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ABSTRACT: We examine a model of long-term contracting in which the buyer is privately

informed about the stochastic process by which her value for a good evolves. In addition,

the realized values are also private information. We characterize a class of environments

in which the profit-maximizing long-term contract offered by a monopolist takes an espe-

cially simple structure: we derive sufficient conditions on primitives under which the opti-

mal contract consists of a menu of deterministic sequences of static contracts. Within each

sequence, higher realized values lead to greater quantity provision; however, an increasing

proportion of buyer types are excluded over time, eventually leading to inefficiently early

termination of the relationship. Moreover, the menu choices differ by future generosity,

with more costly (up front) plans guaranteeing greater quantity provision in the future.

Thus, the seller screens process information in the initial period, and then progressively

screens across realized values so as to reduce the information rents paid in future periods.
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PROGRESSIVE SCREENING

1. INTRODUCTION

Long-term contracts are a salient feature of a wide variety of economic situations. In many of

these settings, the fundamental features of the contractual relationship are not static, but instead

may be changing over time. While the dynamic nature of the relationship may be acknowledged

by all parties involved, the precise nature of the changes may be the private information of only

one of the parties. For instance, a seller need not be aware of how her buyers’ preferences have

evolved; an employer need not observe the changes in an employee’s productivity; and a down-

stream retailer need not know the effectiveness of an upstream manufacturer’s investments in cost

reduction. Clearly, optimal long-term contracts must be designed in order to account for these dy-

namic information asymmetries.

In the present work, we explore the impact of an additional source of private information on

the structure and properties of optimal long-term contracts. In particular, we are interested in

studying settings in which one party is privately informed not only about the current state of the

contracting environment, but also about the manner in which this state evolves. Returning to the

examples above, only the buyer knows how many complementary products she plans to buy; only

the employee knows the likelihood of distractions arising at home that affect her productivity; and

only the manufacturer knows its ability to implement process innovations.

We analyze these issues in the standard setting of the literature, that of an ongoing trading

relationship between a monopolist seller and a single consumer. In this relationship, the seller has

all of the bargaining power and can credibly commit to the terms of trade for the entire interaction

at the outset, while the buyer is privately informed about both her preferences in each period and

a parameter of the stochastic process which governs the evolution of her value.

Formally, we set out to characterize the profit-maximizing T-period contract (where T is po-

tentially infinite) for a single seller facing a buyer whose value evolves according to a privately

known stochastic process. In the initial period, the buyer privately observes a parameter λ. In

each subsequent period, she privately observes a random shock α, and her value is the product of

all previous shocks.1 The conditional distributions of shocks are ranked by first-order stochastic

dominance, so that a buyer with a higher value of λ is more likely to experience “good” shocks

and have higher values in each period. We assume that the seller has the ability to fully commit to

arbitrary long-term contractual forms.2 Therefore, the revelation principle allows us to restrict at-

tention, without loss of generality, to the class of direct revelation mechanisms in which the buyer

is incentivized to report her private information truthfully in every period.

Our main result is a characterization of a class of environments in which the optimal long-term

contract takes an especially simple structure. More specifically, we find simple sufficient condi-

tions on the distribution of λ and the conditional distributions of shocks under which incentives

can be decoupled over time. We show that, when this is the case, the optimal dynamic contract is

a menu of deterministic sequences of static contracts that progressively screen the buyer’s values:

1Note that new information arrives exogenously, unlike the endogenous information acquisition in Bergemann and
Välimäki (2002); Gershkov and Szentes (2009); Krähmer and Strausz (2011); and Shi (2012), among others.
2This is in contrast to, for instance, Kennan (2001) and Loginova and Taylor (2008), where the seller’s lack of commit-
ment power restricts her to offering only one-period spot contracts.
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the seller introduces additional supply restrictions over time and eventually excludes all types in

order to extract rents from higher-valued buyers.

