Progressive Refinement of Raster Images

Kenneth R. Sloan, Jr. Computer Science Department University of Rochester

Steven L. Tanimoto
Computer Science Department University of Washington

TR 39
November 1978

ABSTRACT

The transmission of high resolution raster images over low-bandwidth communication lines requires a great amount of time. User interaction in such a transmission environment can be frustrating. The problem can be eased somewhat by transmitting a series of low resolution approximations, which converge to the final fimage. Several methods of computing such a series of images are presented. Each is related to a particular type of pyramid data structure. They rely on the ability of the local display device to overpaint an existing image, and generally require some transmission and computation overhead. However, one of the methods requires no transmission overhead and only a small amount of local computation. A notation is introduced that permits concise descriptions of the image refinement processes.

The research described in this report was supported partially by DARPA Grant \#N00014-78-C-0164.

SECURITY CLASSIFICATION OF THIS PAGE TWhon Dete Entersd)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER 2. GOVT ACCESSION NO. TR39	3. RECIPIENT'S Catalog numaer
4. TITLE (and Subtitie) Progressive Refinement of Raster Images	S. TYPE OF REPORT A PERIOD COVERED Technical report
	6. PERForming org. report number
7. AUTHOR(a) K.R. Sloan, Jr. and S.L. Tanimoto	8. CONTRACT OR GRANT NUMBER(s) N00014-78-C-0164
9. PERFORMING organization name and address Computer Science Department University of Rochester Rochester, N. Y. 14627	10. PROGRAM ELEMENT, PROIECT, TASK
11. CONTROLLING OFFICE NAME AND ADDRESS Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, Virginia 22209	12. REPORT DATE November 1978 13. Numberofpages 31 pages
14. MONITORING AGENCY NAME A ADDRESS(if difteront from Controlline Offico) Office of Naval Research Information Systems Arlington, Virginia 22217	15. SECURITY CLASS. (of the roport) unclassified 15. DECLASSIFICATION/OOWNGRADING SEHEDULE

16. DISTRIBUTION STATEMENT (of thio Roport)
17. DISTRIBUTION STATEMENT (of the ebsiract antured in Block 20, If difterent trom Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reveree elde II neceseary and identify by block number)
raster display
remote graphics
image transmission computer graphics
pyramid data structure approximation of images picture processing image encoding
20. ABSTRACT (Continue on reverte wita II necoeanty and fdentily by block number)

ABSTRACT IS LISTED ON TITLE PAGE.

INTRODUCTION

Raster graphics display devices are capable of reproducing very complex images. Unfortunately, they are often connectel to the source of those imafes, a larqe mainfiame computer, by low-bandwidtn data links. This makes it aifficult to interact effectively with the . display unen it is bainy used to display the iaages for wich it was aade (often full-color, typically $512 * 512$ picture elements (pixels)). Transmitting such an image over a 1200 baud line can take half an hour. or longer. If it is being displayed on a Iine-ty-line basis, then it may be 15 or 20 minutes before the user has any notion of what the final piature will be like.

This problem can be alleviated somewhat iy sendinge and displaying, a series of images whica converge to the final, full resolution picture. Successive imaqes are refinements of earliez imaqes, and approximations to the original inaye. The primary advantafe of such a scheme is that qlobal structure \quad a tiue inace becomes apparent very early in the display process, allowify the user to beqin to examine the picture, andeven interrupt the display when satisfiel with the approximation. The aisadvantaqes lie in (possibiy) increased storage or computation costs.

In this paper, we present several methois of computing such a series of converging inages. All of these aftiods are based upon pryamid data structures [Taaimoto and 2aviidis, 1975]. The differeases between the methods are related to the choices made in the desiqn Jf pyramid data structures.

