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The concept of tissue engineering evolved long before the phrase was forged, driven

by the thromboembolic complications associated with the early total artificial heart

programs of the 1960s. Yet more than half a century of dedicated research has not

fulfilled the promise of successful broad clinical implementation. A historical account

outlines reasons for this scientific impasse. For one, there was a disconnect between

distinct eras each characterized by different clinical needs and different advocates.

Initiated by the pioneers of cardiac surgery attempting to create neointimas on total

artificial hearts, tissue engineering became fashionable when vascular surgeons pursued

the endothelialisation of vascular grafts in the late 1970s. A decade later, it were

cardiac surgeons again who strived to improve the longevity of tissue heart valves,

and lastly, cardiologists entered the fray pursuing myocardial regeneration. Each of

these disciplines and eras started with immense enthusiasm but were only remotely

aware of the preceding efforts. Over the decades, the growing complexity of cellular

and molecular biology as well as polymer sciences have led to surgeons gradually

being replaced by scientists as the champions of tissue engineering. Together with a

widening chasm between clinical purpose, human pathobiology and laboratory-based

solutions, clinical implementation increasingly faded away as the singular endpoint of

all strategies. Moreover, a loss of insight into the healing of cardiovascular prostheses

in humans resulted in the acceptance of misleading animal models compromising the

translation from laboratory to clinical reality. This was most evident in vascular graft

healing, where the two main impediments to the in-situ generation of functional tissue in

humans remained unheeded–the trans-anastomotic outgrowth stoppage of endothelium

and the build-up of an impenetrable surface thrombus. To overcome this dead-lock,

research focus needs to shift from a biologically possible tissue regeneration response to

one that is feasible at the intended site and in the intended host environment of patients.

Equipped with an impressive toolbox of modern biomaterials and deep insight into cues

for facilitated healing, reconnecting to the “user needs” of patients would bring one of

the most exciting concepts of cardiovascular medicine closer to clinical reality.
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“Once articles, particularly major reviews, appear that lack

historical perspective of discovery, the wheel of reinvention

perpetuates itself.”

Julie Campbell

INTRODUCTION

After years of pioneering work in the 1950 (1–4), the break-
through in cardiovascular surgery came a decade later with the
ability to replace heart valves (5), repair aneurysms of the aorta
(6), and bypass flow-limiting coronary artery stenoses (7).

Continual clinical progress has been made on the basis
of better prosthetic materials, better designs and deeper
insight into physiological needs. The gradual substitution of
polyethylene terephthalate-based (PET) fabrics (“Dacron R©”)
(8) by expanded fine-fibrillar polytetrafluoroethylene (ePTFE)
for medium-diameter grafts improved the patency of arterial
prostheses in peripheral bypass surgery (9). Surface structuring
(10, 11) seemed to improve the increasingly prohibitive
thromboembolic limitations of total artificial hearts (TAH) (12,
13) and glutaraldehyde instead of formalin (14) crosslinking
led to a significantly improved durability of bioprosthetic heart
valves (15, 16).

By the 1970s, however, the initial belief that cardiovascular
prostheses will continually improve began to wane. Pannus
formation and thrombo-embolism thwarted the hope that total
artificial hearts will make transplantation obsolete (17, 18);
synthetic small diameter grafts had distinctly higher occlusion
rates than vein grafts (19) and replacement heart valves either
prematurely degenerated (20) or caused serious thromboembolic
complications (21). It was the realization that no material-
based solution can ever match the non-thrombogenicity of the
patient’s own endothelium that gave rise to what was later
called “tissue engineering”. The unifying concept behind this
undertaking was to replace diseased parts of the circulatory
system with restorative implants which contained or regained the
patient’s own tissue in order to function like the non-diseased
structures they replaced. As this concept integrates biological
components with engineering principles and synthetic materials
the term “tissue engineering” was coined around a “Keystone
Meeting” in Colorado in the 1980s, 20 years after its principles
were pioneered for the first time (22–24). For the present
review this term will therefore be used for any approach that
eventually leads to the creation of living and functional structures
of the heart or the vasculature whether through in-vitro, in-
vivo or combined procedures and as such stretches from single
staged cell inoculation to bioreactor based concepts and from
the decellularization of cardiovascular organ structures to their
induced recellularization.

While tissue engineering soon evolved into an attractive
concept for a broad spectrum of indications cardiovascular
surgery deserves the distinction of having spearheaded both
research and clinical translation for other disciplines.

CLINICAL NEEDS: THEN VS. NOW

The pioneers of tissue engineering in the 1960s and 1970s were
surgeons experiencing the clinical needs first hand. Subsequently

the dominance in the field tilted toward basic scientists. Given
the fast changing ways cardiovascular surgery has been practiced
during the past fifty years, however, this shift away from
the surgeons inevitably led to a growing divergence between
perceived and actual clinical needs for such implants.

Original Needs for Tissue Engineering
At the forefront of all tissue engineering efforts stood the
pneumatically driven artificial heart. Caused by the dismal
results of heart transplants in the pre-ciclosporin era (25),
major total artificial heart (TAH) programs emerged globally
based on an idea that had been pioneered by Willem Kolff ’s
group in Utah in 1964 (12, 26–29). Apart from Salt Lake City,
Houston was a hub for TAH research both at Baylor College
and the Texas Heart Institute. Disappointingly, despite attempts
to address thromboembolic complications through improved
designs (13), the lack of blood-compatibility hampered the
success of mechanical blood pumps well into their first long-
term use almost 20 years later (30, 31). Therefore, in the
absence of a paradigm-changing new immunosuppressive drug
for transplantation, creating a living, non-thrombogenic surface
lining on these blood pumps became a priority in the 1970 and
beyond (10, 11, 22–24, 32–36).

In the 1980s, the critical need for prostheses containing
functional tissue was in bypass surgery. There, the initial
optimism for synthetic vascular grafts had given way to
disillusionment. Mid-diameter ePTFE grafts in below-knee
reconstructions had a 12% 4-year primary patency in a major
prospective multicenter study as opposed to 49% for saphenous
vein grafts (37, 38). At the same time, coronary bypass surgery
was at its peak as catheter interventions were still an experimental
procedure. As arterial grafting was only performed by a handful
of surgeons (39, 40), almost all coronary grafts were vein
grafts. As a consequence, many of these patients had both their
saphenous veins used. Since the 10-year patency of coronary vein
grafts is only 45% the reoperation rate in the absence of catheter-
based interventions was as high as 14–18% (41). Therefore,
with every 6th patients needing a re-operation and often both
saphenous veins having been taken due to previous procedures,
there was a true, pressing need for synthetic small diameter
conduits. Given the dismal results with ePTFE grafts in aorto-
coronary position [3-months patency 61% (42)] endothelialised
small-diameter grafts were the natural focus of tissue engineering
efforts during this era.

A decade later, replacement heart valves were at a junction.
Although repairing the mitral valve was already described in the
late 1950s (43–45) and the aortic valve in the early 1960s (46–
48) repair-techniques took a back seat for decades to the easily
reproducible insertion of a prosthetic device. Disappointingly,
the long-term performance of these replacement valves was sub-
optimal, either due to complications with anticoagulation in
mechanical valves or the fast degeneration of tissue valves in
young and middle-aged patients. In the latter group, the 15-
year freedom from structural valve degeneration was as low
as 31% (49). As such there was a pressing need for better
performing replacement valves. The emphasis was on leaflet
durability of “soft-leaflet” valves for adult patients who should
avoid anticoagulation.
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Eventually, at the beginning of the new millennium, progress
in bio- andmaterial-sciences allowed to address the longstanding
clinical need for myocardial regeneration. Although improved
medical therapy had almost halved the death rate from heart
failure between 1980 and 2000 it was still the leading cause of
death in the Western world (only gradually being overtaken
by cancer thereafter). Today, with more than 300,000 annual
deaths in the USA alone (50)–in their majority due to ischemic
heart disease and post-infarction heart failure—myocardial
regeneration is the one condition that hasn’t lost urgency for
clinical tissue engineering solutions.

Today’s Needs for Tissue Engineering
Over the decades, the clinical needs for tissue engineering
solutions have changed. Some of them disappeared while
others emerged.

In artificial hearts, for instance, positive displacement
TAHs with their inverting diaphragms, big inflow cuffs, and
prohibitive thromboembolic complication rates have been
almost completely replaced by continuous-flow VADS with
their equally-dimensioned in- and outflow conduits and active
suction replacing passive diastolic filling. Stroke rates in second
generation pumps were already down to 11% (51) at a time when
Thoratec R© the most popular ventricular assist device alone had
crossed the 20,000 implantmark.Modern axial devices combined
with antiplatelet therapy reached stroke rates of below 5% in spite
of manifold longer implantation periods (52).

Even less needed than yesterday’s diaphragm-driven total
artificial hearts are small diameter vascular grafts for coronary
bypass surgery. In today’s era at least one–but increasingly more–
arterial grafts are being used in each patient. Together with the
prevalence of catheter based interventions sufficient autologous
grafts are available even in re-operations. Not as extreme but
following a similar trend are lower limb revascularizations. By
now, endovascular treatments have a nearly universal procedural
success rate, low morbidity, and mortality, and with newer
devices also improved patency rates. This makes them the
recommended therapy of choice, particularly for TASC A–C
lesions (Trans-Atlantic Inter-Society Consensus defining the
staging of patients with peripheral arterial disease in relation
to the expected superiority of either surgical or endovascular
techniques). Only in critical limb ischemia (CLI) are surgical vein
grafts still superior while prosthetic surgical grafts are associated
with even poorer results than contemporary endovascular
therapies. Therefore, angioplasty is also recommended as the
preferred procedure in patients with CLI who lack an adequate
vein conduit (53, 54). As such, the only remaining clinical need
for tissue-engineered/regenerating vascular grafts may be for
the small number of patients with critical limb ischemia, poor
run-off and no saphenous veins available. But here, too, the
previously occurring lack of saphenous vein conduits was mostly
due to their prior use for coronary bypass grafts, something
very unlikely to happen today. It is therefore a dwindling group
of patients who would benefit from tissue engineered vascular
grafts. Given the fast evolution of endovascular therapies such
grafts would need to be based on thin-walled prostheses (55) used
in covered stents to avoid that they are obsolete before finding

their way into clinical practice. One indication for prosthetic
medium-diameter grafts, however, has dramatically grown over
the past decades: that for dialysis access grafts. Hardly any other
indication saw such an increase in patient numbers from near
negligible in 1980 to almost 3 million patients (56) presently
being on dialysis globally. Although the Cimino fistula (57) has
been the preferred way of creating a relatively longer-lasting
access for dialysis puncture, it either prematurely fails or is not
possible in a significant proportion of patients. Unfortunately,
the alternatively used prosthetic access grafts have a particularly
low patency due to thrombosis and neointimal hyperplasia. The
primary patency for ePTFE is between 57 and 43% at 1-year and
29% at 2 years (58, 59). Therefore, no other vascular indication
would benefit from a superior tissue-engineered graft more than
dialysis access grafts—provided they not only achieve a surface
endothelium but also control intimal hyperplasia.