In our baseline model, we assume that the buyer has single-unit demand in each period, and

that each shock can take one of two values: it can be either a “good” shock u with probability

λ, or a “bad” shock d < u with probability 1 − λ. In the benchmark case where the good is

produced in each period at zero cost, the seller commits to a finite menu of price plans, each of

which presents the buyer with an entry fee and a predetermined sequence of future prices for the

good. On the basis of λ, the buyer selects a plan and then is free, in each period, to exercise an

option to purchase the good at that period’s pre-specified price.3 Because prices are fixed by the

seller at the beginning of the interaction, this mechanism can be implemented without eliciting

any further information from the buyer over the lifetime of the contract—the only information

that the seller needs the buyer to reveal is her choice of price plan. (These qualitative features of

the optimal contract carry over to the case of positive marginal cost.)

Moreover, each of these price plans begins with a finite-length “honeymoon” phase. In each pe-

riod of this phase, the price for the good grows by a factor d; after the honeymoon phase ends, the

price grows in each period by the larger factor u. This implies that the buyer purchases the good

throughout the honeymoon phase, regardless of the realized shocks to her value. After this phase,

however, the price grows deterministically, while the buyer’s value grows only stochastically—

with a sufficiently long time horizon, the seller terminates the relationship inefficiently early. Be-

cause prices in a plan with a longer honeymoon phase are always lower than those in plans with

a shorter honeymoon phase, longer honeymoons are attractive to all buyers. However, the entry

fees for the various plans are increasing in the length of their honeymoon phases. In order to jus-

tify paying a larger initial fee, the buyer must therefore anticipate that her future values will be

sufficiently high that the lower future prices fully compensate for the initial fee—paying a larger

entry fee is justified only if the probability of good shocks λ is sufficiently high. Thus, the various

entry fees and honeymoon phase lengths serve to screen across realizations of λ, while the post-

honeymoon-phase growth in prices serves to restrict supply to lower-valued buyers, reducing the

rents paid to higher-valued buyers.

We also extend our analysis to the setting where the seller faces an increasing convex cost func-

tion and drop the single-unit demand assumption. We also assume the buyer’s valuation shocks

are independently drawn from a family of continuous distributions parametrized by λ and or-

dered by first-order stochastic dominance, so that larger realizations of λ generate higher values.

In this more general environment, we derive sufficient conditions on the underlying primi-

tives under which incentives decouple over time; thus, the optimal contract again consists of a

sequence of static contracts. In the initial period, the buyer chooses (on the basis of λ) from a

continuum of contingent price-quantity schedules, each of which is a fixed sequence of price-

quantity menus that screen across future values. As is standard in nonlinear pricing problems,

each of these menus provides greater quantities to buyers that report higher shocks. Moreover,

these menus feature more generous quantity provision for buyers reporting higher values of λ,

excluding fewer realized valuations and allocating larger quantities to included buyers. Within a

3Thus, the buyer chooses among a set of priority pricing schemes à la Harris and Raviv (1981) or Wilson (1993).
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given sequence of menus, however, the quantity schedules become less permissive over time as

the seller “tightens the screws”: the set of period-(t + 1) reports that prevent exclusion is a subset

of the corresponding period-t set of reports. Thus, as in the discrete-shock case, the seller ineffi-

ciently restricts supply in order to extract additional rents, with greater restrictions for buyers that

report lower values of λ. Similarly, the prices within each period’s menu in this optimal contract

are determined entirely by the standard integral payment rule that guarantees incentive compat-

ibility in static settings, depending only on the allocation rule for the period in question. Finally,

the entry fees for more permissive menus are higher than those of less permissive menus. Again,

in order to justify paying a greater initial entry fee, a buyer must anticipate higher future values—

the seller screens initial private information with entry fees and the generosity of future menus,

and then progressively screens across realized values with nonlinear prices in future periods.

As is typically the case in dynamic mechanism design, the primary hurdle we face in solving

the seller’s problem is the nature of the incentive compatibility constraints when private infor-

mation is multidimensional. In particular, incentive compatibility requires that the buyer prefers

the truthful reporting of her private information to all potential misreports, including multi-stage

deviations from truthfulness. This generates a complex and relatively intractable set of constraints

that must be satisfied by any optimal contract. One common approach in the literature for deal-

ing with this issue is to restrict attention to two-period models—this is the approach of, among

others, Baron and Besanko (1984); Courty and Li (2000); Esö and Szentes (2007); Krähmer and

Strausz (2011); and Riordan and Sappington (1987a,b). In such models, it is possible to simplify

the second-period constraints and work backwards to the first period; this methodology does not,

however, generalize easily to the longer time horizons we study in the present work.

