-spcific metric (Oreshkin et al., 2018). Most
methods often treat each category separately without considering the relations between them. Graph
neural networks are thus introduced to leverage those relations (Satorras & Estrach, 2018; Kim et al.,
2019; Gidaris & Komodakis, 2019). To conduct meta-learning more effectively, recent approaches
often first compute a set of features of the images using a trained feature extractor network. Given
that high-dimensional features have better modeling capacity but are computationally expensive
to work with, each meta-learning task is then formulated as a convex optimization problem and
solved in its low-dimensional dual space (Bertinetto et al., 2018; Lee et al., 2019). Our generative
component is model-agnostic and can be integrated into different meta-learning methods.

Knowledge distillation. Compressing one cumbersome or several models into a smaller model is
a classic idea (Domingos, 1997; Buciluǎ et al., 2006) and has been popularized by the distillation
formulation of Hinton et al. (2015). Recent work focuses on advanced techniques to guide the
distillation process (Mirzadeh et al., 2019; Xu et al., 2018) and its applications to practical problems,
such as object detection (Xu et al., 2019; Wei et al., 2018) and distributed machine learning (Anil
et al., 2018). To the best of our knowledge, our work is the first to introduce knowledge distillation
for learning generative models. Importantly, different from existing work that addresses models of
different capacity, we consider models of the same capacity but trained on real or synthetic data.

3 GENERATIVE MODELING THROUGH KNOWLEDGE DISTILLATION FOR

FEW-SHOT LEARNING

Few-shot learning setting. We are given a set of base categories Cbase and a set of novel categories
Cnovel, where Cbase ∩ Cnovel = ∅. We have a base dataset Dbase with a large amount of annotated
training examples per class and a novel dataset Dnovel with only few annotated training examples per
class. The goal of few-shot learning is to learn a good classification model for Cnovel based on the
small dataset Dnovel. Recent work achieves this by leveraging a meta-learning procedure (Vinyals
et al., 2016), which learns from a collection of sampled few-shot classification tasks. Given a set of
categories C and a set of data D, a M -way k-shot task is composed of a subset L of M categories
from C, a support set Strain of k examples from D for each class in L, and a test set Stest of one
example from D for each class in L. Meta-learning is performed in two phases as follows.

During meta-training, a classifier learns from a collection of M -way k-shot tasks sampled from
Cbase and Dbase. While our work is agnostic to different classification models, here we consider
a variant of prototypical networks (Snell et al., 2017), using the cosine distance function instead
of the standard Euclidean distance (Chen et al., 2019a). In each iteration, we compute a prototype
representation for each class in L. Each example is fed to an embedding function fθ with learnable
parameters θ. The prototype of a class c is the mean of the output through fθ of examples from c in
Strain. We can then feed the examples in Stest to the classifier and update the parameters θ. During
meta-testing, we use the same approach and build our previously meta-learned classifier with one
unique M -way k-shot task, using Cnovel instead of Cbase and Dnovel instead of Dbase. We evaluate
the final classifier on unseen examples with labels from Cnovel.

Meta-learning with generative models. Incorporating a generative model which produces ad-
ditional examples for data augmentation has been shown to facilitate meta-learning (Wang et al.,
2018; Gao et al., 2018; Schwartz et al., 2018). While our distillation approach does not rely on
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Figure 2: Framework overview of meta-learning a generative model through knowledge distillation. During
each iteration of meta-training, a small support set Strain is augmented with a set SG

train of examples synthe-
sized by a generator G. Examples from the resulting set S

aug
train are used to build a student classifier model S.

A teacher classifier model T is built from a set Steacher containing a large amount of real examples. Examples
from the test set Stest are fed into the student and the teacher models. The corresponding knowledge distillation
loss Lkd is computed over Stest, and its gradients are back-propagated first into S and then into G.

specific types of generative models, here we focus on the feature generator proposed by Wang
et al. (2018), due to its simplicity and state-of-the-art performance. The generator is a function
G(x, z;w) : Rd+dnoise → R

d that produces examples in a pre-trained feature space of dimension
d, where x is the feature vector of a real example, z is a random noise vector of dimension dnoise
sampled from a Gaussian distribution, and w is the parameters of G. We improve this generator
architecture by introducing the mean of the category of interest as another input. Our generator thus
becomes a function G(x, z, q;w) : R2d+dnoise → R

d, where q is the mean of the available examples
from the category of x. The synthesized example G(x, z, q;w) is of the same category as x.