In heart valves, needs have also changed over the decades.
Transcatheter insertion has not only become an acceptable way
of replacing diseased aortic valves (TAVI) in high risk patients
but is by now the gold standard for the entire spectrum of
patients from low- to high-risk (60). As trans-catheter valves are
being crimped to small diameters for implantation they depend
on crimpable soft-leaflets. Presently, these leaflets are made of
bioprosthetic tissue but polymers or other foldable materials that
can withstand the mechanical forces during the cardiac cycle
are on the horizon (61). As contemporary bioprosthetic leaflets
degenerate fast in younger patients (49), TAVIs are currently
restricted to patients older than 70 years of age. Therefore,
younger patients still receive surgically implanted mechanical
heart valves with all their thromboembolic complications (62),
even under optimal anticoagulation monitoring. As most of the
contemporary TAVIs need the calcium deposits for anchorage
they are additionally largely restricted to patients with aortic
stenosis. As such, the two unresolved frontlines toward universal
transcatheter heart valve replacements are stent designs that
enable the replacement of both stenotic and regurgitant lesions
and crimpable, anti-thrombotic, long-lasting leaflet materials. If
both were synergistically resolved, a major clinical need for all
non-repairable symptomatic patients younger than 70 years of
age would be addressed. As a second field for tissue engineered
heart valves, needs have grown in congenital cardiac surgery. The
population of adults with congenital heart disease (CHD) has
grown steadily. Having reached an estimated 1.3 million in the
United States, adults with CHD are now more numerous than
children and constitute 60% of the total CHD population (63).
As much as growth is always emphasized as a main motivation
for “living” heart valves in children, it is in fact also the longevity
of the leaflets that dominates the needs. Growth does not play
a major role on the left side of the heart as it is largely the
annuli which are the size-restricting structure. For the aortic
valve, this problem is addressed by the Ross procedure where
a patient’s own pulmonary valve is used as an autograft for
replacing a diseased aortic valve while using an allograft for
the biomechanically less strained pulmonary valve. Indications
on the right side are those currently requiring homografts–
from Ross procedures to Tetralogy of Fallot with pulmonary
atresia; from truncus arteriosus to double-outlet right ventricle.
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Here, tissue engineered solutions would meet needs both at the
original operation to avoid homograft failure after years and
at the time previously implanted homografts fail and present
for re-intervention. The latter would again be better served
by a tissue-engineered trans-catheter solution as stenotic failed
homografts typically lead to enlarged right ventricles that could
add morbidity and mortality to the re-entry at open heart
surgery. There is additionally a pediatric need for large tissue
engineered patches for diameter augmentation of the aorta or the
pulmonary artery/ies.

Although annual needs for replacement valves by far exceed
a million patients (64, 65) and >3 million patients are in need
of dialysis access, the highest number of patients potentially
benefitting form a tissue engineering approach would still be
those with congestive chronic heart failure (CHF). Over the
decades, the number of patients with chronic heart failure
has exponentially increased due to prolonged life expectancies
and the progressive nature of cardiovascular diseases (66, 67).
Today, more than 5 million patients are affected in the USA
alone (68, 69). Their mortality is >25% within the first year
of diagnosis (70, 71). Chronic heart failure is a very serious
disorder in children too, and one- third of the children die or
receive a heart transplant in the first year after diagnosis (72).
Heart transplantation as the ultimate treatment option for this
growing group of patients cannot meet the needs leaving the
replenishment of lost cardiomyocytes with the goal of structural
and functional heart muscle repair as the only alternative to
mechanical support.

Overall, while total artificial hearts and small diameter
vascular grafts were the holy grail of tissue engineering at its
outset today’s needs are mid-diameter vascular grafts for dialysis
access shunts, heart valves, and myocardial regeneration. Given
the fact that first attempts to create functional, living tissue
as part of a cardiovascular prostheses occurred more than 52
years ago, developments may again outpace progress resulting
in the redundancy of a solution when it eventually fulfills
clinical expectations.

A HISTORY OF REITERATIONS

Nothing epitomizes the slow progress of cardiovascular tissue
engineering more than its reiterations over the course of half
a century.

In order to generate functional, non-thrombogenic
autologous tissue on cardiovascular prostheses, autologous
cell inoculation was first reported by de Bakey’s group in 1968
(73), the use of cell-culture techniques by Mansfield (74) in 1968
and Bernhard et al. (75) in 1969 and the induction of fall-out
healing from circulating cells by Ghidoni in 1968 (76). The
principles pioneered in these early days kept recurring over half a
century. The reasons for the near de-novo rediscovery of similar
basic approaches in 10 to 20 year cycles were manifold. One was
certainly the fact that different interest groups in cardiovascular
surgery discovered the potential of tissue engineering during
different eras. Originally driven by artificial heart programs
to address the frustration with a seemingly insurmountable

thromboembolic complication rate in the 1960s and 1970s,
vascular surgeons took over the baton in the 1980s and 1990s to
improve the patency of small diameter grafts followed by cardiac
surgeons resuming the lead again with a focus on prosthetic
heart valves from the 2000s onwards overlappingly with the
efforts of cardiologists and later engineers and material scientists
to induce myocardial regeneration in the 2000s and 2010s. Each
of these eras started with immense enthusiasm but was at best
only remotely aware of the preceding efforts. Another reason
for the cyclic rediscovery of tissue engineering for different
cardiovascular prostheses was the lack of break-throughs leading
to a true change of clinical practice. Had the early efforts led
to a stable non-thombogenic endothelial lining of artificial
hearts, both small diameter vascular grafts and prosthetic heart
valves would have been pursued in continuity building on the
previous developments. Moreover, as Julie Campbell put it
(77), once articles, particularly major reviews, appear that lack
historical perspective of discovery, the wheel of reinvention
perpetuates itself.

SUCCESSES AND FAILURES

Over the decades, principles have not much changed but re-
emerged under different names. What did, however, genuinely
change was our understanding and interpretation of the
biological processes involved. Circulating progenitor cells,
homing mechanisms and trans-differentiation have gained
traction over phenotypical determination, mass-harvest and
mass-culture. The perhaps biggest impact had the recognition
of trans-differentiation, a pathway that was still highly contested
in the 1970s (78). The concept was an affront to the eminent
paradigm of lineage-based developmental biology by which cells
reach a terminally differentiated state. Its impact was felt in early
vascular tissue engineering. The “purity” of cultured endothelial
cells (79) for instance, was seen as key to the clinical success
of vascular graft endothelialisation as “contaminating” smooth
muscle cells were assumed to be the nucleus of occlusive intimal
hyperplasia. It took long-term clinical explants to disprove
this paradigm. The clinically implanted “pure” endothelial
monolayers had in fact developed into a neo-artery structure
with mature, contractile smooth muscle cells underneath the
endothelium, separated by a well-developed internal elastic
membrane (80). As trans-anastomotic outgrowth and trans-
mural ingrowth could be excluded in these grafts the two likely
retrospective explanations are either homing of circulating cells
or trans-differentiation of the originally implanted cells. Since
then, the immensely promising field of stem cell and progenitor
cell (trans)-differentiation opened the door to a new era with
post-lineage trans-differentiation being equally exciting. There,
trans-differentiation from adipocytes into epithelial cells (81),
fibroblasts into endothelial cells (82) and vice versa endothelial
cells into fibroblasts (83, 84) has been demonstrated. Yet,
macrophages hold center-stage in this field, having been shown
to transition into fibroblasts (85), myofiboblasts (86, 87), and
vascular smooth muscle cells (88–91). The boundary between
stem cell / progenitor cell differentiation and post lineage
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trans-differentiation is still blurred as the role of circulating
monocytes as endothelial progenitor cells underscores (92). The
acknowledgment of trans-differentiation went hand in hand
with that of the role of biomechanics (93). Its recognition as
a main regulator of intimal hyperplasia in vein grafts on the
tissue level (94–98) was as important as that on a cellular level
where mechano-transduction for instance proved to be key to the
differentiation of stem-cells and progenitor cells (99–101). Vein
graft intimal hyperplasia highlighted the potentially detrimental
effect on the clinical performance of tissue engineered implants
if the biomechanics–including shear forces–deviate from the
needs of the destination site (94–98, 102). Similarly, changes
in substrate stiffness had been shown to lead to stem cells
differentiating toward different lineages (103) providing one of
many potential explanations for e.g., tissue engineered heart
valves ending up with fibrosing and shrinking leaflets instead of
delicate tri-layered replicas of nature (104, 105) or insufficient
remodeling of vascular grafts (106).

As none of the tissue engineering approaches of the past 52
years led to a change in clinical practice they reflect half a century
of disappointment and only partially fulfilled promises. While
each individual concept had specific issues (lack of continuity; too
low a cell inoculum; too slow or too fast scaffold degradations;
biomechanical incompatibilities or remnant immunogenicity)
one single root-failure in the clinical translation can be identified
as a common thread: the refusal to accept or recognize that the
trans-anastomotic healing mode that leads to successful in-situ
endothelialisation in animal models is wholly irrelevant in man.

COLLECTIVE COMPLICITY

As much as modern laboratory science allows to answer
many questions in-vitro, the peculiar healing characteristics
of cardiovascular implants in man make animal implants
unavoidable. While animal models cannot fully emulate the
human situation in general, the ones used for cardiovascular
implants have been particularly unsuited to provide accurate
pre-clinical feed-back. As such, they were and still are the
main obstacle to the clinical translation of cardiovascular tissue
engineering. In animal research, it does make a difference
whether a well-considered model for clearly defined questions
can still only partially provide appropriate answers or if a broad–
though unwitting–consensus prevails to use established animal
models out of convenience, skills- and cost reasons regardless of
the fact that the gap to the clinical reality is unbridgeable.

