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Abstract: Nanomaterials have assumed an imperative part in the advancement of human evolution
and are more intertwined in our thinking and application. Contrary to the conventional micron-
filled composites, the unique nanofillers often modify the properties of the polymer matrix at the
same time, bestowing new functionality because of their chemical composition and their nano
dimensions. The unprecedented technological revolution is driving people to adapt to miniaturized
electronic gadgets. The sources of electromagnetic fields are ubiquitous in a tech-driven society. The
COVID-19 pandemic has escalated the proliferation of electromagnetic interference as the world
embraced remote working and content delivery over mobile communication devices. While EMI
shielding is performed using the combination of reflection, absorption, and electrical and magnetic
properties, under certain considerations, the dominant nature of any one of the properties may be
required. The miniaturization of electronic gadgets coupled with wireless technologies is driving us
to search for alternate lightweight EMI shielding materials with improved functionalities relative to
conventional metals. Polymer nanocomposites have emerged as functional materials with versatile
properties for EMI shielding. This paper reviews nanomaterials-based polymer nanocomposites for
EMI shielding applications.

Keywords: EMI shielding; polymer nanocomposites; metamaterials; carbon nanotubes; 2D nanomaterials

1. Introduction

Technology changes and upgradation are making electronic devices redundant in a few
months and driving the miniaturization of electronic gadgets unprecedentedly. The sources
of electromagnetic fields are ubiquitous in a tech-driven society. The COVID-19 pandemic
has escalated the proliferation of electromagnetic interference as the world embraced
remote working and content delivery over mobile communication devices. Electromagnetic
interference (EMI) shielding [1] is an important area on which there is continuous focus
either to improve the bandwidth or geometric and physical properties of the shielding. With
novel requirements such as flexibility, being lightweight, and tunability, new materials are
being developed based on polymer composites. The choice of fillers plays a very significant
role in shielding. While EMI shielding is performed using the combination of reflection,
absorption, electrical and magnetic properties, under certain considerations, the dominant
nature of any one of the properties may be required. For example, in the case of unwanted
sources existing within the housing of the electronic circuit, a thin absorber is needed, while
it may be fine to have a reflection-based one if the source is outside. Once again, depending
on the hazardous nature of the external source, absorbers play a significant role. Therefore,
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more emphasis is put on the absorption nature of EMI shielding. The development of
communication devices has pushed the operating frequency range to higher frequencies
than the conventional 900 MHz and 2.4 GHz operations. Aiming for frequencies higher
than 5 GHz for higher bandwidth and speed of operation has resulted in the requirement
of broadband EMI shielding structures [1–3].

The present situation warrants the use of multiple bands embedded within a commu-
nication device suitable for Wifi, Bluetooth, mobile communication, etc. The interference
to these devices from external sources and internal sources is not negligible. Therefore,
one has to develop shielding structures that can be used for all these frequency regions or
simply look for broadband-shielding structures. Historically, metal-based composites were
used as the predominant material for EMI shielding by the virtue of their superior electrical
conductivity, mechanical properties, and permeability [4], however, they were met with
challenges of corrosion and lack of mechanical flexibility by the metallic fillers. To meet
the criterion of paramount EMI shielding effectiveness, tailored functional materials with
outstanding properties are designed for efficient EMI shielding. Reflection, which is the pri-
mary mechanism of shielding, must have enough electrical conductivity, and the secondary
mechanism due to absorption comes from the inherent interaction of the radiation arising
out of the electric and magnetic dipoles [5] with the incident radiation. The penetration
depth of the radiation assumes significance in this aspect. With a higher level of absorption
resulting in the thickness of the material being greater than the penetration depth, the
absorption increases exponentially with an increase in thickness. When the penetration
depth is higher than the thickness of the sample, the multiple reflections between the front
and back interfaces increase the path length, thereby enhancing the total absorption. For
every reflection into the bulk of the material at the interfaces, the amount of absorption
enhances the shielding exponentially.

Reflection-dominant shielding materials give rise to the secondary interference of EM
waves with the mere deflection of EM waves; alternately the absorption dominant shielding
materials eliminates EM waves through ohmic and thermal losses [5–7]. To reach this goal
of creating materials with the required attributes, a wide range of polymer nanocomposites
are desired for EMI shielding with adequate impedance matching, high attenuation capabil-
ities, wider absorbing bandwidth, lower thickness, and good thermal conductivity [8–11].
In the case of nano-composites, the presence of scatterers as fillers improves the path length.
This would enhance the shielding due to absorption. The shielding effectiveness due to
reflection is a function of the ratio of conductivity and permeability of the material. The
shielding effectiveness due to absorption depends upon the thickness and attenuation
constant of the material. Additionally, reflections at numerous interfaces inside the material
also contribute to the shielding effectiveness, which depends on the sample thickness. The
multiple reflections depend on the sample thickness. [12]. The excellent EMI shielding
material possesses outstanding impedance-matching attributes which depend on the per-
mittivity and permeability. The size, thickness, and shape of the nanomaterials impact the
permeability and henceforth result in shielding effectiveness [13–15].