Now the procedure of meta-learning integrated with the generator G is illustrated in Figure 2. During
each iteration of meta-training, the support set Strain is first augmented by a generated set SG

train.
Specifically, for each class y, we sample kgentrain examples (x, y) in Strain, sample associated random

noise vectors z, compute q using examples in Strain, and then add (x′, y) to SG
train, where x′ =

G(x, z, q;w). Our final training set is Saug
train = Strain ∪ SG

train. As long as G is differentiable

with respect to the generated set SG
train, the gradients of the final classification loss function can

be back-propagated into G to produce useful synthetic examples. Through meta-training over a
large amount of iterations, the generator learns to capture shared modes of variation across different
categories and can thus generalize to unseen categories. During meta-testing, we use the learned G
to synthesize additional examples for recognizing categories in Cnovel.

Distilling knowledge into generative models. The end-to-end optimization of the classification
objective enables the generator to synthesize discriminative examples that contribute to formulating
classifier decision boundaries. However, since the synthetic examples are generated based on a small
support set, the resulting classifier could be still far away from the desired classifier that would be
learned from a large set of real examples. This makes it critical to close the gap between these two
classifiers. In fact, during meta-training, a large amount of annotated examples are already available
for the base categories Cbase, which allows us to explicitly obtain the classifier trained on the full
set and use it to guide the learning of the generator.

Formally, we treat the classifier trained on the augmented set of the synthetic examples and the few
support examples as a student model, and we treat the classifier trained on the original full set of real
examples as a teacher model. Our goal then is to minimize the discrepancy between the student and
its teacher. While a naı̈ve approach would be to directly characterize the difference between their
model parameters, it turns out to be challenging due to the high dimensionality of the parameter
space. Inspired by knowledge distillation (Hinton et al., 2015), we instead enforce the student to
mimic the distribution of class probabilities predicted by the teacher.

As shown in Figure 2, meta-training a student model, or essentially the generator G, is conducted in
the following way. We first sample a large set of examples Steacher with kteacher examples per class
in Cbase and train a teacher classifier using all the examples in Steacher. During each iteration of
meta-training, we augment Strain by generating new examples using the generator G. We train the
student classifier on Saug

train through the knowledge distillation loss function in (Hinton et al., 2015):

Lkd(s, t, y) = LCE(σ(s), ey) + γT 2LCE(σ(s/T ), σ(t/T )), (1)

which consists of a standard cross-entropy loss (the first term) and an additional component that
measures the difference between student and teacher outputs (the second term). s and t are the logits
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produced by the student and the teacher, respectively, for a test example of label y in Stest which
is associated with Strain. σ denotes the softmax function, LCE denotes the cross-entropy loss,
ey is the one-hot encoding of y, and γ is a trade-off hyper-parameter that balances the two terms.
Note that T is a critical learnable parameter called temperature, which smooths the probability
distribution produced by the teacher and makes the corresponding decision boundary easier to learn
for the student than the original one. Minimizing Eqn. 1 over Stest thus guides the generator G
towards synthesizing examples that help the student recover the decision boundary from the teacher.

4 PROGRESSIVE AND ENSEMBLE DISTILLATION

Under the framework of meta-learning with distillation, a straightforward way is to build the teacher
classifier by using kteacher as large as possible (potentially the full set of Dbase) and keep it fixed,
and to train a student classifier using only few real examples. By doing so, however, we face the
problem that the decision boundaries obtained by those two classifiers could be very far from each
other at the beginning of the training, making the learning of the generator difficult. To address this
issue, we perform the distillation process in a progressive manner with varied number of real exam-
ples. We start with a teacher and a student which have access to a not too different number of real
examples, and then progressively change the number of examples, so that the decision boundaries
transform in a smooth manner. Concretely, this can be achieved in the following two dual directions.