In humans, trans-anastomotic endothelial outgrowth plays
no role as it does not exceed more than a few millimeters
even after years of implantation (102, 107–109) (Figures 1,
2). As such, it is evident that in patients, any in-situ tissue
engineering approach would need to harness either transmural
endothelialisation or fall-out healing. Yet, by choosing short graft
lengths in rapidly endothelializing animal models, implants were
often trans-anastomotically fully endothelialised by the time of
explantation (102, 110) (Figures 1, 2). This was aggravated by
the fact that in over 90% of large animal studies the average
graft length was <5.5 cm (102). Taken into consideration that

ingrowth occurs from two anastomotic sites the de facto graft
length was 2.8 cm in animal models where the trans-anastomotic
outgrowth is a few centimeters per month! To put it into
perspective: the same outgrowth distance which takes 56 weeks
in humans before it comes to a complete stop is reached after
3.5 weeks in dogs and significantly earlier in other species
(102). Although it is understandable that abandoning well-
established models would have been highly disruptive from the
standpoint of implantation skills and laboratory-specific data
histories, this system-immanent hurdle to the clinical translation
of tissue engineering is also potentially dangerous when it comes
to misleading preclinical results that may prompt premature
clinical trials.

LIMITS OF ENGINEERED TISSUE
REGENERATION IN HUMANS

The in-vivo population of scaffolds with host tissue is a critical
component of tissue engineering whether or not cells were
already incorporated at the time of implantation. Naturally, cell-
free implants rely entirely on the in-vivo in-growth or outgrowth
of host tissue. Given the crucial role of this process it is
puzzling how underappreciated the question remained whether
the presumed mode of “healing” can be expected to successfully
occur in humans.

After half a century of a de-facto focus on the largely irrelevant
surface outgrowth of tissue across the anastomoses, experimental
data will need to have answered three questions before they
can be assumed to succeed in their clinical translation: (a) was
an experimentally demonstrated tissue regeneration mode likely
to happen at the intended clinical site; (b) is the successful
population of an implant with all functional tissue components
likely to happen in humans before the build-up of adverse
ingrowth conditions and (c) in the case of degradable scaffolds–
can functional tissue formation be completed before the scaffold
starts disintegrating.

Although experimental models that excluded trans-
anastomotic endothelialisation were proposed >35 years
ago when Hess et al. (111) suggested a looped conduit that
enables the implantation of graft lengths of up to 10 cm in the
infrarenal aorta of the rat they remained in obscurity until
recently (110, 112, 113) (Figures 2, 3).

Of all modes of cell population, facilitated fall out healing from
the circulation would be the holy grail of tissue regeneration.
It is therefore surprising that not more efforts had gone into
clarifying the true potential of this healing mode. Again first
described by DeBakey’s group in Houston in 1963 (109, 114) and
clinically confirmed by Berger and Sauvage at the University of
Washington in the early 1970s (107) “fall out” endothelialisation
had been sporadically observed thereafter both on artificial hearts
(35) and on vascular grafts (113, 115–121). Key to being able
to observe true “fall-out” healing without interference from
either trans-anastomotic or trans-mural ingrowth, however, are
double isolation models that clearly distinguish it from all other
possible regeneration modes both from the adventitia and the
anastomotic side. It mystifies that isolation models capable of
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FIGURE 1 | Schematic presentation of the fundamental difference in

cellularization and healing of prosthetic cardiovascular implants in humans (A)

and in animal models (B). In humans, transanastomotic outgrowth hardly

exceeds a few millimeters even after years of implantation. Continual fibrinogen

and platelet replenishment from the blood leads to a compacted surface

thrombus in the luminal interstices of the scaffold that increasingly becomes

hostile toward capillary penetration similar to the wall thrombus of aneurysms.

Over time, this compacted acellular material in the luminal layers of a scaffold

becomes prohibitive for transmural endothelialisation (Insert A) even if scaffold

structure and/or degradability would facilitate capillary penetration. The rapid

trans-anastomotic outgrowth of adjacent endothelium and its subintimal cells

in the vast majority of animal models (B) also mitigates transmural

vascularization (Insert B) while actively recruiting cells from the circulation. As

such, the entire healing pattern in most animal models from surface

endothelium to intramural cell population is non-predictive for the tissue

response in patients. For transmural endothelialisation to be successful (C),

models need to be chosen where the presence of a surface endothelium is not

pre-empted. Only this allows to study the antagonistic dynamics between

ingrowth spaces, accelerated angiogenesis and the build-up of increasingly

impenetrable, compacted thrombus in the luminal interstices of a scaffold.

achieving this periodically emerged over the past four decades
(87, 111, 113, 117) without enthusing the countless groups that
would have needed this healing mode for the validation of their

FIGURE 2 | Schematic comparison of graft lengths typically used for clinical

peripheral bypass grafts (A) and experimental grafts implanted in animals (B).

In >90% of all large animal experiments grafts were shorter than 6 cm. In most

animal models, trans-anastomotic endothelial outgrowth (red) leads to

complete surface endothelialisation within weeks making it impossible to study

transmural or blood-born endothelialization. In clinically implanted bypass

grafts, in contrast, ingrowth stoppage permanently leaves over 90% of the

graft non-endothelialized (blue). Therefore, animal studies generally investigate

a mode of surface endothelialization that is irrelevant in humans. To study

transmural- or fall-out endothelialisation from the blood stream experimental

grafts need to be welded between sufficiently long low-porosity grafts to

clearly see a non-endothelialized zone between the progressing margins of

transanastomotic outgrowth and endothelium originating from the investigated

mid segment (C). From (102) with permission.

tissue engineering concepts. Almost 40 years ago—also in the
context of artificial heart research–Feigl et al. already used such a
double-isolation model to unambiguously prove in large animals
that facilitated surface entrapment of circulating mononuclear
cells can lead to their differentiation into a neo-vessel structure
containing myofibroblasts and endothelial cells within a PET
scaffold (87). Most recently, the occurrence of fall-out healing
was again confirmed in a murine loop-graft isolation- and
sealing-model (Figure 3) which did reemphasize how minor the
contribution of this healing mode is to surface endothelialisation
as opposed to transmural endothelialisation (113).

Thus, in the absence of any foreseeable breakthrough with
facilitated “fall out” healing in the near future, transmural
endothelialisation will remain the only likely avenue to a
successful clinical in situ endothelialisation particularly of
synthetic cardiovascular prosthesis. Key to this healing mode
first described in 1962 (122) is the penetration of the full wall
thickness of an implant by sprouting adventitial capillaries.
These tubes were shown to coalesce with the graft lumen
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FIGURE 3 | Typical straight infra-renal interposition graft in rats usually ±

10mm in length (A) and loop graft of ± 100mm length with an experimental

segment welded into the mid-region of low-porosity ePTFE (B). While straight

infrarenal interpositions usually lead to.trans-anastomotic endothelialisation

before trans-mural ingrowth can occur the “isolation” segments in the loop

graft enable the investigation of transmural endothelialisation without

interference from transanastomotic endothelialisation. By also sealing the

interposition segment against the adventitia, a model for fall-out healing is

created. From (110) with permission.

on the blood surface (113, 123–125) where they give rise to
expanding endothelial islands (102, 113) (Figures 4, 5). Not only
do these transmural vessels largely maintain continuity with
the abluminal side (123, 127), they are also likely to attract
other cell types required for the complete tissue integration of
the scaffolds. As Patricia d’Amore had already concluded in
the 1990s undifferentiated mesenchymal cells may follow these
endothelial tubes and be directed by them in their differentiation
into SMCs (128). Although facilitating circumstances such as
endothelial-rich peri-graft tissues were shown to potentially
augment transmural endothelialisation (129–131) the scaffold
itself must allow this process by providing continual, ingrowth-
permissible spaces (102).

Under clinical circumstances, however, transmural
endothelialisation is not only determined by ingrowth
spaces but also by two interdependent in-situ responses
distinctive to humans: the near absence of trans-anastomotic
endothelialisation (Figure 2) and the resulting gradual build-
up of impenetrable thrombus near the blood surface over
time (Figures 5–7). While trans-anastomotic outgrowth-
inhibition has been a well-known phenomenon for the past
60 years (107) the detrimental effect of the resulting surface
thrombus-compaction on transmural tissue ingrowth has only
slowly emerged. Observed from the 1960s onwards (102, 107–
109, 115, 116, 132, 133) this acellular dense fibrin layer building
up in the interstices of synthetic vascular grafts near their
non-endothelialised blood surfaces was initially thought to be

FIGURE 4 | Interposition isolation models for studying endothelialisation

without the interference of trans-anastomotic endothelial out- and

over-growth. (A) Rat infra-renal loop graft model. A high porosity polyurethane

graft was welded into the mid-segment of an up to 100mm long low-density

ePTFE graft. The confluent mid-graft endothelium reached onto the otherwise

endothelial-free ePTFE sections. Transmural ingrowth from the adventitial side

was confirmed with corrosion casting. The origin of the surface endothelium

was sometimes traceable to capillary openings on the blood surface. (B)

Senescent baboon femoro-femoral isolation graft model. Experimental grafts

were equally welded into the mid-section of low-porosity ePTFE. The

experimental ePTFE graft shown possessed a dense middle layer which made

it impenetrable for cells. After 6 weeks, cellularity was almost exclusively on the

adventitial side, highlighting that trans-mural ingrowth from the adventitia

overwhelmingly accounts for the cell population of the graft wall unless actively

recruited by transanastomotic endothelium (see Figure 6). From (113) and

(102) with permission.

PET related (109, 134, 135). Yet, resembling the almost acellular
“anion-layer” thrombi of aneurysms (136) comparative primate
studies in the 1980s already suspected the platelet-rich, dense
fibrin itself to be the culprit (135). Subsequent insight into
the diversity of thrombus formation eventually provided some
explanations in the 1990s (137). While a typical “wound healing
type” fibrin with its relatively low fiber density and thick fibers
strongly stimulates angiogenesis (Figure 7C) the high-density
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FIGURE 5 | Transmural endothelialisation of vascular grafts in the rat (A) and the senescent baboon (B,C). The loop graft in the rat (A) shows clearly discernible

edges of the trans-anastomotically outgrowing endothelium (post-colored in red) from the infra-renal aorta with a long stretch of endothelium-free surface separating it

from the trans-mural mid-graft endothelium (also post-colored in red). The presence of a long separating zone between the experimental graft and the

transanastomotic outgrowth-edge is even more important in view of transanastomotic outgrowth also occurring in the opposite direction (Insert A) from the

experimental graft in case of successful trans-mural endothelialisation. (B,C) Similar isolation graft in femoro-femoral position in the senescent Chacma baboon. After

6 weeks, transmural sprouting had either successfully led to confluent surface endothelialisation (C) with multiple capillary openings (Insert C) or in its absence led to

the build-up of a dense fibrin matrix in the interstices near and on the surface (B). Sometimes sporadic small endothelial islets are detectable (Insert B).

mat of thin fibers precipitating in a fibrinogen rich environment
like the one near the surface of cardiovascular implants is more
thrombogenic (133) and inhibits capillary formation (138)
(Figures 5B, 6C, 7A,B). As such, complete transmural healing
needs to be concluded before this barrier builds up (102). As was
shown in an isolation model in a non-human primate (102, 126)
non-facilitating circumstances may allow some individuals to
successfully conclude transmural endothelialisation before the
build-up of hostile surface thrombus while in others sprouting
capillaries already hit a barrier (Figure 6C). The focus of
engineered tissue regeneration efforts must therefore be to
temporarily block the build-up of impenetrable interstitial
thrombus near the blood surface while facilitating accelerated
transmural endothelialisation.