Over the years, a wide range of polymer composites has been explored for EMI shielding.
In the last decade, the emergence of nanomaterials with a multitude of functionalities enabled
various researchers to explore the possibilities of polymer nanocomposites for EMI shielding.
The ease of dispersion of carbonaceous fillers in the macromolecular matrix and the resulting
manifestation of the conductive network make the Carbon-based fillers one of the ideal
candidates for lightweight EMI shielding materials [16] Several polymer nanocomposites
with prudent blends of fillers, such as carbon nanofibers, carbon nanotubes, metal nanowires,
graphene, reduced graphene oxide, hBN MoS2, MXene, and magnetic fillers Fe3O4, Fe2O3, and
nickel ferrite [17] have been extensively used for designing efficient EMI shielding materials.
The published review articles pertain to standalone polymer-carbon nanotubes, polymer–
graphene materials, and admixtures of various 2D nanomaterials. Our review focuses on
various polymers blended with carbon nanotubes of various weight fractions, with graphene
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as the reinforcement material in the macromolecular matrix, and more significantly emerging
2D nanomaterials-based polymer nanocomposites.

2. EMI Shielding Measurements

As a result of exhaustive technological growth, we encounter electromagnetic interfer-
ence, a kind of pollution due to which the performance of the system is affected [1]. If this
problem is not tackled appropriately, it may affect the system and cause the malfunction
of devices. It also has an adverse effect on the health of human beings, such as languid-
ness, insomnia, nervousness, and headaches [2]. For the past two decades, sincere efforts
are being carried out to reduce electromagnetic interference (EMI) by adopting various
techniques and materials such as metals, polymers, and dielectric and magnetic materials.

When an EM wave passes through a barrier, it can be absorbed and reflected by the barrier.
The remaining energy which is neither absorbed nor reflected is termed the residual energy,
which comes out of the shield. The effectiveness of a shield, which is a measurable quantity, is
given in terms of shielding effectiveness that can be given by the following equations [3]:

SET = SER + SEA + SEM = 10 log10 (PT/PI) (1a)

SET = 20 log10 (ET/EI) = 20 log10 (HT/HI) (1b)

In the above Equation (1a), PI and PT are the power of incident and transmitted
EM waves, respectively. EI, ET is the corresponding electric field intensity and HI, HT
is the corresponding magnetic field intensity. The term SER is shielding effectiveness
due to reflection, SEA is shielding effectiveness due to absorption, and SEM is shielding
effectiveness due to multiple reflections. The graphical representation of EMI shielding is
represented by (Figure 1) [4]. Using scattering parameters, also known as S-parameters
S11 (or S22) and S12 (or S21) the incident and the transmitted waves, respectively, can
be represented in a two port vector network analyzer. This can, in turn, be related to
reflectance (R) and transmittance (T):

T = |ET/EI|2 = |S12|2 = |S21|2 (1c)

R = |ER/EI|2 = |S11|2 =|S22|2 (1d)

The absorbance is therefore given by

A = (1 − R − T) (1e)

The losses due to reflection and absorption can be represented as,

SER = 10log (1 − R) (1f)

SEA =10log (1 − Aeff) = 10log [T/(1 − R)] (1g)

Therefore, a vector network analyzer can calculate the loss components due to trans-
mission and reflection. A prudent examination of the shielding expressions shows that
a proper shield should have either mobile charge carriers or dipoles which can interact
with electric and magnetic vectors of the incident radiation [12]. Therefore, metals are
preferred as shielding materials due to their good conductivity [18], but they also have
their demerits, such as high reflectivity, that they are easily prone to corrosion, heaviness,
and high processing cost [4].
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Figure 1. Graphical representation of EMI shielding [19,20].

3. EMI Shielding Materials

EMI shielding encompasses the blockage of EMF, using shields made of conductive or
magnetic materials [3]. The word shield usually refers to an enclosure that functions as a
barricade against electromagnetic radiation. Shielding effectiveness, which is a function
of frequency [1], can be measured quantitatively by obtaining the ratio of the impinging
energy to the remanent energy.

A single material by itself cannot take care of every single aspect of shielding. Various
efforts were made by combining suitable materials in proper combination such as com-
posites, alloys, and ceramics, etc. [19,20]. The development of nanomaterials, especially
nanocomposites [20], and their wonderful properties also aid in obtaining the best-suited
material for EMI shielding (Figure 2). The electrical conductivity and presence of dipoles
are quintessential to shielding [19,20]. To reach this goal of creating materials with the
required attributes, a wide band of materials is used to obtain nanocomposites [19]. Al-
though polymer nanocomposites are preferred over metals, the process of obtaining the
desired electrical and magnetic properties is a challenging one [3].
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Figure 2. The important attributes of an effective shielding material [21].