We therefore employ an indirect approach to solving for the seller’s optimal long-term contract.

We solve a relaxed problem that imposes only a restricted set of constraints that are necessarily

satisfied by any incentive compatible mechanism. Specifically, we impose a set of single-deviation

constraints that rule out “one-time” deviations from truthful reporting: in each period t, the buyer

must prefer truthful reporting to any possible misreport, assuming that all future shocks are re-

ported truthfully.4 We then provide easily verified sufficient conditions on the underlying envi-

ronment under which the solution to this relaxed problem depends only on the buyer’s initial

type and realized values, but not on the particular sequence of shocks generating those values. By

pairing this allocation rule with a payment scheme that is also path independent, we decouple the

buyer’s incentives in any one period from those in the next. This guarantees that truth-telling is

an optimal continuation strategy for the buyer, regardless of her history of past reports or misre-

ports. This property implies that the restricted class of constraints in our relaxed problem are, in

fact, sufficient for “global” incentive compatibility, thereby justifying our approach.

Our paper contributes to the growing literature on optimal dynamic mechanism design that

focuses on the design of profit-maximizing mechanisms in dynamic settings.5 While much of

4This approach was first used in a two-period problem by Esö and Szentes (2007), and extended to longer time horizons
by Pavan, Segal, and Toikka (2011).
5There is also a parallel literature focusing on efficient dynamic mechanism design; see, among others, Athey and Segal
(2007a,b); Bergemann and Välimäki (2010); Gershkov and Moldovanu (2009b, 2010a,b); and Kuribko and Lewis (2010).
See Bergemann and Said (2011) for a survey of both literatures.
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the recent work in this area focuses on settings where agents arrive and depart dynamically over

time while their private information remains fixed, our paper joins another strand of the literature

where the population of agents is fixed, but their private information changes over time.6

Baron and Besanko (1984) were the first to study dynamic contracting with changing types,

deriving necessary conditions for optimality in a two-period model using an “informativeness

measure” of initial-period private information on future types. Courty and Li (2000) study a two-

period model where consumers are initially uncertain about their future demand but receive ad-

ditional private information before consumption.7 In contrast, our focus in the present work is

on arbitrarily long time horizons. This allows us to explore the long-term characteristics of opti-

mal contracts; for instance, the progressive screening, “screw tightening,” and (inefficient) early

termination of the relationship by the seller are features that cannot arise in a two-period model.8

In addition, the longer time horizon necessitates consideration of a richer set of incentive com-

patibility constraints, as the buyer may misreport her value multiple times in an attempt to take

advantage of future contractual terms. As discussed above, such compound deviations introduce

additional technical difficulties in identifying the optimal contract that preclude the use of back-

ward induction common in two-period models.

Besanko (1985) and Battaglini (2005) also explore optimal contracting in dynamic settings with

more than two periods. In Besanko’s model, the buyer’s values follow a first-order autoregressive

process where each period’s value is a linear function of the previous value and an i.i.d. shock.

As in our model, the buyer’s initial-period type exerts a persistent influence on all future values;

this generates decreasing distortions if the process is stationary and increasing distortions when it

is not. Battaglini, on the other hand, studies a model where the buyer’s value evolves according

to a two-state Markov process with commonly known transition probabilities, so the shock in

period t depends directly on the realized value in period t − 1. In that setting, the distribution

of future values converges to a steady-state distribution, so the impact of the buyer’s initial type

decreases over time and the optimal contract is asymptotically efficient. In the present work,

however, shocks are conditionally independent (given λ); therefore, each shock induces greater

dependence of values on the buyer’s initial type. This increasing dependence is the source of the

increasing distortions and inefficiency in our environment’s optimal contract.