A PROTRACTED EVOLUTION

Comprising the experience of more than five decades, concrete
tissue engineering approaches ranged from direct cell inoculation

to bioreactor-based in-vitro culture; from decellularization of
natural tissues to purely synthetic concepts; from degradable
fabrics to injectable scaffolds and from facilitated ingrowth to
inadvertent outgrowth. As these sometimes novel and at other
times reiterated strategies emerged over more than half a century,
a systemic classification never materialized. Yet, the clearest
overarching order seems to be one that distinguishes between
“vital” and “non-vital” implants.

Vital Implants
Single-Stage, Direct Inoculation of Autologous Cells,

or Tissue
Naturally, the inoculation of prostheses with autologous cells at
the time of surgery represented the first step toward “living”
implants.

Given the insurmountable thromboembolic complications
of artificial hearts and the conclusion of deBakey et al. (109)
and Wesolowski et al. (108) in 1964 that prosthetic blood
surfaces remain non-endothelialised in humans it was foreseeable
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FIGURE 6 | Femoro-femoral isolation model in the Chacma Baboon (6 weeks)

(102, 126). The wrapped, ingrowth-preventive 30µm ePTFE segements [(A)

near anastomosis with trans-anastomotic endothelial outgrowth; (B) beyond

trans-anastomotic endothelium with compacted surface thrombus)] had a

high-porosity 150µm IND experimental ePTFE graft [(C) and Insert] welded

into the mid-section. The low-porosity, wrapped isolation segments highlight

the need for the presence of an endothelium for the active recruitment of

largely mononuclear cells from the blood stream (A,B). The very-high porosity

isolated mid-graft segment showed either dense, compacted thrombus in the

internodal spaces of the luminal side (C) or well-healed grafts with fully

trans-murally endothelialized blood surfaces (insert C).

that first efforts toward tissue incorporation would be made
at leading centers for artificial heart research. Accordingly, it
was Ghidoni of deBakey’s group who inoculated fragments
of autologous skeletal muscle into the velour lining of left
ventricular bypass pumps leading to foci of proliferating spindle-
shaped cells but no endothelium after 2 weeks (139)—the longest
possible implantation period before these early pumps failed. The
attached tissue stripes sowed central necrosis and the concept was
abandoned in favor of using cultured cells.

FIGURE 7 | Demonstration of the detrimental effect of the compacted, dense

surface thrombus on transmural endothelialisation in the baboon

femoro-femoral isolation model (identical implant periods in A to C). (A)

Restriction of transmural vessel ingrowth to the outer half of the graft in the

presence of a compacted surface thrombus in the interstitial spaces of the

luminal third of the graft wall. (B) Identical mid-graft with a sealing,

oxygen-permissible silicon membrane on the blood surface. The transmural

vessel ingrowth reaches through the entire wall thickness. (C) Identical graft as

in A but occluded. The long-distance outgrowth of trans-mural blood vessels

through the graft wall and the entire thrombus highlights the fact that fibrin

clots are pro-angiogenic unless they become compacted near the blood

surface as typically seen in non-endothelialised vascular grafts in humans.

Fifteen years later, Mid-Western vascular surgeons from
Indianapolis (140) and Ann Arbor (141) took up the idea
of autologous single-stage cell inoculation and applied it to
Dacron prostheses calling it “Endothelial Cell Seeding.” In
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dogs, seeding of venous endothelial cells successfully generated
a mid-graft endothelium (141). Yet, when carried over into
clinical trials, venous endothelial cell-seeding failed to achieve
any improvement to the patency of the up to 60 cm long,
medium-diameter ePTFE prostheses used for femoro-popliteal
bypass grafts (142). It became obvious that seeding densities
were too low, aggravated by a reduced reproductive capacity
of endothelial cells in smokers (143–145) and patients with
hyperlipidaemia (146, 147)- two conditions present in the vast
majority of patients. Attempts to increase harvest efficiencies
by using microvascular endothelial cells from adipose tissue
(148, 149) or bone marrow (150, 151) again led to the successful
creation of a functional endothelium in animal experiments
(151–153). Yet, microvascular seeding raised concerns regarding
unrestricted subendothelial proliferation (154) and when it
was eventually clinically tested it also showed no significant
improvement over controls (155). Typical for tissue engineering
in general, single-staged seeding was rediscovered 25 years after
it was first described (156, 157) and by a few researchers is
still carried over into the present time (158–161). The main
novelty was the replacement of the bio-stable PET and PTFE
scaffolds by bio-degradable materials (156). Using again bone
marrow as a cell source the concept was experimentally tested
in vascular grafts in dogs (151), sheep (162), pigs (163), and
mice (160) followed by a clinical pilot study in children (157).
When seeded tube grafts were implanted as extracardiac total
cavo-pulmonary connections (TCPC) significant graft stenoses
developed in more than a quarter of all patients (159, 164).
Experimental work suggested that higher seeding densities may
mitigate graft stenosis (160, 161). Alternatively, pharmacological
interventions were tested emulating the previously tried ACE
inhibitor therapy (165) with modern angiotensin II receptor
blockade (166). Eventually, single stage seeding of degradable
scaffolds was carried over to heart valves and tested in acute (167)
and semi-acute (168) sheep implants. Like 37 years before (140),
cells were embedded in a fibrin matrix deep within the polymeric
meshwork at the time of implantation. When bone marrow
cells were seeded on supramolecular polymers, long term results
were discouraging with valves failing due to tissue overgrowth
and leaflet fusion (158). When the same scaffolds were used as
unseeded valves, results were significantly better (158).

Eventually, the ultimate exploit of single-staged cell
inoculation was in myocardial regeneration where it endured
the longest. This was partly because the clinical drivers were not
surgeons and as such least likely to have been exposed to the
disappointing previous efforts. At the same time, the enthusiasm
for single-staged myocardial cell inoculation was certainly also
carried by its concurrence with the early days of stem cell
research and the accompanying fascination with the potential
of these cells. Early experimental reports describing startling
myocardial regeneration in mice after MI (169) triggered a
global stampede toward myocardial regeneration work resulting
in clinical trials being reported within a year (170, 171) just to
be thoroughly disproven 2 years later (172). Fifteen years after
the first gung-ho period, meta-analyses of clinical trials with
adult stem cells still showed conflicting results ranging from
minimal to no therapeutic benefits (173, 174). The greatest

shortcoming of the initial approach was the naïve misconception
of myocardium as a gel-like structure rather than the dense
sponge which particularly the venous side of the vasculature
constitutes. As such, rather than engrafted, the injectates were
largely washed out and the few remaining cells did not find
a matrix environment to survive (175). Recent approaches
toward defeating this Achilles heel have been the alternative use
of compact 100µm thick myocardial muscle bundles grown
from human induced pluripotent stem cells (hiPSC) (176) or
human embryonic stem cells (hESC) (177) or the injection
of large cell agglomerates in form of “micro tissue” spheres
(178, 179) (Figure 8) and the use of injectable biomaterial
scaffolds to entrap and nurture the cells after delivery which
has started to achieve incremental improvements (181, 182).
Apart from embedding transplanted cells in a matrix that
contains engraftment and pro-angiogenic cues, the second
benefit of injecting such gels into myocardial infarcts is as a
space-holder arresting an otherwise deleterious downward
spiral of remodeling (183, 184) (Figure 9). Moreover, the initial
hope to facilitate the trans-differentiation of progenitor cells to
cardiomyocytes has given way to a more modest expectation
allowing for anti-fibrotic and anti-inflammatory outcomes on the
basis of a paracrine effect regardless of the cell types inoculated
(188). In a translation context, exploiting the components of a
paracrine mechanism, particularly exosomes is attractive due to
reduced regulatory requirements and their off-the-shelf nature
(189). Notwithstanding, the efficacy of this approach will again
rest on efficient delivery perhaps most likely through controlled
release from injectable scaffolds or sophisticated targeting
approaches (190).

In hindsight, the trajectory of myocardial regeneration,
however, hasn’t been different from other areas of cardiovascular
tissue engineering. Although much basic knowledge had been
gained in the three preceding decades, this latest embodiment
of the earliest approach to tissue engineering repeated many
of the mistakes and equally fell for the temptations of its
predecessors: hype at the beginning rather than thorough basic
research; premature translations into clinical procedures; the
unbridled belief in stem cells alone ignoring the embedding
environment, the need for neo-angiogenesis and the importance
of biomechanics and the resulting push-back by public opinion.
The latter was highlighted by the inability of the first sufficiently
powered phase III clinical trial to achieve clarity with respect to
bone marrow derived cells (BAMI) to recruit more than 12.5% of
required patients (189). Like with other fields of cardiovascular
tissue engineering, the short-cut temptation single staged cell-
inoculation held may also have slowed down the clinical
realization of “true” engineering approaches in myocardial
regeneration. Promising developments from myocardial muscle
bundles to micro-tissue spheres would have otherwise seen a
much more proactive clinical translation. Given the clinical
need for a successful solution, the current “death-valley” will
need to be crossed with determination and in the absence of
glory. While acceptance of the complexity of the pathobiology
involved has been a first step toward a more scientific approach,
the issue of misleading animal models also hampers success in
this area of cardiovascular tissue engineering. As convenient
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FIGURE 8 | In myocardial regeneration, the potential of a hydrogel

(polyethylene glycol) to preserve space and entrap cells is demonstrated with

fluorescent labeled PEG (Alexa 665 nm) seen polymerised between the

cardiomyocyte bundles in an infarcted rat heart (A). The advantageous effect

on stress reduction through wall remodeling was much more pronounced if

the gel injection was delayed. Inset (B) shows a similarly labeled PEG hydrogel

entrapping adipose derived mesenchymal stem cells (green) within the

infarcted wall of a rat heart. To improve cellular retention in myocardial

regeneration therapy, cellular self-assembly into 3D microtissues (3D-MTs)

using the “hanging drop” method (178, 179) prior to intra-myocardial injection

(C) and compact 100µm thick myocardial muscle bundles grown from human

induces pluripotent stem cells (hiPSC) (176) or human embryonic stem cells

(hESC) (177) have emerged as an encouraging alternative to single cell

injection “therapy” with its high cell loss due to a lack of entrapment.