Progressive distillation by strengthening the teacher. In this setting, both the student and the
teacher start with a small number of real examples. However, the number of real examples for the
teacher gradually increases over the training. The objective for the generator then is to learn to
generate additional examples so that its corresponding student can always match the performance
of the teacher, whenever the teacher is re-trained with more samples and becomes stronger. More
specifically, during meta-training, the support set Strain of each few-shot task is composed of very
few examples per class, ktrain, as in regular meta-training. At the beginning, we sample Steacher,
with kteacher being set to the value of ktrain. We then progressively sample new real examples in
the same amount for each class and add them into Steacher. kteacher grows from ktrain to kmax in
a linear or logarithmic scale, where kmax is the maximum available number of examples per class
in Dbase. We retrain the teacher classifier every time we add new examples.

Progressive distillation by weakening the student. In this setting, both the student and the teacher
start with a large number of real examples. However, we gradually remove the real examples for
the student over the training. The objective for the generator then is to learn to generate the missing
examples based on the remaining real examples. This allows the student to preserve or stabilize
the original decision boundary formulated by the large set of examples (i.e., the teacher boundary),
when the student has access to less real examples and becomes weaker. More specifically, during
meta-training, the support set Strain of each “few-shot” task is composed of a large number of
examples per class, unlike regular meta-training. This number of examples per classes in Strain,
ktrain, decreases in a linear or logarithmic scale, until it reaches a small value.

Ensemble learning. To further benefit from diverse teachers, we introduce ensemble of distillation
and train independently several generative models. Each of them is guided by a different teacher.
Take the distillation by weakening the student as an example. Empirically, we found that, for a single
teacher, starting with ktrain = kmax works as well as starting with lower values. Hence, we sample
T sets Steacher with kteacher < kmax examples and build T teachers. Accordingly, we meta-train
T students and the associated generators, each with a different teacher. For a given test example,
the final label prediction is the average of the predictions of each student. In addition to obtaining
a diverse collection of generators, our ensemble learning effectively helps reduce the variance of
few-shot student classifiers, consistent with the recent work of Dvornik et al. (2019).

5 EVALUATION

We now present experiments to evaluate our framework of meta-learning with knowledge distil-
lation on few-shot classification tasks, and study the effect of knowledge ditillation for generative
modeling. While our work is agnostic to the choice of classification models, here we focus on a
simple cosine classifier, which has been recently shown to achieve very competitive few-shot learn-
ing performance (Chen et al., 2019a). And we explore learning the variants of this classier based on
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different types of features. We evaluate on two standard benchmarks: miniImageNet (Vinyals et al.,
2016; Ravi & Larochelle, 2017) and ImageNet1K (Hariharan & Girshick, 2017; Wang et al., 2018).

5.1 IMAGENET1K

Dataset. The ImageNet1k dataset was proposed by Hariharan & Girshick (2017) and improved
by Wang et al. (2018). The dataset is a subset of the ILSVRC-12 dataset (Russakovsky et al., 2015)
and contains 389 base categories and 611 novel categories, with 193 of the base categories and 300
of the novel categories used for cross validation and the remaining 196 base categories and 311
novel categories used for the final evaluation. The evaluation is done in 311-way (the number of
novel classes), k ∈ {1, 2, 5, 10, 20}-shot settings.

Pre-trained features. We follow the approach of Hariharan & Girshick (2017), where they first train
a feature extractor using regular training and then perform meta-training with the features vectors
extracted from the last layer before softmax of the feature extractor. We used pre-trained features
from a ResNet-10 architecture (He et al., 2015) coupled with a standard linear classifier (Hariharan
& Girshick, 2017) or a cosine distance based classifier (Gidaris & Komodakis, 2018).

Evaluation protocol. For fair comparisons, we report the mean top-5 accuracies, calculated under
different protocols depending on the set of pre-trained features. When using the pre-trained features
from Hariharan & Girshick (2017), we use their protocol and average over 5 pre-determined k-shot
tasks. When using the pre-trained feature obtained from Gidaris & Komodakis (2018), we follow
their protocol and average over 100 randomly sampled k-shot tasks. When we learn an ensemble of
models with mixed features, we use the protocol of Hariharan & Girshick (2017).

Comparison to baselines and concurrent work. We compare against several baselines and com-
petitors as follows. (1) For each of the pre-trained features, we focus on comparing the variants of
our distillation approach with the cosine classifier and the cosine classifier integrated with a plain
generator without distillation. (2) We compare with concurrent, state-of-the-art meta-learning based
few-shot learning approaches, including prototypical nets (Snell et al., 2017), matching nets (Vinyals
et al., 2016), prototype matching nets (Wang et al., 2018), cosine classifier & attention weight gen-
erator (Cosine Att. Weight) (Gidaris & Komodakis, 2018). (3) We also include results of other
approaches that incorporate a generator into standard learning (e.g., logistic regression Gen) (Hari-
haran & Girshick, 2017) or meta-learning (e.g., prototype matching nets Gen) (Wang et al., 2018).