PYFAAIO DATA SIRUCTUEES

A pyradid data structure consists of several levels, aumbered 0-L, Where each level is a 2-diaensional raster inaye. Level L is the most detailed (finest resolution) iqaqe; the otuers are derived froa it, and are approximations to it. Fifo 1) Tha value of a pixel in ievel k is a function of the values of the pixels in an dxd window in level $x+1$. Tius, the relevant parameters of a pyranid data stacture are:
a) X, Y : the dimensions of Level L,
b) M, N : the dimensions of the Eeduction window,
C) R : the reduction rule.

Usıally, the reduction window and the oriqinzl image are square $(M=N, \quad X=Y=(Y * *))$, but these conventions can be relaxed, at soae cust in computational complexity. The reduction rule car de any reasonable function of the pixels in the wiadow (e.g., Min, dax, Mean, Median, Mode, Sum, Selection, or their exteasioas for handing coiored pixels).

In subsequent sections we shall introduce foruulas winch refer to pixels in pyramids, and in order to simplify tapse referefces we denote by (k,i,j) the pixel in level k at tie ith rod, jtn columa. The set of all pyramid pixels is $p=\{(k, 1, j 1 \quad 0 \leq k \leq i, \quad 0 \leq i<n \neq k$, $0 \leq j<N * * k$.

NCTATION FOR RASTEE OPDRATICNS

me aou present notation that can convenientiy be used to represent man of the processes discussed in this paper. In particular, the uotation will perait us to concisely describe the progressive sequences of imaqes that our methods produce. We begin by introducing several "iconic operators." These manipulate image data by acting on qrey- $\mathrm{qal}_{\mathrm{d}} \mathrm{d}$ for colored), arbitrarily-shaped rogions of the picture. More precisely, each iconic operator is either a binary operator (taking two ooeranas) or a unary operator (taking one operand), and takes operands which are "colorea subsets of ge." EE (the "raster reqion") is an X by I $^{\prime \prime}$ arrav. Tius,

$$
E \bar{X}=\{(0,0),(0,1), \ldots,(0,1-1),
$$

$$
(1,0),(1,1) \ldots(1, Y-1)
$$

$(X-1,0),(X-1,1), \ldots,(X-1, Y-1))$

Let

$$
c=\left\{c_{0}, c_{7}, \ldots, c_{n_{c}}-1\right\}
$$

Le a set of solors (e. 7. , combinations of red, green, and blue, realizable on a particular caster display devicel. de assuat that two special colors, blact ami dhito, are in C. Then if Scre and $5: S \rightarrow C$, we sap (S, Z) is a colotel suhset of El. An alteraative rame for the coscept of a colorei subset of ? z is "partial picture" since a coiored
subset of $R E$ is in actuality completely described by the partial function from f f to C . However, the explicit mention of the domain S of f simplifies our subsequent discussion of iconic operators.

For completeness of on r basic terminology, we let F be the $s \in t$ of all coloring functions f and let F_{s} be the restriction of F to \{S\}. Thus the colored subsets of RE are the elements (Sf) of $2^{R R} X F$ such that dom (f) $=S$ The repainting operator, $\dot{\text { in }}$, is a binary iconic operator hose action is described as follows:

$$
\left(s_{1}, f_{1}\right) \approx\left(s_{2}, f_{2}\right)=\left(s_{3}, f_{3}\right)
$$

where

$$
\begin{aligned}
& S_{3}=S_{1} \cup S_{2} \\
& f_{3}: S_{3} \rightarrow C \text { such that } \\
& f_{3}(x, y)=\left\{\begin{array}{rr}
f_{2}(x, y) & \text { if }(x, y) \varepsilon S_{2} \\
f_{1}(x, y) & \text { if }(x, y) \& S_{2}
\end{array}\right. \\
& \quad \text { (undefined otherwise) }
\end{aligned}
$$

To "repaint" using two colored subsets of Rf, we make the resulting subset be the union of the two giver, and define a coloring function for it as follows: the pixels common to the two original subsets get the color from the second subset. All other pixels of tat new subset Get the color originally assigned to then. It is easy to sec that ut is associative but not comatative. Thus we write