3D-microtissues have been shown to significantly enhance the angiogenic

activity and neovascularization potential of stem cells. From (180) and (179)

with permission.

as a murine fresh infarction model may be, the majority of
patients in need of myocardial regeneration are not suffering
from acute but chronic ischaemia. The “replacement fibrosis” of
acute infarction (191) is distinctly different from the extracellular
matrix environment building up (192) in chronic ischaemia
(193) where a highly cellular interstitial environment, enriched in
matricellular proteins and capable of transducing growth factor
responses may be required for structural and functional recovery

FIGURE 9 | Concomitant stress reduction through gel injection in post

infarction myocardial regeneration. The preservation of wall thickness in

infarcted rat hearts after injection of polyethylene glycol hydrogels is clearly

visible at 4 weeks (B) and 13 weeks (D) relative to untreated controls (A,C).

Finite element models (185, 186) have shown that this mitigation of detrimental

post-infarction remodeling dramatically reduces the ventricular mechanical

stress (187) that drives the infarcted heart toward failure. Green (scarring) and

purple (viable myocardium). From (183) with permission.

(193). Similar to other areas of cardiovascular tissue engineering,
focused and carefully considered models like Wolfgang Schaper’s
chronic ischemic heart model of the 1970 (194) gave way to the
more expedient acute ligation models with their exclusive focus
on acute ischaemia (195, 196).

Two-Stage Co-culture of Scaffolds and Cells
The idea of sufficiently multiplying autologous cells in vitro
before creating confluent functional cell layers on the blood
surface of an implant again goes back to the artificial heart
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research of the 1960s. Adapting a method of culturing human
endothelial cells that was first described in 1963 (197) it was
once more Baylor College that successfully pioneered the in-
vitro culture of autologous cells on the silastic membranes of
circulatory assist devices (23) followed by the in-vivo proof
of the antithrombogenicity of such a lining (32). At the
height of pneumatically driven artificial hearts shear stress
resistant confluent endothelial monolayers were created on
the displacement membranes of a variety of TAHs (198–201).
However, this very first tissue engineering approach utilizing
cell culture never materialized as a game changer in clinical
practice and quietly faded away as modern assist-devices made
it obsolete.

A decade later, the group in Vienna–intimately involved in
the initial clinical trials with single stage venous endothelial
cell seeding of vascular prostheses (202, 203)- introduced
mass-culture of autologous endothelial cells (79) to create
shear-stress resistant confluent monolayers (204–206) prior to
implantation. Preclinical trials confirmed the persistence and
non-thrombogenicity of such tissue engineered grafts in a non-
human primate model (207). An attempt to replicate this concept
using cryopreserved multidonor allogenic endothelial cells in
order to create “off the shelf ” grafts was unsuccessful in the
same senescent non-human primate model (208) (Figure 10).
A clinical feasibility study was successfully done in 1989 (210)
and a randomized clinical trial showed autologous in-vitro
endothelialisation to dramatically improve the 3-year patency of
femoro-popliteal and femoro-distal bypass grafts (211). Based on
this evidence the group adopted this cell culture-based method
as a routine procedure for all patients who had no saphenous
vein available with excellent clinical outcome (212). Although
a significant proportion of patients had distal reconstructions–
a patient group with particularly poor prognosis–the 8 (213),
9 (214), and 12 year (215) patency rate of these grafts was
continuously superior even to vein grafts. These excellent results
were confirmed in more than 300 patients with a follow-up
period of up to 17 years (80) (Figure 11). By then, some
early limitations of this two-staged method had also been
resolved. The initially experienced failure of some patients’ own
endothelial cells to proliferate into mass cultures had been
overcome once risk factors like serum levels of lipoprotein
a and triglycerides had been identified (146) and addressed
(147). While delays between cell harvest and availability of the
tissue-engineered grafts remained the biggest obstacle for acute
clinical indications, improved mass culture techniques based
on in-situ procedures and very-low density plating that cut
out cell passaging had distinctly shortened this lag phase (79).
Similarly, clinically used attachmentmatrices had been optimized
(205, 206) culminating in an RGD-enriched, engineered lattice
providing significantly enhanced shear stress resistance for the
endothelium (216). The final proof of success came with the
demonstration of a confluent endothelium on mid-segments
of clinically explanted in-vitro endothelialised grafts from as
early as 30 days (217) to almost 4 years after implantation
(218) (Figure 11) and the histological proof of genuine
arteriosclerotic changes more than 10 years after implantation
(80) (Figure 12).

FIGURE 10 | (A) Scanning electron micrograph of the midsegment of a 4mm

ePTFE graft, in-vitro enothelilised with mass-cultured, allogenic, multidonor

endothelial cells after 16 days of implantation as femoral graft in a senescent

Chacma Baboon. Only residual cell islands are left of an originally confluent

endothelium at the time of implantation interspersed with denuded areas with

densely adherent leukocytes and platelets. (B) Confluent monolayer of

autologous endothelial cells 4 weeks after implantation of an in vitro

endothelialised 4-mm ePTFE femoro-femoral graft into a senescent baboon.

One can still recognize the underlying structure of the PTFE graft. No

endothelial cell detachment was found in spite of the shear stress exposure.

The antithrombogenic potential of the cultured endothelial cells was reflected

by a higher patency rate and the lack of platelet or fibrin depositions. With

permission from (208) and (209).

At the height of in-vitro endothelialisation of vascular
grafts, the concept was also applied to bioprosthetic heart
valves. Glutaraldehyde detoxification made it possible to grow
endothelial cells to confluence on bioprosthetic leaflets (219–
223). Such in-vitro lined tissue valves maintained endothelial
integrity in the heterotopic primate model (224, 225) and even
showed some degree of mitigation of tissue calcification (225,
226). However, when the extent of residual immunogenicity of
conventional bioprostheses and its role in tissue calcification
became apparent (227–229)better immune masking either
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FIGURE 11 | (A) Midgraft segment of an autologous, in-vitro endothelialized

graft 41 months after implantation showing a confluent endothelium (CD 31)

resting on layers of well-aligned actin-positive cells. A delicate intima was

demarcated from the α-SMC actin positive cells by a well-defined internal

elastic membrane (Insert: Orcein). (B) Primary patency (y-axis) over time (x-axis

in years) highlighting the clinical benefit of autologous in-vitro endothelialisation

in 6 and 7mm femoropopliteal bypass grafts of 341 consecutive patients

opposite a comparable patient group randomized to receive saphenous vein

(“SV”) and ePTFE grafts (“ePTFE”) [with permission (37)]. The entire cohort of

patients receiving an in-vitro endothelialised grafts had no saphenous vein

available and as such, an ePTFE graft was an obligatory choice for each of

them. Therefore, the patency of endothelialised grafts needs to be compared

with that of the subgroup in the randomized Veith et al. study where an ePTFE

prostheses was equally obligatory (“ePTFE w/o SV”). From (80) with permission.

through decellularization (230–233) and/or higher crosslink
efficiency (234, 235) became the primary goal rather than a living
endothelium. Also still in the 1980s Libby and Birinyi (236) and
Pober et al. (237) had shown that under such circumstances
an endothelium would augment rather than suppress an
inflammatory process (236, 237) as the exposure of ECs to
inflammatory cytokines, such as IL-1 or TNF-α, would cause the
ECs to bind manifold more leukocytes (238) due to the induction
of endothelial leukocyte adhesion molecules (ELAMs) (239). As
such, an endothelium on conventional bioprosthetic leaflets even
after detoxification would continually be proinflammatory (236).
Attempts to reduce immunogenicity by decellularizing allografts
(240–246) and xenografts (242, 247–251) before lining them with
cultured endothelial cells were followed by clinical trials with
in-vitro endothelialised, decellularized allografts (250, 252–254).

FIGURE 12 | Midgraft segments of two in-vitro endothelialised

femoro-popliteal grafts explanted at the time of re-operation for graft failure 41

months (A,C) and 63 months (B) after implantation. Both specimens contained

(Continued)
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FIGURE 12 | other areas of more significant stenoses but the displayed

pre-stenotic regions were packed with large islands of foam cells. Typically, the

foam cells were wedged underneath pannus-like, cell-poor tissue that

occasionally showed stretches of complete acellularity (B). From (80) with

permission.

When the in-vivo performance of equally decellularized matrices
compared in-vitro endothelialisation with decellularization only,
there was no difference (255) leading over to the later approach
of non-vital decellularized native valve implants (256).