Table 1 summarizes the results. Note that the 95% confidence intervals for the recognition accuracy
on the ImageNet1K benchmark are of the order of 0.2% (Gidaris & Komodakis, 2018). We thus
observe that in all cases our approach substantially outperforms the baselines, irrespective of the
choice of the pre-trained features. This indicates that the sample generation is effective in different
feature spaces. In addition, guided by our distillation process, a simple cosine classifier achieves
superior performance than state-of-the-art approaches that are based on more complex classification
models, such as the attention based classifier (Gidaris & Komodakis, 2018). Our approach could be
combined with these classification models as well to further improve their performance, which is an
interesting direction for future research.

Ablation and diagnostic analysis. To unpack the performance gain and understand the impact of
different components and design choices, we perform a series of ablations summarized in Table 1.

Impact of pre-trained features. While our approach consistently outperforms the baselines irrespec-
tive of the types of the pre-trained features, the improvement is more pronounced when the features
are pre-trained with a standard linear classifier. This shows that our generator is able to reconcile the
conflict between the pre-trained feature and the final recognition classifier. For the cosine classifier
which we used as the final classifier, the features pre-trained with a linear classifier are not consistent
with it, resulting to poor performance of the plain cosine classier without any generation. However,
benefited from the end-to-end distillation, our generator spends its capacity on suppressing such
inconsistency which throws the classifier off, thus significantly boosting the performance.

Strengthening the teacher vs. weakening the student. Comparing the two directions for progressive
distillation, we observe that both of them outperform the normal distillation without progression,
and that weakening the student achieves better results. It comes from the fact that, if both teacher
and student start being weak, the learning problem could actually be hard due to the high variance
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Table 1: Top-5 accuracy comparison with state of the art and ablation study on ImageNet1K 311-way,
k-shot classification. Gen: with a sample generator. Dist: with normal distillation to learn the generator.
Dist↑: progressive distillation in the way of strengthening the teacher. Dist↓: progressive distillation in the
way of weakening the student. Dist Ensemble: ensemble of distillation. ‘Standard’: features pre-trained with
a standard ResNet10 feature extractor network using a linear classifier. ‘Cosine’: features pre-trained with a
ResNet10 network using a cosine distance based classifier. ‘Mixed’: ensemble of distillation with half models
trained with ‘Standard’ features and half models trained with ‘Cosine’ features. The 95% confidence intervals
for all number are of the order of 0.2%. We report in red and blue the best and second best accuracy for each k.

Method Features k=1 2 5 10 20

Our methods

Cosine Classifier (baseline) Standard 37.8 51.0 65.5 72.5 76.6
Cosine Classifier Gen (baseline) Standard 42.6 53.9 66.4 72.6 76.3
Cosine Classifier Dist Standard 44.5 56.2 68.6 74.2 77.3
Cosine Classifier Dist↑ Standard 44.7 56.6 68.8 74.2 77.3
Cosine Classifier Dist↓ Standard 45.1 56.2 68.8 74.8 78.3
Cosine Classifier Dist↓ Ensemble Standard 46.2 58.3 70.0 75.6 78.7

Cosine Classifier (baseline) Cosine 45.8 57.0 68.9 74.3 77.4
Cosine Classifier Gen (baseline) Cosine 47.0 57.8 69.1 74.3 77.6
Cosine Classifier Dist↓ Cosine 47.2 58.2 69.2 74.4 77.5
Cosine Classifier Dist↓ Ensemble Cosine 47.8 58.7 69.5 74.5 77.6

Cosine Classifier Dist↓ Ensemble Mixed Mixed 46.9 59.0 70.4 75.8 78.8

Concurrent work

Prototypical Nets (Snell et al., 2017) Standard 39.3 54.4 66.3 71.2 73.9
Matching Nets (Vinyals et al., 2016) Standard 43.6 54.0 66.0 72.5 76.9
Logistic regression (Hariharan & Girshick, 2017) Standard 38.4 51.1 64.8 71.6 76.6
Logistic regression Gen (Hariharan & Girshick, 2017) Standard 40.7 50.8 62.0 69.3 76.5
Prototype Matching Nets Gen (Wang et al., 2018) Standard 45.8 57.8 69.0 74.3 77.4

Cosine Att. Weight (Gidaris & Komodakis, 2018) Cosine 46.0 57.5 69.1 74.8 78.1

of both teacher and student. By contrast, this is not the case when both start with a relatively large
number of real examples, which makes the distillation process more stable.