With the understanding that the order of the terms is fix fd. Another binary iconic operator ak es use of distinguished colors, black and white, and an assumed color complement permutation $\pi_{C}: C->C$ satisfying

$$
\pi_{c}\left(\pi_{c}(c)\right)=c
$$

and

$$
\pi_{c}(\text { black })=\text { white } .
$$

The left complement operator $C \in$ is defined as follows:

$$
\left(s_{1}, f_{1}\right) ;\left(s_{2}, f_{2}\right)=\left(s_{3}, f_{3}\right)
$$

where

$$
\begin{aligned}
& S_{3}=S_{1} \cup S_{2} \\
& f_{3}(x, y)=\left\{\begin{array}{l}
f_{1}(x, y) \text { if }(x, y) \in S_{1} \text { but }(x, y) \in S_{2} \\
f_{2}(x, y) \text { if }(x, y) \notin S_{1} \text { but }(x, y) \in S_{2} \\
\left.f_{1}(x, y) \text { if }(x, y) \in S_{1} \text { and (} x, y\right) \in S_{2} \\
\text { and } f_{2}(x, y)=\text { black } \\
\pi_{c}\left(f_{1}(x, y)\right) \text { if }(x, y) \in S_{1} \text { and }(x, y) \varepsilon S_{2} \\
\text { and } f_{2}(x, y)=\text { white }
\end{array}\right. \\
& \text { (undefined otherwise) }
\end{aligned}
$$

Ia the left complement operation a pixel in S_{3} coning from $S_{\text {, }}$ keeps its original color if either the pixel does not belong to s_{2} or the pixel belongs to S_{z} and is colored black. If the pixel from $S_{\text {, }}$ belongs to S_{2} and is colored wite (by \hat{f}_{2}) the pixel is given the complementary color in $\left(S_{3}, f_{3}\right)$. A point in S_{2} but not in S_{1} keeps its color in S_{3}. The operator is defined so as to permit $\left(S_{2}, f_{2}\right)$ to act as a "switch picture" to selectively coapleneat dolors of pixels from $\left(S, f_{1}\right)$.

Then all its results are defined, the left complement operator like the repainting operator is not commutative but is associative. Thus we write

$$
{\underset{i}{i \equiv 1}}_{n}\left(s_{i}, f_{i}\right)
$$

with unambiguous interpretation.

Te will use another operator, tie "blowup" operator as ac iateraize between pyramid and raster representations. This operator is a ot strictly iconic since only its result father tan both its operand and result) is a colored subset of th. The blowup operator is defined as follows:

B: $\mathrm{PXC} \rightarrow 2^{\mathrm{RR}} \mathrm{XF}$
$B((k, i, j), c)=(S, F)$ where

$$
\begin{gathered}
s=\{(x, y) \mid i * M * * k \leq x<(i+1) * M * * k, \quad \text { and } \\
j * N * * k \leq y<(j+1) * N * * k\}
\end{gathered}
$$

and $\quad f(x, y)=c$ (uniformly).

The blowup operator transiates a pyramid pixel and its color into a corresponding reqion in the detailed raster rejion, colored with the same color.

Both the repainting operator anc the left complement operator
take two arquments and are thus binary. Althouga we shall not need it here, one may define a unary conpleafnt operator:

$$
\text { where } \begin{aligned}
\underline{d}\left(S_{1}, f_{1}\right) & =\left(s_{2}, f_{2}\right) \\
s_{2} & =s_{1} \\
f_{2}(x, y) & =\pi_{c}\left(f_{1}(x, y)\right)
\end{aligned}
$$

Assuminq that a pyramid data structure has oeen built, there is a straight-forward display tecanique which aepends only on tae ability - of the local processor to paint rectanquiar reqions on the screen for in a frame buffer). The pyramid is siaply transaittei "top-dom". Each level is sent in the usual raster scan order, and used to overpaint the existing iaque. First, Level 0 (1x1) is fainted as a sinqle block, covering the entire screen. Then L_{2} vel 1 (MxN) is sect and displayed, aqain filiing the entire screen. Successive ievels, refuiring ever increasing amounts of time to transmit and display, secve to continually refine the details of the image ou the screen (see Fiqures 2 and 3).