Historically, metals were the materials preferred for EMI shielding; nevertheless, metallic
materials are susceptible to corrosion, and are heavy, expensive, and prone to wear and tear.

The metallic oxides are excellent shielding materials with apt dielectric constants
and magnetic permeability. The availability of dipoles (electric and magnetic) at higher
frequencies [22] makes them an attractive option for EMI shielding.
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Recently, carbon-based materials such as carbon nanotubes, graphene, graphene
oxide (GO), and reduced graphene oxide (rGO) are profoundly used for shielding. The
exceptional mechanical properties of two-dimensional (2D) nanomaterials (tensile strength
~130 GPa), and unique electrical properties (mobility~10,000 Cm2 V−1 S−1) [11] have made
them an ideal candidate as fillers in nanocomposite-based EMI shielding. Amidst the recent
growing challenges in EMI shielding, Mxenes have become popular nanomaterials for
shielding owing to their structural design and surface area [22].

4. Metamaterials

Metamaterials (MM) are a fantastic class of “artificial materials” that have been engi-
neered to exhibit distinctive qualities that set them apart from naturally occurring materials.
Metamaterials are made up of an artificial arrangement of structures that are periodic in
nature and sub-wavelength in dimension. These structures can be designed and fabricated
using dielectric and conducting materials. Metamaterials, in a way, are synthetic, as they
do not occur in a natural process. These Metamaterials are unique in their design, and
exhibit fantastic electromagnetic properties which are not possible to create in naturally
occurring homogenous materials. By building the material at the macroscopic level with the
right arrangement or combination of two or more materials, the exotic properties of these
materials are produced. Rodger M. Walser gave the word metamaterial its official name
in 1999 [23]. He claims that MM are man-made, three-dimensional composite materials
that are periodically constructed so that the performance of the resulting structure is far
greater than that of typical composites. The unique features of this MM come from the
size, shape, geometry, orientation, and arrangement of the component composites rather
than the component composites themselves. The resulting structure can be created to block,
absorb, reflect, and scatter electromagnetic waves in a way that is not possible with normal
materials by adjusting these characteristics. When properly built, these metamaterials can
affect electromagnetic waves in a way that bulk materials cannot [24–26].

With the help of Maxwell equations, some theoretical features of metamaterials can be
identified [27]. In the time domain, Maxwell equations are represented as,

∇× E = −jωµH; ∇ .D = ρ (2a)

∇× H = j + jωεE; ∇ .B = 0 (2b)

The above equation shall be altered for a plane wave as

k× E = ωµH; k× H = −ωεE (2c)

When ε and µ are positive, then E, H, and k form a right-handed orthogonal system.
When ε and µ are negative, then Equation (2c) is altered to,

k× E = −ωµH; k× H = ωεE (2d)

The above equation represents left-handed materials and their opposite direction and
left-hand triplet E, H, and k. The way a system reacts to the electromagnetic field depends
on the nature and property of the materials in the system. The macroscopic parameters,
such as permeability µ and permittivity ε, of the materials mainly decide the response
of the system to electromagnetic fields. Based on this we can classify the materials into
following categories. They are,

DPS (double positive material/medium)
ENG (epsilon negative material/medium)
DNG (double negative material/medium)
MNG (mu negative material/medium)

A DPS (double positive material) is a material where both permittivity (ε) and per-
meability (µ) are positive. These materials are commonly available dielectrics that are
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abundant in nature. ENG (epsilon negative material) has the permittivity (ε) negative and
permeability (µ) positive. These are called electrical metamaterials. Noble metals fall in this
category, and they occur in a limited manner in nature. DNG (double negative material)
has a permittivity (ε) and permeability (µ) less than zero, which is negative. They do not
occur in nature. They belong to a category called negative index metamaterial, which does
not occur in nature and is a man-made material. MNG (mu negative material) is a type
of material that has a positive permittivity (ε) and negative permeability (µ). They are
also called magnetic metamaterials. The graphical representation of the above material
classification is given in (Figure 3) [24,28,29].
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Of the above-mentioned metamaterials, the one with both ε and µ negative is called
a negative index metamaterial (NIM). The refractive index of these materials is negative.
Most of the materials that we come across in optics, such as glass and water, have positive
refractive indexes with both permittivity (ε) and permeability (µ) greater than zero. In
these materials, the wave propagates in the forward direction. Some man-made engineered
materials can have both permittivity and permeability negative, where a backward wave is
produced. In some materials either permittivity or permeability is negative but not both.
The refractive index of the material is given by

n = ∓√εrµr (2e)

where
εr represents the relative permittivity of the material or medium, and
µr represents the relative permeability of the material or medium
In cases where both εr, µr are negative, the product turns out to be positive and the

refractive index is real.
For passive materials to showcase the negative refraction, the real part of εr, µr need

not be negative [29–32].