While the first two decades of tissue engineering were
firmly tied to permanent scaffolds, this began to change in
the 1980s. Long before anyone else, cardiovascular surgeons
in Groningen had the idea of making the scaffolds gradually
disappear while allowing functional tissue to develop (257–261).
Pioneering this concept as early as in 1983 (261) they pre-
empted key elements of the subsequent era like biodegradable
polymer grafts inoculated with cultured smooth muscle cells
(262). Yet, the catchy term “tissue engineering” —not coined
but popularized–several years later by Joseph Vacanti, a surgeon-
scientist at Boston’s Children’s Hospital and Robert Langer,
a chemical engineer at the MIT (263) contributed to the
lasting association of Boston with this approach. When they
began their efforts, their underlying concept had a holistic
rather than a cardiovascular claim. Indicative of the broader
scope of their approach, the initial clinical problem they
strove to resolve was curing diabetes through pancreatic islet
transplantation (264) followed by attempts to re-grow cartilage
(265). Toward, the mid 1990s, the “Boston group” had expanded
this concept to heart valves (104) and shortly later also
included vascular grafts (266) co-culturing embedded autologous
arterial and venous cells within degradable scaffolds made of
polyglactin/PGA fabric. Replacing a single valve leaflet in a sheep
(104) confirmed the concept but also the previously shown
superiority of autologous tissue engineered implants over their
allogenic counterparts (208). However, at explantation leaflets
were thicker and stiffer than native leaflets and did not have
the delicate, differentiated microanatomy required for stress-
reduction during opening and closing (104, 267, 268). The
phenomenon of fibrosis and tissue shrinkage associated with a
macrophage driven resorption process was seen in all animal
models including senescent primates (269). This healing mode
was well-known from the tissue reaction to resorbable surgical
sutures made of the same polyglycolic- (PGA) and polylactic-
acids (PLA) or polycaprolactone (PCL) materials which had
been clinically used for decades (270). Attempts to minimize
this cicatrition in favor of more mature valvular tissue included
addressing biomechanics (271–273) as well as inadequate
cell growth in the depth of the scaffolds through pulsatile
bioreactors (274). Polymers were also iterated using natural
polyesters like Polyhydroxyalkanoate (PHA) (271, 272) and Poly-
4-Hydroxybutyrate (P4HB) (275). At the same time, the issue of
the cell source also remained a challenge for two-stage culture-
based approaches. Attempts to optimize the ease of harvest and
the yield followed again in the footsteps of the previous era by
either trying allogenic cells (276) or different autologous cell

sources like bone marrow cells (275), mesenchymal stem cells
(277), umbilical cord blood derived EC progenitor cells (278),
prenatally harvested progenitor cells (279), human induced
pluripotent stem cells (hiPSCs) (280) endothelial progenitor
cells (EPC) (92) including reprogrammed and reconditioned
cells (281). Different from previous eras, however, significantly
more resources and internationally attracted manpower had
characterized the “Boston era.” Eventually, fellows of John
Mayer’s group carried the program to other institutions in the
early 2000s: Simon Hoerstrup to Zurich (282) [later on also
collaborating with Frank Baaijens’ group in Eindhoven (283)],
Toshiharu Shin’oka to Tokyo (156, 157) and Christopher Breuer
to Yale (later Ohio State) (160, 284). While other researchers like
Laura Niklason at Duke (later Yale) (285, 286) also started their
programs initially on the basis of bioreactor-based vital implants
using degradable scaffolds (163), the group in Montreal went a
step further. In an attempt to avoid all synthetic scaffolds and
the associated problems of shrinkage and fibrosis, L’Heureux and
Auger created polymer-free neo-vessels consisting of adventitial
fibroblatsts, medial smooth muscle cells and an endothelium
(287–291) Their extreme modern pendent are 3D printed pure
stem-cell grafts (292). In clinical pilot trials with L’Heureux’s
AV-shunts graft dilatation was observed (288). In line with the
general desire to cut out an autologous culture step and offer
a product off the shelf their next generation of tissue-cultured
vascular grafts was still autologous but devitalized to be storable
(293) followed by a further step toward a commercial product by
using devitalised allogenic cells (294). This step away from vital
implants stood at the beginning of a general return to the concept
of in vivo tissue regeneration of non-vital scaffolds originally
pursued from 1968 onwards for artificial hearts (10, 11, 24, 34–
36).

In retrospect, of all the vital tissue engineering concepts
pursued, in-vitro endothelialisation was the first and for
decades the last embodiment that was successfully translated
into clinical practice (Figures 10–12). The successful pilot
program ceased when new regulations prohibitively tightened the
circumstances under which a patient’s tissue may be processed
as part of an implantable device outside the operating room.
Although this hurdle would be surmountable by establishing
integrated facilities and ISO-compatible cleanroom productions
the combination of the inconvenience of not having an “off the
shelf ” product readily available with a protracted process that
excludes acute interventions makes a revival of “vital” two-stage
tissue engineering unlikely—regardless of whether the scaffold is
permanent or temporary.

Non-vital Implants
The principle behind this approach is the trust that acellular
implants stimulate and direct the healing response of the body
to not only become in-situ populated with cells but that these
cells organize themselves in a way that the resulting tissue fulfills
the key functions of the original structure (295). As appealing
as this concept of “in-situ” “regeneration” or “guided tissue
regeneration” is with regards to “off the shelf ” products, it relies
on one assumed ability: to recruit cells which can differentiate
into the desired functional tissue. As practically all cardiovascular
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tissue engineering attempts of the past decade have coalesced
toward non-vital implants, it is paramount to get clarity on
their repopulation potential soon. For that, tissue sampling
from the crucially important parts of the implants like the
distal ventricular side of leaflets or mid-sections of long bypass
grafts will be as mandatory as an independent identification
and localization of ingrowing cells in order to validate this
promising approach.

Native and in-vitro Grown Natural Matrices
Ironically, two diametrically opposed tissue engineering concepts
of the past decades—decellularized allo and xenograft valves and
pericardia on the one hand (242, 296, 297) and vital implants of
cultured cells on degradable scaffolds on the other (104)—ended
in congruence when the latter added a decellularization step.
Now, both concepts bet on the in-situ re-population of allogenic
or even xenogenic antigen-reduced, cell-derived matrices. A
main challenge of this approach is the fine line between remnant
immunogenicity (298–300) and avoidance of crosslinking to
allow repopulation with host cells. The fact that a cell-free
matrix can still be immunogenic has been shown (301) not
least in the catastrophic failure of Synergrafts in children (302).
Furthermore, interstitial cells seem to be needed to maintain
the microarchitecture of the extracellular matrix (303). While
the microarchitecture of the extracellular matrix of allografts
is well-preserved in transplant recipients in whom the donor
cells survived, the typical acellularity found in allografts from
non-immune suppressed recipients is associated with a loss of
microarchitecture and hyalinisation of the matrix (303).

Although the verdict is still outstanding whether such
constructs will eventually get sufficiently repopulated in humans,
one may in the meantime draw parallels from the experience
with auto- and allograft heart valves. There, three basic
facts emerged: (a) cells can remain vital in the depth of a
transplanted native valve provided they are autologous and
were already there at the time of implantation (304–306); (b)
the survival of allogenic cells in the depth of transplanted
native valves is only possible in the immune-suppressed context
of heart transplantation but otherwise allograft heart valves
become rapidly acellular (307); and (c) in spite of presumably
representing the optimal extracellular matrix structure of a native
valve, allografts remain acellular after years of implantation
(303, 307). These observations indicate that in humans, even the
destination matrix of a native decellularized aortic valve may
remain acellular unless it already contains autologous cells at the
time of implantation as is the case in autografts. Theoretically,
this absence of cell ingrowth into conventional allografts could
either be secondary due to post implantation matrix disturbances
resulting from the death of co-transplanted cells or primarily
reflect the mitigated trans-anastomotic tissue outgrowth in
humans. However, even in larger animal models, the distal leaflet
sections remained mostly acellular (308). Therefore, the question
as to the source of cellular re-population cannot be evaded. Since
all decellularized matrices present at least a temporary barrier
for transmural endothelialisation, and significant fall-out healing
from the circulation has remained an unfulfilled pipedream
for decades (107, 108, 113, 116, 309), the partially successful

“in-situ tissue regeneration” observed in animals may have
its most likely explanation in the vigorous trans-anastomotic
outgrowth potential of adjacent intimal tissue in sheep that
does not exist in man. Hence, no convincing evidence going
beyond facile case reports (308) has been presented yet that
unambiguously demonstrated a successful autologous in situ
re-population of decellularized native heart valves in patients.
Early reports rather highlighted the unresolved issue of remnant
immunogenicity of the decellularized matrix in the absence of
crosslinking. CryoLife had reported partial recellularization of
the distal conduit but an absence of cellularity in the leaflet after
up to 11 years in vivo (310). This was followed by the clinical
debacle with their decellularized xenografts in children (302).
“Leaflet repopulation” was also reported during clinical use of
the Matrix PTM line of valves, another decellularized xenograft,
but the repopulating cells generally appeared to be inflammatory
rather than phenotypically appropriate valve cells (302).Whether
non-cardiac-derived decellularized matrices like the “CorMatrix”
made from porcine small intestinal mucosa would allow to
revisit the non-crosslinked xenograft concept has been decisively
answered in a recent study where more than half of the
valves failed (311). Together with reoperation rates in humans
when used as patches (312) clinicians have been calling for a
moratorium on such non-crosslinked decellularized xenografts
(313, 314). Notwithstanding the conclusion that non-crosslinked
decellularized xenografts are showing dangerous inflammation
and failure, the excellent clinical performance of decellularized
allografts over their conventional counterparts (315–317) makes
it likely that the concept will prevail even if it loses the attribute
of “guided tissue regeneration” upon more vigorous patho-
histological analyses under strictly defined criteria.

While clinical studies with decellularized natural heart valves
(318–320), pericardium (296) and vascular grafts (321) have
been reported for more than two decades decellularized in-
vitro grown matrices have been tested for equally long–both
as heart valves and as vascular grafts–but so far clinical trials
have only been performed with vascular grafts. The concept
was pioneered by Niklason’s group in 2003 (322) decellularizing
allogenic PGA/smooth muscle cell (SMC) constructs that were
cultured in a bioreactor for 2 months. With the initial focus
on dilatation resistance and patency (323) and animal implants
mostly reflecting trans-anastomotic outgrowth (324) the key
question as to the repopulation of the decellularized matrix in
man had to wait for clinical studies. Starting in 2012 (325)
sixty “Humacyte R©” access grafts (325, 326) were implanted as
part of a phase 2 trial and 16 tissue samples ranging from 16
to 200 weeks were histologically analyzed showing sometimes
a dense repopulation of the media with α-actin positive cells
(326). While showing that the decellularized matrix can be
populated with mesenchymal cells, the countless wall punctures
of access grafts make it difficult to ascertain whether the healing
mode was transmural per se or required the puncture holes.
A subsequent clinical femoro-popliteal bypass study eventually
provided sufficiently long (28 cm) unpunctured grafts (327)
to potentially clarify this issue. Of three obtained specimens,
one was at the anastomosis and as such disqualified; one
was at a perforation site leaving one specimen where the
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FIGURE 13 | Radial Laser holes creating ingrowth permissible spaces in vascular grafts. (A) Laser holes in polyurethane grafts and (B) a decellularized arterial

allograft. The clear-cut edges without tissue trauma are typical for very short-waved lasers (330). Trans-mural tissue ingrowth from the adventitia after 3 months of

carotid interposition grafting in sheep. In spite of dense fully transmural tissue ingrowth through the laser perforation the decellularized allograft tissue surrounding the

laser hole remained acellular (B1). Vimentin positive fibroblasts were restricted to the laser channel (B2). Within the laser hole, neovascularization was restricted to the

outer half as capillary sprouting did not reach the graft lumen (von Willebrand staining) (B3). From (331, 332) and (329) with permission.