This method can be used to dispiay any pyramid data structure, reqardess of the choice of reduction window size and reduction rule. However, sinae each level is seat in its entirety, all of the effort devoted to sending levels $0-(L-1)$ is "wasted" waen ievel l coippletely overwrites it. When the reduction window is 2×2, this afans a 33.3, increase in transaission tiae for the full resolution picture. a aso, there must be a small a mount of local (to the display) computation and state, which interprets the sequence of pixel values anc keeps track of such things as the current level, tie position within the curreat raster scan, and the size of the rectangles to be painted. A sall amount of preliminary information may need to de transidted $1 a$ order to initialize this local coapatation. This transaission overicad is neqliqible, however.

The progression of images produced by the waive receiver is described by:

$$
(R R, \tilde{E})=\underset{k=0}{L}{\underset{\substack{\frac{q}{2} \\ 0 \leq i}}{\frac{q}{i}<2^{k}}}_{0 \leq j<2^{k}} B\left((k, i, j), c_{k, i, j}\right)
$$

where

$$
c_{k, i, j}
$$

is the flor (value) of the pixel (k, i, i).

The order of terms for the second repainting operator does not affect tine final result in this case. However, the progression of images is affected in that the order of repainting tan blocks of a siaqle level departs $u n$ tie way this operator's indices are
 be the slowest index to increase:

$$
(R R, f)={\underset{\substack{0<\bar{k}<L \\ 0 \leq i<2 k \\ 0 \leq j<2^{k}}}{\frac{q}{}} B\left((k, i, j), C_{k, i, j}\right)}^{(R)}
$$

```
beqin "send imaqe"
    for level := 0 step 1 until L
        do befin "send level"
            for y := 0 step 1 until (N**level)-1
            do begin "send scan line"
                            for x := 0 step 1 until (u**level)-1
                                do Send(Pyramid`level,x,y \)
                                end "send scan line"
            end "sand leval"
    end "send image"
```

NaIVE Receryen

```
beqin "receive imaqe"
    for level := 0 step 1 until L
        do befin "receive level"
            for \(y\) : \(=0\) step 1 until ( \(\mathrm{N} * \neq\) level) -1
                do beqin "recaive scan liae"
                    for \(x:=0\) step 1 until (d**level)-1
                        do begin "receive pixel"
                            Receive (pixel):
                            x1 : \(=\quad \mathrm{x}\) * ScreendaxX / (M**level);
```



```
                                y1 : = \(\quad\) * Screentay / ( 1 ** level);
                                Y2 : \(=(\mathrm{y}+1)\) * ScreentaxY/(N**level)-1;
                                SetColor (pixel):
                                PaintRectangle (x1,y1, x2, v2) ;
                                end "receive pixel"
                                end "receive scan line"
            eni "receive level"
    end "receive image
```


EXPEICIT RERAINMIM

The previous method used a íxed orler of pixel transmissior, and used knowleiqe about this order to avoid senuing duy posithoning information. In this method, we take the view that the spatiai coherence of the inaqe is such tat there are larqe, homogeneous areas wich, once painted correctly in a low rosolution irage, need aut bo overpainted. This is oEten tie case in binary iadags, add hecomes less probable as the qrey scale or color resoiution is increased.

Ihe transmitted inforaation consists of a sequence of quadruples (k,i,f,v), where:
$x \quad=$ Level aumber,
i, $\mathfrak{i}=$ coordinates of a pixel at tad Levei,
$v \quad=$ The Color (or value) of tiat pixel.