5. Carbon Nanotubes

Carbon nanotubes (CNT) are a group of nanomaterials that are rolled up graphene
sheets with sp2 bonds among carbon molecules. Interestingly, these carbon nanotubes
manifest as single-walled (SW) and multi-walled (MW) based on the atomic structural
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configuration and side walls. The angle between the bilayers and many layers of graphene
has resulted in additional structural forms, namely stacked, herringbone, and bamboo,
which comprises an open-ended seamless tube, regular close-ended seamless and stacked
seamless cones or cups.

The chemical and structural confirmation, along with the purity and the synthesis
route of the carbon nanotubes, defines the properties of the CNTs. They are characterized
by a high aspect ratio with diameters less than 100 nm, Young’s modulus close to 1 TPa, and
tensile strength in the range 11–63 GPa. The chirality and diameter of the CNTs determine
the various properties and influences in tailoring the properties of CNTs. They have
various applications in electronics, gas sensors, optoelectronics, and nanocomposites. The
carbon nanotubes could be metallic or semiconducting with different chemical reactivities
owing to their electronic structure. Furthermore, the isotropic, anisotropic, electrical, and
mechanical properties in carbon nanotubes depend on the type of bonding in carbon
materials. In sp2 hybridized carbon materials, each atom is bonded to only three other
atoms in a planar triangular configuration. The excellent attributes of CNTs compared to
conventional carbon materials as dispersants in the macromolecular matrix make them
suitable for EMI shielding applications, and at a relatively low filling and high shielding,
effectiveness could be obtained because of their outstanding mechanical strength, low
weight, high aspect ratio, and effortless percolation; thus, it is reasonable to gain a higher
conductivity by thinner and longer CNT, because the big networks significantly transfer the
electrons within nanocomposite, increasing the conductivity [33] and small diameter. The
polymer matrix offers high resistance due to the unavailability of free electrons; however,
the electrons in the carbon nanotubes, via tunnelling [34], will be able to overcome the
resistance of the macromolecular matrix, forming a three-dimensional conducting network
between the filler molecules.

Though CNTs have high electrical conductivity, the prerequisite for the shielding
is the attainment of a percolated threshold [34] network with low weight percentage of
the CNTs. The Kovacs model [35] suggests tunnelling and interphase regions in polymer
nanocomposites with CNTs as fillers have a significant role in offering less interphase
resistance, i.e., a thicker and more conductive interphase introduces a more conductive
nanocomposite, while a thin and poorly conductive interphase cannot improve the con-
ductivity. As a result, it is important to provide strong interphase regions [34] in PCNT to
increase the conductivity. The EMI SE of the polymers/CNTs rely on their hydrophobicity
and homogeneous dispersion, method of CNTs’ preparation, loading percentage, aspect
ratio, and macromolecular matrix. The SE of a few PNCs with CNTs are listed in Table 1.

Table 1. The EMI shielding effectiveness of carbon nanotube-polymer nanocomposites.

Materials CNT Content Thickness, t (mm) EMI SE (dB) Frequency (GHz) Ref.

PVDF 4 wt% 0.1 32 10.3 [36]

PU 22 wt% 0.1 20 8–12 (X band) [37]

PMMA/Epoxy 25 wt% 0.1 20 8–12 (X band) [38]

PES 6.67 wt% 0.9 30 8–12 (X band) [39]

TPU/CB-PPy 5–8 wt% 0.5 20 10 [40]

Ppy/CNF/CF 15 wt% 0.65 11.9–52
(multilayered) S band [41]
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Table 1. Cont.

Materials CNT Content Thickness, t (mm) EMI SE (dB) Frequency (GHz) Ref.

Epoxy/Nano-Fe3O4/
nano FE 5–10 wt% 3 40–100 13–40 [42]

Fe3O4/Graphene/CNT CNT film 0.25 (−44 to −10) 18 [43]

F-CNTS 1:9 wt % 0.0002 (−45) 17.5 [44]

AgFD/TPU/ 0.103 vol% 3.4 80 X band [45]

Silicon rubber/Fe3O4

2.08 vol%
Fe3O4@MWCNTs and

0.81 vol% Ag
- 90 8.2–12.4 [46]

SWNT/GA-chitosan Up to 40 wt% 10–40 56 X band [47]

PDMS 1 2.0 46.3 X band [48]

CNT/PI/PVP 100 w/v % 3.2 41.1 X band [49]

PAEK-g-
MWCNTs/PEEK

0.372 vol% and 0.496
vol% - 56 36 [50]

CNT/BaFe12O19 2.0 wt% 1.5 (−43.9) 3.9 [51]