low-density cell infiltrates could have been evidence for a
transmural repopulation. Likewise, the luminal irregularities
after 24 months, reflected in angiographic diameter variations
between 2.9 and 5.8mm could alternatively be interpreted as
signs of tissue formation or thrombotic appositions. Similarly,
the described lack of an endothelium may have been due
to the preceding attempts of balloon thrombectomies (327)
or to the a’priori absence of an endothelium due to a lack
of significant trans-anastomotic outgrowth in man and the
absence of transmural endothelialisation. As such, what still
remains to be proven is whether a healing mode proposed
by Grabenwöger’s group in Vienna as early as in 1998
(328, 329)whereby radial micro-holes greatly augmented the
repopulation of decellularized matrices will eventually be
required to also see surface endothelialisation on such in-vitro
grown, decellularized matrices. It would, however, not simply be
a punching-out of holes but a fine-titration between too broad
ingrowth spaces that may lead to premature connective tissue
maturation preventing further capillary sprouting (Figure 13)

(329) and insufficient ingrowth spaces. As an alternative concept
to decellularization, L’Heureux’s group clinically pursued de-
vitalisation through airdrying. Initially, the devitalised grafts
were still partially re-vitalised by in vitro lining with the patient’s
own endothelial cells (293). This hybrid approach was followed
by completely devitalised non-endothelialised allogenic grafts
(“Lifeline Grafts R©”) (294) eventually leading to woven textile
structures using yarns of devitalised in vitro grown tissues (333).
No repopulation, however, was ever reported in any of these
grafts. Leaning on L’Heureux’s earlier work (290), Syedain’s
group in Minneapolis using fibrin gels to create scaffold-free
cell-produced decellularized vascular grafts (334) provided the
most convincing repopulation evidence yet. They implanted
15 cm long AV shunts in middle-aged non-human primates
(Papio Anubis) that remained unpunctured throughout. Within
large animal models, Papio Anubis seems to come closest to
the senescent Papio Ursinus model that was previously shown
to reflect the trans-anastomotic outgrowth-stoppage (102) seen
in humans (107). The study convincingly demonstrated the
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repopulation of the mid-graft media with mesenchymal cells that
likely originated from the adventitial side (334). Yet, as it did
not show traces of transmural angiogenesis and a largely absent
endothelium in the mid-graft region it also highlighted once
more the dependence of endothelialisation on trans-anastomotic
outgrowth on these matrices—something one cannot expect in
humans to occur.

Corresponding with a proven wall-repopulation but an
unresolved endothelialisation mode were the suboptimal clinical
results with these decellularized, bioreactor-grown vascular
grafts. “Lifeline” grafts were disappointing though they were few.
“Humacyte,” in contrast, had 60 access grafts implanted at 6
centers (325, 326) and 20 femoro-popliteal grafts at 3 centers
(327). Primary patencies were low both in the access grafts and
in the femoro-popliteal grafts. In access grafts where the 1-
year primary patency is known to be between 43 and 57% for
ePTFE grafts (58, 59), it was 28% for the “Humacyte” grafts
(325). In above-knee femoropopliteal bypass grafts with good
run-off the 2 year primary patency was 58% (327) compared to
73% in ePTFE grafts for a similar patient group in Frank Veith’s
multicentre study (37) and 80% for in vitro endothelialised 6mm
ID grafts in comparable patients (80). In vitro endothelialised
7mm grafts even had a 2 year primary patency of 88% in spite
of also including patients with distal reconstructions with poorer
run-off (80).

During the past decade the concept of decellularized cell-
produced matrices was also carried over into heart valves.
The group in Zurich decellularized their well-established
tissue engineered constructs of cultured human fibroblasts
on a degradable scaffold (335). Using the senescent baboon
model (335) and the sheep model—first for transcatheter
pulmonary valve replacements (336–338) and later for orthotopic
TAVIs (339)—in depth repopulation of such a matrix with
mesenchymal cells was demonstrated. The patchy endothelial
cover of the leaflets (158, 339), however, again hinted at
the likely dependence of surface repopulation on the trans-
anastomotic outgrowth seen in sheep. Furthermore, leaflet
shrinkage as a consequence of repopulation emerged as an
inevitable consequence of early tissue maturation (335, 336,
338) but could be addressed by shape compensation during
production (340). Syedain’s group in Minneapolis also tested
their scaffold-free, fibrin gel-based cell-derived decellularized
matrix in surgically implanted aortic valve replacements in
sheep (341). Similar to others (158), repopulation with α-SMA
and Vimentin positive cells was primarily seen at the leaflet
base while distal leaflets remained poorly cellularized and only
sporadically endothelialised.

As such, decellularized in-vitro grown matrices have
successfully shown their ability to get repopulated by
mesenchymal host cells primarily in areas of tissue contact
with the host. The sub-optimal clinical performance of
vascular grafts as well as the decreasing endothelial coverage
with increasing distance from the nearest anastomosis,
however, suggest again a dependence of the neointima
formation on the trans-anastomotic outgrowth occurring
in animals.

Synthetic (Functionalised) Scaffolds
The idea that synthetic implants contain morphogenic cues to
stimulate the in situ regeneration of key cardiovascular structures
again goes back to the early days of tissue engineering. There, the
goal was to induce the in-vivo formation of a non-thrombogenic
“neointima” on artificial hearts (10, 11, 24, 32, 34–36) and
vascular grafts (342) merely on the basis of iterations of porosity
and surface structures. Clinical success never materialized
for the same reasons it hasn’t materialized half a century
later when biomechanics and molecular biology provided
the tools to recapitulate refined biophysical and biochemical
properties of the target tissues. (343–345). The reason for the
continual absence of a clinical translation of this concept lies
in decades of experimental cross-purpose design between a
biologically possible tissue regeneration response and one that
is actually feasible at the intended site and in the intended
host environment. Although we have already highlighted that
this has been the overarching dilemma of all tissue engineering
approaches of the past decades, it is particularly pertinent
for non-vital synthetic implants as their clinical performance
depends much more on the in-situ formation of functional tissue
(346) than any other concept. As such, an eventual break through
of “in vivo” generation of functional tissue in synthetic scaffolds
will not depend on whether the cues provided replicated nature
best but whether they were based on appropriate assumptions
regarding the host response.

After it had been shown that the cellular source of “fall
out” healing was predominantly from endothelial precursor
cells in the bone marrow (347, 348) and that these endothelial
progenitor cells (EPCs) express amongst other ligands the
vascular endothelial growth factor receptor VEGFR-2, as well
as the CD133 and CD34 antigens (349–351) several attempts
were made to augment the homing of these cells onto “non-
vital” synthetic grafts by immobilizing anti-ligand antibodies on
the surface (352, 353) including antibodies against chemotaxis
stimulating receptors on stem cells (354). Yet, even with
sporadic studies showing an enhanced recruitment of circulating
cells (349, 355), without a broad consensus to focus on
endothelialisation and cell population from the circulation, this
approach will continue to remain an unrealised promise. As such,
transmural ingrowth and endothelialisation remain the most
realistic modes of tissue regeneration for synthetic scaffolds.

For permanent scaffolds to achieve successful transmural
healing, ingrowth permissive spaces were shown to be a sine qua
non. The minimal dimensions of such spaces were well defined at
80–400µm2 (102, 356) optimally even being as large as 5,000–
6,000 µm2 (357). Therefore, if transmural endothelialisation
and healing is the goal, this requirement would exclude the
use of ePTFE of <60µm internodal distance, woven Dacron
and most of the electrospun polyurethane grafts unless their
scaffold structures were manipulated to increase the interfibrillar
spaces (357–360). Yet, making transmural endothelialisation
of synthetic scaffolds a reliable occurrence also requires the
suppression of the surface compaction with interstitial thrombus
(107) (Figure 14). Therefore, functionalising the scaffolds with
pro-angiogenic signals (361–368) must not only be seen as
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quantitative augmentation of angiogenesis but as the attempt
to outpace the build-up of an inhibitory barrier. Encouragingly,
however, thin walled ePTFE of 60–90µm IND (102, 123, 135)
whose porosity was known to provide the necessary vascular
ingrowth spaces (102) was shown in non-human primates to
successfully achieve transmural endothelialisation without the
need for any ingrowth augmentation (102, 123, 125, 369).
Regrettably, the clinical confirmation of this observation was
thwarted by regulatory concerns leading to a last minute addition
of a very low-porosity wrap on the outside (370) of PTFE grafts
turning high-porosity into low-porosity prostheses. One of the
many puzzles in tissue engineering is why the “real” clinical study
never happened since, as it would have certainly provided the
entire field with much needed “translational” energy.

If the complexity of a clinical in-vivo environment makes
it already difficult to accomplish transmural endothelialisation
(371) in non-degradable scaffolds one needs to reckon with
additional challenges in degradable scaffolds. There, it is less
an issue of whether sufficient ingrowth spaces are pre-existent
or progressively “open up” during degradation but whether
the inflammatory process accompanying the break-down of the
scaffold introduces additional obstacles. While “harnessing the
natural inflammatory process” has been the underlying principle
behind the degradation and replacement of a temporary scaffold
with newly formed tissue (371–375) its effect on transmural
endothelialisation has not been tested yet. Some data on
electrospun heart valves confirm the presence of intramural
vessels and mesenchymal cells corresponding with tissue contact
(Figure 15) but a clear distinction from a trans-anastomotic
origin cannot be made (158). If the latter was the case, even the
intramural cell population of the scaffold would likely be different
in humans. The proximity of a trans-anastomotic endothelium
to a pro-inflammatory environment would trigger the active
recruitment of inflammatory cells from the circulation (236,
237). The known trans-differentiation potential of such actively
recruited mononuclear blood cells (85–91) and their ability to
participate in the intramural cellularisation process and neo-
tissue formation of a synthetic scaffold (87) makes it likely that
the entire healing pattern would thus be distinctly different
in humans. Ironically, a successful and rapid replacement of
a biodegradable scaffold by mature mesenchymal tissue may
even prematurely terminate endothelial migration (376) thereby
thwarting transmural surface endothelialisation all together.
While the iteration of scaffold chemistry (371, 377) and
microstructure (371, 378) would allow the titration of the
degradation process (371, 379) the actual clinical requirements
against which to titrate remain again poorly defined in the
absence of better suited animal models. Whether inserted
as infra-renal interposition grafts in rats (260, 377, 380) or
comparably short interposition grafts in rabbits (381, 382), dogs
(383, 384), mice (385), sheep (386, 387) or pigs (388–390):
trans-anastomotic outgrowth has again most likely overpowered
any other form of healing in these studies on degradable
scaffolds. Even if tubular structures contained valves, trans-
anastomotic neointimal outgrowth provided the most probable
cell source for the leaflet population observed (158, 379).
In the expected absence of a neo-intima reaching the distal