Onoe aqain, we transmit the pyramid trom the top down, except that we only sena a quaduple tor a pixei í its Value is ilfierent than the value of its Father fin the previous Leveif. rie aisulayel imaqes dill be the same as those moquced by the vaive methol, but the display speed wiil depend stronqly upon tie "jyramiu coliplexity" *Tanimoto, 19771 of the inaqe.

This metaot is most lixely to be usarul when the rarye of uixel values is small, and wan the pyramid is jaown by a recuction ruic. such as dode (Value of Father = aost coman Value of Soris). In these
 the pixels at a qiven level, since at least one Son in every reiuction window has the same value as tae Eataer of that indow

This method is unsuitable for the display of pyramids grown by reduction rules (e.g., Mean) which io not guarantee exact matches between father and Son pixel values. In these cases, the overhead iavolvei in specifying the level and coordinates oí each pixel will outweigh the savings made by not sencing every pixel.

A special case arises when the images are binary (0/1). In that case wa are quaranteed that at least $1 / 2$ of the pixeis at a given level are already correct. In adaition, we can dispense with tio fourth element of every quadruple. he adopt the convention that the screen is oriqinally blank (say, all 0's). We may refer to this "Zero imaqe" as level-1. Thea, the value of a qiven quadruple is uniquely determined. Hence, it need not be sent. Insteaj, the meaning of the triple (k,i,j) becomes "complement the block corresponding to position (i,j) at level $\mathrm{k}^{\prime \prime}$ [Tanimoto, 1977].

Of こourse, if we do not restrict ourselves to pyraild data structures, there is a iarge class of successive refinement aisplay methods based on the use of simaller and saller ractanaular for other sbaped) blocks. The tradeoffs are much the same as those addressed by divide-and-coaquer hidden surface algorithas [Marnock, 1969]. Note that the (k, i, j) triple is smaller than the ($X 1, Y 1, X 2, Y 2$) quacruple needed to specify an arbitrarily placed rectaqualar block, but taat arbitrary placemeat allows faster locaiization of ajges winca do at lie on the pyranid's reduction window boundaries. Allowing arbitrary placenent of hlocks also raises the question of efficient wethods of deteraiaing an optimal painting sequence. Suca considerations are bevond the sape of this work.

We describe the progression of images produced by the explicit repainting receiver as Follows:

$$
(R R, f)=\frac{q}{q}_{q=1}^{n_{q}} F\left(\left(k_{q}, i_{q}, j_{\dot{q}}\right), c_{q}\right)
$$

Here the sequence of quadruples sent by the axplizit repainting sender is represented by:

$$
\left(k_{1}, i_{1}, j_{1}, c_{1}\right),\left(k_{2}, i_{2}, j_{2}, c_{2}\right), \ldots,\left(k_{n_{q}}, i_{n_{q}}, j_{n_{q}}, c_{n_{q}}\right)
$$

In the aforementioned special case stere binary (black/white) images are concerned land the value of a given quadruple need not be sent, since it is implicitly the opposite of its father's value), we describe tia explicit repainting receiver's actions as

$$
(R R, f)=B(0,0,0), \text { black }) \sum\left(\sum_{q=1}^{\sum_{q}} B\left(\left(k_{q}, i_{q}, j_{q}\right), \text { white }\right)\right)
$$

Thus, successive refining in this case is equivalent to successive Complementation of the color of subdiocks.