CNT/NiNW or
CNT/ZnONW in PS 2.0 vol% 1.1 (16.6 to −24.0) X band [52]

CoFe2O4/CNTs 0.34 w/v% 2 22–25 Ku Band [53]

SWCNT/CoFe2O4 10 wt % 2 (−37 to−10) 12.9–7.2 [54]

MWCNTs/ MnZn
ferrite/Epoxy 4.0 vol % 2 44 10 [55]

MWCNTs/ BaFe12O19 10 wt% 2 (−3.58 to −43.99) 2.56 [56]

CNTs/BaTiO3/PANI 2:3 mass ratio 4 (−30.9 to −10) 7.5 to 10.2 [57]

ABS/MWCNT/CNF/CB 2–15 wt% 1.1 39.9 to 40.7 X band [58]

PLLA/MWCNT 0.5–10 wt% 2.54 19 to 23 X band [59]

PANI/MWCNT 5–25 wt% 2 −27.5 to −39.2 Ku band [60]

6. 2D Nanomaterials

This class of nanomaterials with lateral sizes of more than 100 nm [61] are mostly
layered with enhanced specific surface area. As a result of a high specific area, the avail-
ability of surface atoms increases manifold, i.e., in comparison with zero-dimensional (0D)
and one-dimensional (1D) materials, 2D layered materials possess several extraordinary
advantages. 2D layered materials have larger specific surface areas [62] compared to their
bulk structures, which in turn provide greater surface energy. The electron confinement in
the ultrathin region gives rise to its exceptional electrical properties, covalent bonding for
mechanical properties and surface atoms for surface anchoring sites [63–65]. The different
types of 2D nanomaterials are listed in (Figure 4). Graphene comprises a monolayer of sp2
hybridized carbon atoms in a hexagonal lattice with a bond length of 0.142 nm. Contrast-
ingly, the other types of 2D nanomaterials, transition metal oxides (TMOs), and transition
metal dichalcogenides (TMDs) pose stable single crystal units [66–68] and are listed below
in (Figure 5).
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graphic arrangement of atoms [68]. Reproduced with permission from Aparna, M. et al., Materials
Today; published by Elsevier, 2021. (d) Schematic representation of biophysical and biochemical
characteristics of nanoclay.

TMDs have a metal layer sandwiched between chalcogenides with the general formula
MX2, whereas TMOs are single-layered/multi-layered metal oxides. LDHs have general for-
mula [M2+

1_xM3+
x(OH)2]x+[Ap_

-x/p]x+_mH2O, where M2+ and M3+ represent divalent and
trivalent metal cations, respectively, at the octahedral positions. 2D Nano clays are silicates
of minerals with general formula (Ca, Na, H) (Al, Mg, Fe, Zn)2(Si, Al)4O10(OH)2−xH2O,
where x indicates the amount of water.

7. MXenes

In the ever-expanding world of novel materials, Mxenes are one of the emerging
2D nanomaterials consisting of transition metal carbides, nitrides, or carbonitrides [64].
Mxenes have the general formula Mn+1 Xn Tx M, are early transition elements, n = 1–3, X is
a carbon or nitrogen, and Tx is a surface functional group derived from the MAX phase,
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as shown in (Figure 6). With significant polarization loss, high conductivity, and huge
chemical active sites, Mxenes are one of the intriguing EMI shielding materials. Ti3C2,
which is extensively used for EMI shielding applications, crystallizes in the hexagonal
P6_3/mmc space group [69]. The local chemical environments are illustrated in (Figure 7)
at Ti CSM 4.66 (a), Ti CSM 0.03 (b), and C 0.11 (c) [69].
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8. Polymer Nanocomposites

Contrary to the conventional micron-filled composites, these unique nanofillers often
modify the properties of the polymer matrix at the same time, bestowing new functionality
because of their chemical composition and their nano dimensions. The uniqueness of
polymer nanocomposites is rendered by nanofillers which possess small defects, critical
length scale (size), and exceptionally large interfacial areas. Defects are structural im-
perfections; in essence, the real crystal is always idealistic, and crystal imperfections are
pragmatic. Basically, there are three kinds of imperfections that can materialize in crystals:
point defects, line defects, and plane defects [70] The interaction zone encompassing the
filler alters the characteristics of these hybrid materials. Metal or metal oxide polymer
nanocomposites (PNCs) are intriguing on account of the aggregation of nanomaterials of
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metal and their oxides, layered silicates, semiconductors, graphene, and graphene oxide,
which are distributed in the pristine polymer, offering fascinating properties. Ideally, the
size of such array of nanomaterials is roughly 1–10 nm. The characteristic properties of
these hybrid materials are indeed due to contributions from both phases, but the compelling
augmentation is from the interfacial area [71–84]. By the virtue of the interface, the PNCs
has been classified into two groups. In class I, a Van der Waals bond or ionic bond renders
cohesion to the whole structure in which organic and inorganic constituents are ingrained.
In class II materials, the cogent covalent bonds link the two phases [85]. The lamellar
nanocomposites exhibit better understanding of interphase interactions between the phases
in polymer nanocomposites in which interface interactions between the two phases are
magnified. On the basis of structural morphology, lamellar composites are grouped into
(a) encapsulated, (b) intercalated, and (c) exfoliated.