Our use of a relaxed problem that imposes only single-deviation incentive constraints to cir-

cumvent the difficulties of compound deviations and dynamic incentive compatibility resembles

the approaches of Esö and Szentes (2007) and Pavan, Segal, and Toikka (2011). Esö and Szentes

6See, among others, Board and Skrzypacz (2010); Gershkov and Moldovanu (2009a); Mierendorff (2011); Pai and Vohra
(2011); Said (2012); and Vulcano, van Ryzin, and Maglaras (2002) for models with a dynamic population and static
types, and Board (2007) and Deb (2009, 2011) for recent examples with a fixed population and changing types. Garrett
(2011) is a recent contribution that combines both dynamic arrivals and changing private information.
7Dai, Lewis, and Lopomo (2006) and Riordan and Sappington (1987b) examine similar issues in a procurement setting,
while Esö and Szentes (2007) and Riordan and Sappington (1987a) consider a two-period setting in which the principal
faces multiple competing agents. Meanwhile, Miravete (2003) empirically demonstrates the importance of sequential
screening considerations in the design of contracts for telephone service.
8Since many allocations are made over time, we also find it more compelling to consider contracts where the buyer pays
for consumption in each period instead of refund contracts as in Courty and Li (2000). It is straightforward, however,
to show that the payment rule may modified to make use of refunds instead of prices without affecting incentives—as
is standard in dynamic incentive problems, there can be many payment rules supporting the same allocation rule.
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observe that any stochastic process governing values may be transformed into a sequence of inde-

pendent shocks. This transformation transfers the dependence of value shocks into more complex

payoff functions; in their two-period model, however, they are able to provide sufficient condi-

tions for implementation of the optimal allocation. Pavan, Segal, and Toikka use a similar obser-

vation to derive a dynamic envelope formula for arbitrary time horizons and stochastic processes.9

This dynamic envelope formula is used to extend the standard static payoff-equivalence result to

dynamic settings, and then to identify sufficient conditions for incentive compatibility. While our

continuous-discrete setup with conditionally independent shocks requires different arguments to

derive the optimal contract, their unifying framework helps explain how distortions depend on

the “impulse response” of future payoffs to private information at the time of contracting. In par-

ticular, a mechanism designer distorts decisions in order to account for the buyer’s informational

advantage at the time of contracting, and these distortions are most effective at histories where the

buyer’s values are most responsive to her initial type. Since each additional shock in our model

compounds the dependence of values on λ, the induced value distributions in later periods are

more sensitive to the initial type than those in earlier periods. This results in progressive screening

and increasingly aggressive exclusion of buyers over the course of the relationship.

2. ENVIRONMENT

We consider a dynamic setting in which a buyer repeatedly purchases a nondurable good from

a single seller. When the buyer pays a price p and receives quantity q of the good in period t, her

utility is vtq − p. The buyer’s value for the good, vt, evolves over time; in particular, we assume

that the buyer’s value is subject to a stochastic sequence of multiplicative shocks, so that

vt = αtvt−1,

where we take v0 := 1 to be exogenously given and commonly known. We will denote by αt the

sequence of shocks received by the buyer up to, and including, time t; that is,

αt := (αt, αt−1, . . . , α1).

In addition, the notation αt
−s will denote the sequence of shocks up to (and including) period t,

but after period s, so that

αt
−s := (αt, αt−1 . . . , αs+1).

Finally, we will abuse notation somewhat to simplify the exposition and write v(αt) to denote the

value of a buyer who has experienced the sequence of shocks αt, so that

v(αt) :=
t

∏
τ=1

ατ.

In each period t = 1, . . . , T, the buyer privately observes the shocks to her valuation, which

are the realizations {αt} of a sequence of random variables {α̃t}, independently and identically

drawn from the conditional distribution G(·|λ) with support A ⊆ R+. Moreover, we assume

9Kakade, Lobel, and Nazerzadeh (2011) also use an independent shock representation, but their approach imposes an
additional “separability” assumption and requires the agent to report her entire private history in each period.
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that the family {G(·|λ)}λ is ordered in terms of first-order stochastic dominance; that is, G(·|λ)

first-order stochastically dominates G(·|λ′) whenever λ > λ′.