EXPLICIT REPAINTIMG SENJER

```
beqin "send imaqe"
    send(0,0,0,pyramia[ 0,0,0 ]):
    for level := 1 step 1 until L
        do oeqin "send level"
            for y := 0 step 1 until (N**level)-1
                do begin "sena scan line"
                        for x := 0 step 1 until (M**leve 1)-1
                        jo beqia "send pixel"
                        father := Pvramid[level-1, x/y,y/N];
                        son := Pyramid`level,x,y l;
                                if son NEQ father
                        then Send(levei, x,y,sou)
                                end "send pixel"
                        end "send scan Line"
            eni "send level"
    end "send imaqe"
```

gXPLICIT REQAINTING RECEIVER

```
beqin "receive image"
    While TRUE
    do beqin "another pixel"
        Raceive (level, x,y,pixel):
        \(x 1:=x\) * Screentax \(/\) ( \(x^{*} *\) level) ;
        \(x 2:=(x+1) * \operatorname{Screen} 1 a x X /(x * *\) level)-1;
        y1 : = \(\quad\) * ScreenAaxy / (N**Level) ;
        y \(2:=(y+1) * \operatorname{ScreenMaxy} /\left(N^{*} *\right.\) level) -1 ;
        SetColor(pixel) ;
        Paintrectanqle (x1,y1, x2,y2)
        end "another pixel"
end "receive inaqe"
```

The Naive aethod ade use of a sfecific oriering of the pixers in the pyramid, and the Explicit Repainting aethod used knowledye for the Sender's part) about previousiy seat pixels in order to avoid sending "redundant" information. In this methou, we rely uponkuowledge on the keariver's part about the values of previously sent pisels and the reduction rule used in qroding the pyramid.

Assume we are working with scalar plxei vaiues folor is iandied by assiminq we have three scalar-valued images). Suppose that tae reduction rule was Sua (Value of Fataer = Stidi ui valifs or Solas). ine first aote that each level of the pyranid requires a fifiereft aumer of bits to represent each pixei. Nata the reduction windum $2 \operatorname{sen}^{2 \times 2}$, level k-1 requires 2 more bits per fixel thala levelk. dext, we see that if af know the values of the father and ali but ofe of tie sons, then we can derive the value of the last Son. For exapple, witi. a $2 k 2$ reduction window,

$$
\text { Son[1.1] }=\text { Father }-(\operatorname{Son}[0,0]+\operatorname{Son} 10,1]+\operatorname{Son}[1,0])
$$

Now, if the values ot previousiy sent pixeis are reainy avaidable to tae Receiver (i.e., the current inage is storef in local menory which can be read \quad y the Receiting process), ther me onf transmit the imaqe as in the raive method, exappt that we ouit the last pixel in each reduction aitavo The receiving process aust adoropriately scale all values tor display purposes, and coapute tne vaiues of the "aissing" pixels.

Note that the Receiver aay take advantage of the iacreased grey-scale resolution in the lower spatial rasolution levels. For example, an imaqe wich is oinary at level L can be displayed as a qrep-scale imaqe at earlier leveis. This can be done either by usinq a qrey-scale display device or by usinq half-toning techuiques to shade the rectanyular blucks on birary display. This use of extra qrey-scale resolution may siqnifiantly improve the early approximations to the final inaqe.

Since we onit one pixel in each roduction windos, the total number of pixels transinitted is $X * Y$, the number of pixels in level L. However, since pixels at different levels require more bits to specify, thare is some transmission overhead invoived. The absolute orerhead is independent of the number of bits per pixel in ievel L. For a $2 x 2$ reduction window and 12 bits of information for eaca lievel L) pixel, the transmission overhead is 3.3%.

Tue proqression of images produced by this receiver is identical to that produced by the naive receiver.

```
C.IIT FEDIGDAYt PIXELS (SUM) SEYPES
```

```
beqin "sead image"
    for level := 2 steo 1 until L
        do beqin "send lerel"
                        for y := { sted 1 inntil (***level)-1
                        do berin "send scan line"
                        for x := 0 stey 1 nntil (n**level)-1
                        lo beqin "send oixel"
                            if ((y MOD v) NPO N-1)
                            CR ((x 4CD 1) NBO A-1)
                            On (level = 0)
                            tnen Serd (P\nablaramiuf level,y,v))
                            ent "send sixel"
                        "send scan line"
            end "send level"
    ead "send imaqe"
```