In intercalated composites, the polymer chains reorganize with the inorganic layers
into a resolute configuration and have an explicit number of polymer layers in the interlayer
space. Exfoliated nanocomposites exhibit singular sheets draped within the confines of the
polymer network with separation more than 10 nm. The disposition and attributes of the
polymer nanocomposites rely upon diverse components such as the structure of the pristine
polymer, the nature and quantity of functional groups, and methods of confinement.

9. 2D Nanomaterials-Based Polymer Nanocomposites

To realize adequate electromagnetic shielding globally, scientists have made use of
various approaches by using conductive polymers, metals, carbonaceous materials, and
metal nanoparticles. Innumerable polymers, including polymethyl methacrylate (PMMA),
polystyrene (PS), epoxy resin, polypyrrole (PPY), polyurethane (PU), polylactic acid (PLA),
polycarbonate, polyvinyl alcohol (PVA), polyaniline (PANI), and polyvinylidene difluoride
(PVDF) are used as the host macromolecular matrix or as blends. The combination offers
different structural configurations such as layered structures, aerogels, and foams. The
impedance mismatch is one of the predominant criteria for EMI shielding [86], and this is
achieved by enhancing the electrical conductivity of the matrix [87]. Due to the high specific
area, the availability of surface atoms and surface groups (Figure 8) increases manifold,
which in turn provides greater surface energy. With significant polarization loss, high
conductivity, and huge chemical active sites, 2D nanomaterials are one of the intriguing
EMI shielding materials (Figure 9).
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There was a substantial increase in shielding effectiveness (SE) from 1 dB to 14 dB
when graphene nanosheets were dispersed in thermoplastic polyurethane (TPU) [90],
whereas graphene/polydimethylsiloxane (PDMS) nanocomposites showed stable shield-
ing effectiveness [91]. The graphene nanosheets dispersed in polyethylene (UHMW)
displayed 33% (SE) [92]. On the other hand, (SE) greater than 40 dB (SE) was observed
with graphene nanoplatelets and PLA nanocomposites [93]. The graphene nanoplatelets
in polyester showed a SE of 27 dB [94], and the correlation studies of the experimental
and numerical simulation of graphene in glass/epoxy fiber were in good agreement with
SE −27 dB to −31 dB [95]. In another study PVA/MWCNTs/graphene nanosheets com-
posites exhibited SE of (−1.90 dB to −23.1 dB) with greater synergy on the addition of
MWCNTS [96]; all the mentioned SE values are at different frequency ranges. The hy-
brid composites PANI/PVA/few-layered graphene [97] were explored as an alternating
promising framework for EMI shielding with a significant increase in (SE) and mechanical
properties. The polymer blend of polyvinyl chloride/polyaniline/graphene nanoplatelets
displayed SE of 51 dB, and the surface morphology and the SE (due to absorption, re-
flection and total effect) of these blends with different weight percentage composition is
displayed in (Figures 10 and 11). However, the emergence of Mxenes as a potential can-
didate for EMI shielding with around 2000 publications and 8 × 104 citations in 2021 [98]
has changed the dynamics of the domain. The aramid nanofiber/Mxene composite had
an SE of 40.6 dB [99]. Ti3C2Tx/calcium alginate films presented a shielding effectiveness
of 54.3 dB [100], and in another study cellulose nanofiber/boron nitride nanosheets and
Mxene films had an exceptional SE of 60 dB [101]. The elastomer/Mxene composite had an
SE of 49 dB in the X-band [102] and polyurethane/Mxene/silver nanowire composites had
the transparency for flexible electronics with reasonable SE [103]. The hybrid composite
of Mxenes/poly aniline–poly para-aminophenol/poly-pyrrole/poly-thiophene showed
99% SE [104]. The aerogel of polyimide/Mxenes exhibited outstanding microwave ab-
sorption with SE of −45.4 dB [105] and MXene/polypropylene (PP) had a SE of 60 dB
in the X-band [106]. The Mxene/PMMA/rGO nanocomposites had SE in the range of
28–61 dB [107]. PLA/CNTs/Mxenes had shown SE of 39.6 dB with varying concentrations
of the fillers [108]. Lastly, the significant electronic and electrochemical properties [109,110]
of the Mxenes makes it one of the potential functional EMI shielding material.
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15/GNP-1 (d) PVC/PANI-15/GNP-5. Reproduced with permission from Shakir, M.F., Results in
Physics; published by Elsevier, 2019.
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Figure 11. SE of PANI/PVC/GNPs for different weight percentage loading (a) reflection (b) Absorption
and (c) total effect of hybrid polymer composites in a frequency 10 MHz–20 GHz [111]. Reproduced
with permission from Shakir, M.F., Results in Physics; published by Elsevier, 2019.