Schedule of progressive distillation. Empirically, we found that using the logarithmic scale when
changing the number of examples on which the student or teacher model is trained performs better
than using a linear scale. The reported number in Table 1 is thus on logarithmic scale. This is
consistent with the general observation that recognition performance changes on a logarithmic scale
as the number of training samples varies (Sun et al., 2017; Wang et al., 2017).

A single super teacher vs. ensemble of teachers. Comparing with a single super teacher that is
trained on all available real examples, ensemble learning based on multiple teaches, each of which
is trained on a randomly sampled large set of real examples, achieves superior performance. Note
that for each pair of student and teacher, we used the same set of pre-trained features, in order to
guarantee that the performance boost comes from the diversity of the teacher classification networks
and not from the diversity of the representations learned by the feature extractor networks. This is
different from the ensemble learning in (Dvornik et al., 2019). By training and benefiting diversity
feature extractors as in (Dvornik et al., 2019), our performance could be further improved. We
demonstrate this by training an ensemble with two sets of pre-trained features, denoted as ‘mixed‘.

5.2 miniIMAGENET

Dataset and pre-trained features. The miniImageNet dataset (Vinyals et al., 2016) contains 100
classes with 600 images from each class. We use the split proposed by Ravi & Larochelle (2017),
where the classes are divided into 64 training classes, 16 validation classes, and 20 test classes. The
evaluation is conducted in 5-way, 1-shot and 5-way, 5-shot setting. We average over 1000 randomly
sampled tasks and report accuracies and the 95% confidence intervals. We use a ResNet18 feature
extractor trained with the ‘baseline’ method from Chen et al. (2019a).

Results. From Table 2, we observe a same trend of performance improvement as on ImageNet1k,
when adding the different components of our approach. The relative improvement of progressive
distillation over the normal distillation is more notable on ImageNet1K than miniImageNet, showing
the importance of performing distillation progressively when the gap between student and teacher
is large in more challenging classification problems. In addition, consistent with recent work, our
generator further improves the performance when trained using additional validation data.
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Table 2: Comparison with state of the art and ablation study on miniImageNet. Please refer to the caption
of Table 1 for notation. ∗ indicates using validation data during meta-training phase.

Method K=1 5

Our methods

Cosine Classifier (baseline) 51.99 ± 0.59 74.32 ± 0.49
Cosine Classifier Gen (baseline) 57.88 ± 0.61 75.95 ± 0.48
Cosine Classifier Dist 59.20 ± 0.63 76.36 ± 0.50
Cosine Classifier Dist↓ 59.56 ± 0.62 76.57 ± 0.50
Cosine Classifier Dist↓ Ensemble 60.21 ± 0.65 77.52 ± 0.47
Cosine Classifier Dist↓ Ensemble∗ 61.18 ± 0.59 78.34 ± 0.49

Concurrent work

Meta-Learning LSTM (Ravi & Larochelle, 2017) 43.44 ± 0.77 60.60 ± 0.71
Matching Networks (Vinyals et al., 2016) 43.56 ± 0.84 55.31 ± 0.73
MAML (Finn et al., 2017) 48.70 ± 1.84 63.11 ± 0.92
Prototypical Networks (Snell et al., 2017) 49.42 ± 0.78 68.20 ± 0.66
Relation Networks (Sung et al., 2018) 50.44 ± 0.82 65.32 ± 0.70
R2D2 (Bertinetto et al., 2018) 51.2 ± 0.6 68.8 ± 0.1
Transductive Prop Nets (Liu et al., 2019) 55.51± 0.86 69.86± 0.65
SNAIL (Mishra et al., 2018) 55.71 ± 0.99 68.88 ± 0.92
Dynamic Few-shot (Gidaris & Komodakis, 2018) 56.20 ± 0.86 73.00 ± 0.64
AdaResNet (Munkhdalai et al., 2018) 56.88 ± 0.62 71.94 ± 0.57
TADAM (Oreshkin et al., 2018) 58.50 ± 0.30 76.70 ± 0.30
Activation to Parameter∗ (Qiao et al., 2018) 59.60 ± 0.41 73.74 ± 0.19
LEO∗ (Rusu et al., 2019) 61.76 ± 0.08 77.59 ± 0.12