 OYIT REDUMDANT PIXELS (SHG) RECEIVER
    ```
beair "ceceive imaqe"
    for level := C step 1 until L
    do begin "receive level"
                Eor y := = step 1 urtil (Nwavevel)-1
                do begin "recoive scan line"
                        for x := ? step l until (w**level)-1
                        do fegin "receive pixai"
                        if ((V YCD V) NEO Y-1)
                            OE ((X KOD M) NQQ 4-1)
                            CR (letal = 0)
                            then Teceive(oixel)
                        else dixeL:= Fa+her (x,y)
                                    - Sumprevioussons(x,v);
                                    SaveValue(Level,x,7,Fivel):
                                    SetColor(pixeL/((y*v)**lovel));
                                x = = x * ScIcen*axX / (x**level);
                                x2 := (x+1) * Screen*axx / (4**level)-1;
                                yl := y * screeaMaxY / (w**level):
                                v2 := (Y+1) * Scctun*aXy / (N**lEv\inL)- 1:
                                Faintnectain)LE(x1, %1,x2,%2)
                                end "receive pixel"
                        end "receive scan ling"
            end "ceceive lovel"
    end "receive imaje"
```


OMIT REDUNDANT RIXELS (SELEETIUN)

The previous method can be generalized to daal with any reduction rule wich allows the derivation of the value of a single son pixel, qiven the Values of the Father and the remaining Sons. In particuiar, if the reduction rule is Selection (Value of father $=$ Value of Son[$\left.x^{\prime}, y^{\prime}\right]$, then not only can we avoid sending Sonfx',y' $]$, but we do not even have to derive its value! waen the othar sous are transmitted and painted on the screen, $\operatorname{son}\left[x^{\prime}, v^{\prime}\right]$ is aiready correctiy painted on the screen. The area surresponding to Son[$\left.x^{\prime}, y^{\prime}\right]$ was painted when the Father mas painted, and does not need to be repainted. The important point is that both the sender and the Receiver can knoq this. As above, we must transmit X*i pixels. Hovever, due to our choice of reduction rule, all pixeis require the same number of bits. This means that taere is absolutely no transmission overhead, compared with a row-by-row painting oi level L. The advantaqes of early presentation to the user of a complete, albeit low resolution, imafe are sotained at the price of a sadilamourt of computational overhead. Also, it $1 s$ not necessary to store the iadage in fast memory accessible to the Receiver, siace no operations otaer thar display are required.

The values transmitted correspond exaztly to tue values oz the pixels at level L. The order in which they are sent is tho only difference between this metnod ana the traditional row-by-ron raster saar. Just as the Receiver must understand the ordering of tice usdal taster scan, the Beceiver for this methoi aust understand, and properly interpret, this ordering. If the tire to write a iarge
rectanqular area on the screen for in a riane butfery is "tree" compared with the transaission tiae, then this method Li "Eree".