At the time of contracting (which we take to be period zero), the buyer is privately informed

about the parameter λ of the distribution that generates the sequence of shocks {αt}. Specifically,

the buyer privately observes the realization λ of a random variable λ̃, where it is commonly known

that λ̃ is drawn from the distribution F on an interval Λ ⊆ R+. We assume that f , the density of

F, is strictly positive and differentiable on Λ.

In each period t ≥ 1, the seller can produce q units of the good at a cost c(q). The relationship

between the buyer and the seller persists for T ≤ ∞ periods, and is discounted with the common

discount factor δ ∈ (0, 1]. (If T = ∞, we require the additional restriction that δ
∫

A α dG(α|λ) < 1

for all λ ∈ Λ to guarantee the boundedness of expected payoffs.) In the initial period, the seller

offers a long-term contract to the buyer. If the buyer accepts this offer, sales and consumption

occur in periods t = 1, . . . , T in accordance with the terms of the contract. We normalize the

buyer’s outside option to 0. As is standard in dynamic models of price discrimination, we assume

that the monopolist fully commits to the contract that is offered. However, commitment is one-

sided in our model: the buyer is free to break off the relationship at any time.

3. THE SELLER’S PROBLEM

The seller wishes to design and offer a contract that maximizes her expected profits. Since the

Myerson (1986) revelation principle for multistage games holds in our environment, the search for

optimal contracts may be restricted, without loss of generality, to the class of direct mechanisms

where, in each period, the agent is asked to report her new information and, conditional on having

reported truthfully in the past, she finds it optimal to report truthfully.

In particular, a contract in our setting is a sequence of payment rules p = {pt(rt, ht)}T
t=0 and

allocation probabilities q = {qt(rt, ht)}T
t=1, where rt is the buyer’s report at time t, and ht is the

public history at time t. Note that in such a direct mechanism, r0 ∈ Λ, while rt ∈ A for all t ≥ 1. In

addition, ht can be defined recursively by h0 := ∅ and ht := {rt−1, ht−1} for all t ≥ 1, where rt−1 is

the agent’s report in period t− 1. We denote the set of time-t public histories by Ht. Since the agent

is free to misreport her private information at any time, her private history is ĥt := {αt, rt−1, ĥt−1},

where ĥ0 := {λ}. We denote the set of time-t private histories by Ĥt; the buyer’s strategy, given the

seller’s mechanism, is then simply a sequence of mappings r̂t : Ĥt → A for t ≥ 1, and r̂0 : Λ → Λ.

A direct mechanism is incentive compatible if it induces truthful reporting in every period: on

the equilibrium path, the agent has no incentive to misreport her new private information. This

requires the agent to prefer revealing her private information truthfully to any misreport followed

by optimal continuation reporting (which may involve additional misreports). Thus, the complete

set of incentive compatibility constraints in our setting is large and potentially intractable.

In order to avoid this complexity, we use an indirect approach to solving for the seller’s optimal

mechanism. In particular, we consider a restricted set of constraints that are necessarily satisfied

by any incentive compatible mechanism, and then provide sufficient conditions guaranteeing that

this restricted set of constraints is, in fact, sufficient for “full” incentive compatibility in our setting.

More specifically, we require that the buyer prefers reporting her private information truthfully to
6
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misreporting in any given period and then reporting truthfully in every future period; that is, we

rule out single-period deviations from truthful reporting. The optimal allocation rule that follows

from this restricted set of constraints has a “path independence” property (that will be made clear

in subsequent sections) that is inherited from the stochastic process governing values when our

sufficient conditions are satisfied. Since there is an additional degree of freedom in choosing pay-

ment rules in dynamic mechanisms (relative to their static counterparts), this allocation rule can

be paired with a path independent payment rule that guarantees truth-telling as an optimal con-

tinuation strategy for a buyer who has misreported in the past, thereby implying the sufficiency

of the restricted set of constraints for “global” incentive compatibility.