Figure 3: Visualization with t-SNE of the evolution of the decision boundary for two novel classes, when meta-
training the generator through progressive distillation by weakening the student. Real examples (small dots)
are progressively removed, and synthesized examples (triangles) are generated in a way that helps maintain the
student decision boundary (red dashed line) as close as possible to the desired decision boundary that would be
formulated by a large set of real examples (black solid line).

Figure 4: Visualization of synthesized examples for four novel classes. The single black framed image come
from the original dataset and is used as a seed for synthesising new examples. Color framed images correspond
to the nearest neighbor real images of the synthesized examples in the feature space. Best viewed in color.

5.3 VISUALIZING AND UNDERSTANDING PROGRESSIVE DISTILLATION

To further understand how the progressive distillation procedure helps learning a classifier and re-
fining the generator, we visualize it with real data using t-SNE (van der Maaten & Hinton, 2008).
We first visualize in Figure 3 the evolution of the decision boundary for two novel classes during
progressive distillation by weakening the student. We then visualize in Figure 4 the synthesized
examples in the pixel space, using their nearest neighbor real image in the feature space.

6 CONCLUSION

In this paper, we introduced a general framework of meta-learning with knowledge distillation to
guide the learning of generative models to be directly useful for discriminative recognition tasks.
We apply our approach to few-shot learning, where the amount of available data is very limited
and therefore this kind of generation is in particular helpful. By progressively distilling the knowl-
edge and benefiting from diverse teachers, our approach achieves state-of-the-art results on heavily
benchmarked miniImageNet and ImageNet1K few-shot classification datasets.
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A IMPLEMENTATION DETAILS

In this section, we provide implementation details about the distillation procedure and the evaluation
on the ImageNet1k and miniImageNet benchmarks.

ImageNet1k. The embedding function fθ of our cosine classifier has a different architecture de-
pending on the pre-trained features used. When using features trained with a linear classifier (Hari-
haran & Girshick, 2017), the embedding function of the student model is a 2 layers fully-connected
network. The teacher model, however, is trained using a simple linear layer embedding. We found
that the distillation is very hard when the difference between teacher and student is large. Reducing
the capacity of the embedding is a way to reduce the gap between the two, without reducing the
number of examples on which the teacher is trained. We found, however, that the addition of an
embedding function was not helpful when using pre-trained features from a classifier based on the
cosine distance (Gidaris & Komodakis, 2018). This is because the embedding function helps shape
the synthesised features for the classifier used during distillation. Therefore, when using a cosine
classifier, the features are already more consistent with the classifier.

During progressive distillation by weakening the student, we start training the teacher with
kteacher = 256, and we decrease that number to 1 in a logarithmic scale over 50000 iterations.
We initialize the temperature to 7 and the scale factor of the cosine distance to 75, and learn those
parameters. γ is set to 150. We save the student model once for each time ktrain takes its value
in [16, 8, 4, 2, 1]. We use each of those models respectively when testing in a k = [20, 10, 5, 2, 1]
setting. For distillation with ensemble, we learn 12 pairs of student and teacher. The performance
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does not improve when increasing this number. The ImageNet1k dataset contains about 1000 exam-
ples per class. Using 12 teachers built on 256 randomly sampled examples per class from the 1000
examples per class is good to cover almost all the examples and to make sure the different students
learn from all the examples in the dataset both by distillation and by meta-learning.

miniImageNet. When evaluating on miniImageNet, we don not use any embedding function. Few-
shot learning on the miniImageNet benchmark is relatively easy compared to the ImageNet1k bench-
mark, and using an embedding function leads to strong overfitting.

During progressive distillation by weakening the student, we start training the teacher with
kteacher = 128, and we decrease that number to 1 in a logarithmic scale over 6000 iterations.
We initialize the temperature to 7, the scale factor of the cosine distance to 150, and γ to 5. For
distillation with ensemble we learn 20 pairs of student and teacher.
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