```
beqin "sead imaqe"
    for level := 0 step 1 until L
        do begin "send level"
            for }Y:=0 step i until (N**Level)-
                    d\rho beqin "send scan line"
                        for }x:=0\mathrm{ step 1 until (u**level)-1
                        do begin "send pixel"
                                if ((Y MOD N) NEQ 0) OR ((x 1OD N) NEQ 0)
                                    on (level = 0)
                            then Send (pyramidr level,x,y f)
                                end "sead pixel"
                        end "send scan line"
            end "send level"
    end
        "send imaqe
                    OMIm &EJUNDANT PIAELS (SELEETION) EECEIVER
beqin "receive imaqe"
    Eor level := 0 step 1 until L
        do beqin "receive level"
            for y:= 0 step 1 until (N**level)-1
            do beqin "receive scan line"
                        for m:= 0 step 1 until (M** Level)-1
                        do begin "receive pixei"
                                if ((Y MOD N) NEQ 0) CR ((X MODN) MEQ 0))
                                    3n (level = 0)
                                then beqin "overpaint with son"
                                    Receive (pixel);
                                    SetColor(pixel);
                                    x1 := x * ScreenMax& / (N**level);
                                    x2 := (x+1) * Screendax{ / (4** level)-1;
                                    y1 := y * Screena3xY/(N**level);
                                    y2 := (y+1) * Sereenmaxi / (a*# level)-1;
                                    Paintzectangle(x1,y1, x2,y2)
                                    end "כverpaint with son"
                                    end "receive pixel"
                                    end "receive scau line"
            end "receive level"
ead "receive iaage"
```


INTERACTIYE DETAILING

All of the above nethols can be modified to allow the ooserver to direct the successive reiinement process. once the extire iuaye has been painteq to some ainimua resobution, the user may iaterrapt the transmission of tae image and indicate an area to be refined furtaer. The refinement process is thea liaited to taat arca of tae iadge. This will prevent tae traasaission of inforaation about areas of the image wich are uninteresting to the user, ani alıow auch Easter refinement of the important detaiis.

The Explicit repaintiny scheae is the easiest one to aodify, since the position and extent of eact rectanguiar biock is couphetely specified. The other metiods reiy apon d Ėixed, knowh order of pizei valaes, and must be exteadeu to deal with iatercuptious. azter eaca user-spezified wiadowing operation, a siall adount of bookeepang inforaation must be transmitted, to re-iaitialize the zeceiver.

All of the methods discussed above yield a "series" representation of the igage, and have tae "prefix property". That is, truncating the series at any point gives an approxination to the oriqinal imaqe. There are, of course, other represeatations with tion -property. Two which 4 ave been used extensively in image processing are the Fourier and Hadamard transforms [Angrews, 1970]. The prianar difficulty with suca methods is the amount of computation required to tura the representation into a visibie iaaqe. If this is to be cone only oñe, after complete transaission of the (truncated) transiora, then this might not be a serious objection Hovever, it is not immediately clear how to extend these methods to interactive detailing in the spatial domain.

The methods we have described have the aiditional property tat they are vell matched to tae display capabilities of availacle raster qraphics equipment. For example, paintiny a ractanyular block is escentially free on many display devices. Also, our metnods can easily be implemented requiring aeither auitiplication nor division operations. Since the display equipment provijes tie transforia inversion, tais means that rapid, repeated, incremental couversion of the series representation into a viewable iaage is feasible.

The vilespread use of high resolution raster qrapioics dispiays will require effective use of low banduidth comaunication lines. we have presented several aethods of transaitting caster images waicin provide early recognition of qross features and wich are well matched to available display devices. The use of these methods is by fo weans restriztad to display applications. They are suitable for any situation in which the Receiver caa ajke use of a lou-resoiution inaqe, especiaily when the required resolution is not knoun a priori.

Figure 1. Pyramid data structure with $m \times n$ reduction window. Each level (e.g. level k) is an $m^{k} \times n^{k}$ pixel array where $0 \leq k \leq L$.

REFERENCES

Anirews, H.C. Computer Techniques in Inage Processinq. Academic Press, 1970.

Klinqer, A. and C.B. Dyer. "Experiments on picture representations usinq regalar decomposition." Cogputer graphics and Image Processing 5, 1 (1976), 68-105.
ranimoto, S.L. "a pyramid model for binary picture complexity." groceedings IEEE Computer Soclety Conerence on patteru Recocnition and Itaqe processing, Trov, NY (June 1977), 25-28.

Taninots, S.L. and T. Pavidis. "A hierarzhical àta structure for picture processing." Computer graphics and Inage processing u, 2 (1975), 104-119.

Warnock, J.E. "A hidden-surface al forithalor computer-yeaerated haif-tone pictures." Tr 4-15, Computer Science Department, duiversity of Utah (1969).