The Graphene nanoplatelets (GnP) [112] with different volume fractions when rein-
forced in the high-density polyethylene (HDPE) matrix in the form of solid and foam
nanocomposites demonstrated higher shielding effectiveness in the foamed structure as
shown in Figure 12. Figure 12 depicts the shielding mechanism in the
HDPE -GnP nanocomposites.

Interestingly, the Graphene—poly(methyl methacrylate) (PMMA) nanolaminates [113]
exhibited EMI SE of 60 dB in the THz range (Figure 13), the optimum graphene volume frac-
tion and the thickness studies revealed the absorption mechanism was solely responsible
for EMI shielding.
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Figure 12. The graphical representation of HDPE-GnP nanocomposite EMI SE as a function of GnP
volume fraction with multiple reflection mechanisms (a)The K-band EMI SE of the solid and foamed
HDPE-GnP composites as a function of their GnP content; (b) The contributions of the reflection and
absorption mechanisms to the total K-band EMI SE of the solid and foamed HDPE-GnP composites
as a function of their GnP content; (c) schematic diagrams of the scattering and multiple reflections of
the electromagnetic waves [112]. Reproduced with permission from Hamidinejad, M., et al., Aplied
Materials; published by American Chemical Society, 2018.
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The graphene/MgO/PVA nanocomposites showed an SE of around 20 dB at elevated
temperatures, the variation in SE is attributed to the crystallinity of the host matrix of PVA [114].
The absorption and reflection layers of PVDF/Mxenes and PVDF/GnP [115] demonstrated a
high EMI SE of 32.6 dB; indeed, the structural configurations of foam/film in the nanocompos-
ites are responsible for effective shielding as depicted in (Figure 14). The hybrid multilayered
functional shielding material, namely rGO, MoS2, Fe3O4, and CNTs in PMMA/PVDF/PC
polymer matrix [116], was explored in X-band, Ku-band and K-band for total shielding ef-
fectiveness; the complex stacking and multilayered structure of the polymer nanocomposite
films reiterate that the magnetic nanoparticles as fillers do not significantly alter the EMI SE;
on the contrary, plays a pivotal role along with the interfacial polarization loss and defect
polarization for EMI SE in polymer nanocomposites. The EM waves attenuation occurs via
space charge polarization, orientation polarization, which is a manifestation of interfacial
polarization, along with dielectric relaxation and defect polarization [117]. Remarkably, the
increase in interfacial area increases the interfacial polarization and the associated loss, which
encourages the effective absorption of the incident EM wave [118]. Solitary electron pairs or
unsaturated bonds appear at the edge of the vacancy sites, and these defects can be generated
as dipole centers to form a strong dipole relaxation effect. The dipoles created under the
external electric field can improve the electron migration rate and induce the occurrence of
dipole relaxation, thus enhancing the conduction loss and relaxation polarization. Owing to
the high specific surface area, 2D nanomaterials are likely to produce enormous amount of
dipole moments affecting the dipole polarization [119,120]. The SE of a few PNCs with 2D
nanomaterials are listed in Table 2.
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Table 2. EMI shielding performance of various 2D nanomaterials-based polymer nanocomposites.

Materials Content
(wt%) Thickness, (mm) EMI SE (dB) Frequency (GHz) Ref.

PVDF/GnPs 10 1.5–3 12.4–32.2 26.4–40 [121]

PU/PD/graphene auxetic
composite foam 10.8–36.9 0.8–5 upto 57.5 K-band [122]

CNT/h-BN/rubber composite 10.7 1.4 22.1 10.3 [123]

MWCNT/graphene/silicone
rubber elastomer 3.79 - 42 K-band [124]

GO/styrene-
ethylene/butylene-styrene/
BN/PHDDT)

~40 0.02–4 37.92 8–12 [125]

PS/PANI/MoS2 0.1–1 0.1 92 100 Hz [126]

PDMS/Fe3O4 intercalated
MXene and graphene 11.35 1 77–80 X and K band [127]

PE/GnP/Graphene black 5–25 3 23–27 8–13 [94]

PP/rGO/MnFe2O4 10 0.5 71.3 8.2–12.4 [128]

PANI/rGO 40 0.25–0.27 104 0.1 to 10 [129]

FCPs/Zeolite
imidazole framework (ZIF 67) 2.5–3.7 (−53 to −38.4) 4.4 to 6.6 [130]