leaflets in humans, this may lead to situations where leaflet
degradation precedes tissue formation. Clinical pilots added to
this concern. Based on the equilibrium between degradation
of modern supramolecular polymers originally developed in
Eindhoven (379, 391) and tissue formation observed in the
sheep (386) an early clinical feasibility/first in man study was
commenced with pulmonary valves implanted into children.
The developing post-implantation coaptation deficiency of
leaflets in 11 out of 12 valves (392) hinted at a healing
behavior not seen in the sheep. Without histological proof
to the contrary, a lack of tissue formation in the distal
leaflets will always seem the most likely explanation given
the known healing deficiencies in humans. The subsequent
corrective modifications of the polymer degradability (392) may
have retrospectively led to well-functioning polymeric heart
valves but may still defy the claim of eliciting “endogenous
tissue restoration.” In a parallel clinical trial using the same
material for extracardiac TCPCs (393) the close contact of
the tubes with their surrounding tissue may eventually lead
to successful transmural healing. However, the likelihood of
obtaining sufficient representative samples within a meaningful
time frame is very low in both trials: RVOT revisions increasingly
happen endovascularly and TCPCs only yield samples in the
rare occasion of a transplantation or death many years later.
Long term animal implants published since have confirmed in
similar supramolecular polymer valves that even in an animal
model with excessive trans-anastomotic outgrowth like the sheep
cellularisation was mainly restricted to the leaflet base while
the distal leaflets remained poorly cellularised with only patchy
endothelium (158).

As such, any tissue engineering approach that justifies the
word “engineering” will require animal models which allow
a rational and mechanistic exploration of key components of
the “endogenous tissue restoration” expected at the clinical
destination site. A myriad of fascinating modern scaffold
materials for instance has been investigated under in-vivo
conditions which did not emulate key cornerstones of the
human situation ranging from thermoplastic polymers such
as degradable polyurethanes (394); poly-e-caprolactone (PCL)–
alone or in combination with poliglecaprone (395), with
polydioxanone (396) or with Gelatine (397)- “supramolecular”:
ureic-pyrimidone-modified polycaprolactone (158, 398) also in
combination with ureic pyrimidone PEG (398) to thermoset
polymers such as polyglycerol-sebacate (PGS) (399) or nanofiber
scaffolds of naturally occurring polymers such as polysaccharides
(cellulose) (400–402); hyaluronic acid (343); silk (385, 403),
collagen (404), Elastin-like blends (405, 406), fibrin (407), or
collagen-elastin (408). For none of these materials do we have an
answer to two of the critical questions asked at the beginning:
(1) as scaffolds, do they allow transmural endothelialisation or
alternatively facilitate true fall-out endothelialisation and (2)
given the absence of trans-anastomotic neointimal outgrowth in
man: is scaffold degradation (eg., by blood borne inflammatory
cells) balanced against neo-tissue formation to prevent a
premature structure-loss in patients? The same questions need
to be asked with regards to the effect of incorporated/grafted
bioactive molecules such as VEGF (361, 366, 367, 409), NO
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FIGURE 14 | Transmural endothelialisation model in the absence of interference by trans-anastomotic endothelialisation or surface thrombus compaction. Rat

subcutaneous implantation of low-porosity ePTFE-lined ingrowth permissible constructs connected to an implantable osmotic mini pump allowing well-defined

administration of pro-angiogenic cues. Transmural neovascularisation is image-analytically assessed on histology and by high resolution micro-CT. From (361) with

permission.

(364), TGF-b (410), SFD-1 (411), and many others (368,
412) not to mention the various ingrowth gels whether
they are from natural proteins (388, 407, 413, 414) or fully
synthetic (415); functionalised, (416–422) and/or potentially cell
selective (423). For gels, however, an important second purpose
may emerge as “space-holders” further facilitating transmural
endothelialisation. In this role, their presence in the interstices
of the scaffolds may also prevent the build-up of impenetrable
thrombus near the blood surface until the gels get replaced by
ingrowing tissue.

CONCLUSION

Over more than five decades, cardiovascular tissue engineering
has gone through many distinctive eras from synthetic non-
vital polymer implants to vital implants and back to synthetic,
non-vital implants. It certainly contributed to the perception of
recurring re-inventions that the distinct eras often re-established
capabilities rather than integrated previously gained expertise.
While scientific depth and sophistication increased over time,
insight into both clinical needs and the fate of protheses in

patients got lost. Amongst other developments, this growing
detachment from clinical needs arose out of the transition
from surgeons being the driving force to scientists. Reflecting
the unprecedented progress of science in the last half-century,
this transition was a natural consequence of the evolving
sophistication of cardiovascular biology andmaterial sciences. As
a result, it provided an array of building blocks with a hitherto
unprecedented potential of creating truly functional replacement
parts for the heart and for blood vessels. Yet, empowered by
this impressive armament—why are patients still not benefiting
from “tissue engineered implants” unchanged from almost 60
years ago? Perhaps the sine qua non of product development–
the user needs without which no modern device would ever pass
the regulatory hurdle–had faded away. These “user needs” were
originally backed by clinicians and pathologists being intimately
involved with the developments. At the root of this waning
association between clinical purpose, human pathobiology, and
laboratory based solutions stands the diminishing feedback
regarding the fate of implants in patients. During the pioneering
days of cardiovascular surgery and typical for the overall
spirit and often crude ethical standards of the 1960s, there
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FIGURE 15 | Leaflets of two different electrospun heart valves made of the

biodegradable supra-molecular polymer bisurea-modified poly-carbonate

(PC-BU) after 24 weeks of trans-catheter pulmonary valve replacement in the

sheep. The leaflet cellularity generally decreased with distance to the leaflet

base with minimal tissue deposition observed toward the free edges. Leaflet

remodeling depended on stent integration in the surrounding tissue with

transmural population of the leaflet base with polymer absorption and ECM

deposition in the well-integrated valve (A) and poor cell population, surface

overgrowth of tissue and a lack of collagen deposition in valve (B), which was

in line with its poor stent integration and migration over time indicating the

dependence of the cell population of the leaflet scaffold on transmural

ingrowth. From (158) with permission.

was a low threshold for the clinical use of new prostheses
on top of shorter life expectancies of patients. Together,
they provided ample pathological evidence most prominently
on the issues of trans-anastomotic outgrowth inhibition and
transmural ingrowth inhibition. At that time, histological and
macromorphological explant analyses of extensive clinical series
often outweighed animal data. As failed grafts were surgically
re-operated, clinicians had a first line opportunity to confirm
the pathology. As such, no surgeon of this generation would
have expected any tissue regeneration approach to rely on trans-
anastomotic endothelialisation as no one would have expected a
neointima that takes 10 years to cover <10mm of a prosthesis
to ever be able to endothelialise the remaining 50 cm of a distal
bypass graft. Similarly, every pathologist of this era would have
been able to describe the build-up of a hostile ingrowth barrier at

the blood surface even in the presence of a most favorable graft
porosity for trans-mural endothelialisation.

With the dawn of endovascular interventions, though, the first
to lose the background knowledge of vascular pathology were the
surgeons themselves. Particularly in large animal trials it were
surgeons who uncritically implanted far too short interpositions
to test prostheses that had clinical translation as an end goal.
While the fading awareness of human pathology increasingly
misled expectations regarding the tissue response at the host
site something similar happened regarding the clinical needs.
The detachment of scientists from a fast changing clinical
practice often led to out-of-date motivations for their tissue
engineering efforts. It is puzzling how exciting approaches using
the most recently developed materials, cell programming or
matrix engineering continue to state needs behind their research
which have long outlived clinical practice.

What needs to be done? For one, adding more tools to an
already overflowing, rich tool-box of modern material science,
matrix- or cell biology will be unlikely to lead to a breakthrough
in clinical translation. In order to achieve a break through,
the key obstacle of aborted healing—be it trans-anastomotic
outgrowth inhibition, the build-up of impenetrable interstitial
surface thrombus, insufficient ingrowth spaces or the physical
distance to cell sources–will need to be dealt with in a concerted
effort. If today’s clinical implants make it more difficult to
identify the principles of prosthetic healing in the human
cardiovascular system, sufficient historical studies are available to
extract them. The principles won’t have changed! Understanding
the healing modes possible in patients will be a prerequisite
for trying to facilitate them. Defining animal models without
compromise which exclusively focus on what is possible in
man will be a prerequisite for a successful iteration of the
myriad of previously discovered modules and tools toward
the generation of functional, mature replacement parts of the
circulation. To what extent isolation models may be sufficient or
more sophisticated methods may be required needs to be seen.

Overall, the re-introduction of a few forgotten principles could
remove the glass ceiling that stood in the way of decades of
scientific progress to move to the next level of clinical translation:

In the era of scientists and engineers having taken over the
lead of most programs, modern young clinicians need to be re-
integrated from the beginning to address the contemporary needs
for cardiovascular tissue engineering rather than reiterate those
of past decades.

Acknowledging the collective blind spot for healing modes
will unfortunately be a sine qua non for succeeding.

At a time when multiple endovascular repeat interventions
rather than open surgical revisions caused a paucity of experience
and understanding of the patho-biology of prosthetic healing in
humans a wealth of historical pathologist reports awaits to be
re-discovered. The predominant materials influencing healing
have hardly changed. The most sophisticated degradable leaflet
materials used for tissue engineered transcatheter heart valves
still largely rely on PET or PTFE for their skirts—the most likely
entry path for regenerating tissue in man.

Once it is recognized what is possible and what is impossible
with regards to clinical tissue regeneration it is likely that
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impasses will be overcome as the feasibility of the most likely
healing modes in patients will guide every aspect of a program.

Once such steps have allowed to compare the numerous
existing modules regarding their ability to lead to functional,
fully endothelialised replacement tissue under the prevailing
host conditions, the circle to the goal originally envisaged
more than fifty years ago will be closed. This will still
only conclude the feasibility phase of one of the great
but most protracted developments in modern medicine.
Yet, it will provide the impetus and focus to eventually
carry this most exciting project of modern surgery to
broad clinical fruition. It will be a late triumph for the

generations of surgeons and scientists involved—even
if in the end, the majority of these implants will be
deployed by interventional means rather than conventional
cardiovascular surgery.
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