3DGNPs/rGO/Epoxy 0–20.4 3 51 X band [131]

rGO/Epoxy 0.5–2.0 - 38 0.5 to 5 [132]

PEI/G@Fe3O4 1–10 2.5 3–18 X band [133]

PMMA/Graphene 0.2–1.8 4 13–19 X band [134]

LM/GNs/CNTs/Ti3C2Tx 1.65–69.59 1.2–3 5–80 X band [135]

SA/PDMS/Ti3C2Tx 62–100 2 9.1–53 X band [136]

PI/Ti3C2Tx 0.2–2 0.09–0.21 19–77.4 X band [137]

PS/Ti3C2Tx 0.4–2.0 1–2 4–62 X band [138]

10. Conclusions and Future Perspectives

The overall traits of the polymer nanocomposites are driven by the tangible and
influential properties of the host materials. The different functional groups in the polymer
matrix, such as amide, ester, alcohol, and carbamate, etc., govern the binding of metal ions
or complexes of the fillers with the polymer matrix. The sequence of various mechanisms
such as chelation, electrostatic interactions, and reduction reactions, control the dispersion
of the metal or metal oxide nanofillers in the host polymer matrix. The metal or metal oxide
nanofiller’s morphology, size, shape, and diversified functional groups usually pose an
uphill task to synthesize and render preferred properties in the polymer nanocomposites.
The electrical conductivity of composites is determined by the establishment of conductive
networks [139]. The amount of filler at which the conductivity networks are formed in
the macromolecular matrix is called the percolation threshold. By adding appropriate
fillers and ensuring apt dispersion of the fillers, the percolation threshold can be attained,
leading to an increase in EMI shielding in polymer nanocomposites. The density and size
of nanoparticles inversely affect the number of particles in polymer nanocomposites at a
constant filler concentration [140]; the interfacial area reduces by increasing the size and
density of nanoparticles, which will impact the EMI shielding effectiveness [140].

The attributes of a perfect EMI shielding material are tunable absorption frequency,
outstanding electrical conductivity, wide bandwidth, apt size/layers, structural configura-
tion, and other capabilities [141]. The distinctive properties of 2D nanomaterials, especially
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graphene and Mxenes, have exhibited limitless possibilities in several areas. However, the
mechanism of interaction of 2D nanomaterials with polymers and microwave absorption is
still evolving; thus, modelling and simulation studies would guide the effective usage of
2D nanomaterials for EMI shielding

In recent years, material technologists have developed thousands of 2D nanoma-
terials computationally, as well as experimentally novel functional materials to suit the
ever-expanding issue of EMI. However, as humankind is going to be more reliant on elec-
tronic gadgets and communication devices, EMI shielding and mitigation is essential. The
dielectric loss is the vital factor that contributes significantly to microwave absorption; con-
sequently, the magnetic loss ought to be increased. Furthermore, the preferable impedance
matching is achieved by incorporating magnetic inorganic materials, which also assist in
increasing magnetic loss. The structural design comprising honeycomb morphology would
increase microwave absorption. Subsequently, the mechanical stability between the fillers
and the host matrix is obtained by using surface functional groups on 2D nanomaterials.
Though the processing cost of Mxenes is expensive, the EMI shielding materials with Mx-
enes demonstrate higher shielding effectiveness compared to graphene-based materials. To
counter this issue, the optimization of the structures is necessary. Additionally, synthesizing
complex hybrids of graphene-based materials with Mxenes of higher electrical conductivity
shielding effectiveness could be enhanced.

While the shielding is due to the reflection and absorption, one can improve the
shielding by:

(a) Enhancing the internal path length with the presence of scatterers. The morphology
of the scatterers plays a crucial role in the number of scatterers for effective shielding.

(b) Alignment of conducting nano-rods enhances reflection-based shielding while retain-
ing a low number of fillers.

(c) For absorption dominant shielding, the presence of magnetic nanoparticles is desirable.
Additionally, surface modification enhances the scattering at the surface thereby
reducing the amount of radiation entering the shield.

With the development of porous or layered materials such as carbon nanotubes CNTs,
it is possible to form three-dimensional (3-D) structures or multiple layered structures to
improve the multiple reflections within the material, thereby enhancing the absorption nature.
Impregnating with the scatterers and ferrite absorbers is therefore a unique way of improving
the absorption while the surface of the 3D structures may have partial reflection properties.
Although 2D nanomaterials are promising emerging materials, there are trivial challenges. The
structure-property relationships have to be explored for the fine-tuning of the end applications,
and these the ecologically sustainable synthesis methods, which are less expensive with
better control parameters, have to be optimized. In the case of EMI shielding, different
structural configurations of the 2D nanomaterials, such as metamaterials, foams, etc., which
are lightweight, flexible, and cost-effective, need to be fabricated.
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