To state the initial (period-zero) single-deviation constraint, let U0(λ) denote the utility of a

buyer with initial type λ who always reports her private information truthfully; thus, for all λ ∈ Λ,

U0(λ) := −p0(λ) +
T

∑
t=1

δt
∫

At

(
qt(α

t, λ)v(αt)− pt(α
t, λ)

)
dWt(αt|λ), (1)

where dWt(αt|λ) = ∏
t
τ=1 dG(ατ|λ). Similarly, let Û0(λ′, λ) denote the expected utility of a buyer

with initial type λ who reports some λ′, but then truthfully reports all future shocks:

Û0(λ
′, λ) := −p0(λ

′) +
T

∑
t=1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ). (2)

Thus, the initial-period single-deviation constraint requires that

U0(λ) ≥ Û0(λ
′, λ) for all λ, λ′ ∈ Λ. (IC-0)

As with U0(λ), denote by Ut(αt, λ) the expected utility of a buyer in period t whose initial type

was λ and whose observed shocks were αt ∈ At, and who has reported truthfully in the past and

continues to do so in the present and future. Then

Ut(α
t, λ) := qt(α

t, λ)v(αt)− pt(α
t, λ)

+
T

∑
s=t+1

δs−t
∫

As−t

(
qs(α

s
−t, αt, λ)v(αs

−t, αt)− ps(α
s
−t, αt, λ)

)
dWs−t(αs

−t|λ).
(3)

Preventing a single deviation in period t requires, for all (αt, λ) ∈ At × Λ and all α′
t ∈ A, that

Ut(α
t, λ) ≥ qt(α

′
t, αt−1, λ)v(αt)− pt(α

′
t, αt−1, λ)

+
T

∑
s=t+1

δs−t
∫

As−t

(
qs(α

s
−t, α′

t, αt−1, λ)v(αs
−t, αt)− ps(α

s
−t, α′

t, αt−1, λ)
)

dWs−t(αs
−t|λ).

(IC-t)

Notice that condition (IC-t) is essentially the static incentive compatibility constraint faced by a

buyer with private information about αt alone. In a standard static contracting problem, quasilin-

earity and a single-crossing condition imply that the incentive compatibility constraints are equiv-

alent to (i) the monotonicity of the allocation rule; and (ii) the determination of a buyer’s utility

(up to a constant) by that allocation rule alone. The buyer in our setting is forward looking, how-

ever, and her utility depends upon her expectations about the future. Naturally, this implies that

the “localized” period-t constraints in our relaxed problem will involve the expected discounted

7
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value of current and future allocations, which we denote by

q̄t(α
t, λ) := qt(α

t, λ)v(αt−1) +
T

∑
s=t+1

δs−t
∫

As−t
qs(α

s
−t, αt, λ)v(αs

−t, αt−1)dWs−t(αs−t|λ). (4)

Finally, a direct mechanism is individually rational if, in every period and for every history of

private signals, it guarantees the buyer’s (continued) willingness to participate in the contract by

providing expected utility greater than her outside option. These individual rationality constraints

may be summarized by the following:

U0(λ) ≥ 0 for all λ ∈ Λ, and (IR-0)

Ut(α
t, λ) ≥ 0 for all (αt, λ) ∈ At × Λ and all t = 1, . . . , T. (IR-t)

The seller’s profit from any feasible contract is then simply the difference between total surplus

and the buyer’s utility. Thus, when the buyer is of initial type λ, the seller’s expected profit is

Π(λ) := −p0(λ) +
T

∑
t=1

δt
∫

At

(
pt(α

t, λ)− c(qt(α
t, λ))

)
dWt(αt|λ)

= −U0(λ) +
T

∑
t=1

δt
∫

At

(
qt(α

t, λ)v(αt)− c(qt(α
t, λ))

)
dWt(αt|λ) (5)

The seller’s optimal contract maximizes profits, subject to the constraints that the consumer re-

ceives at least her reservation utility and that the consumer has no incentive to misreport her type.

Thus, any optimal contract must also solve the relaxed problem that imposes the individual ratio-

nality constraints and the restricted set of single-deviation incentive compatibility constraints:

max
{p,q}

{∫

Λ
Π(λ)dF(λ)

}

subject to (IC-0), (IR-0), (IC-t), and (IR-t) for all t = 1, . . . , T.
(R)

4. DISCRETE SHOCKS

We begin by specializing to the setting in which there are only two possible shocks and the

buyer’s value evolves according to a recombinant binomial tree process with “upward” transition

probability λ. In particular, we let Λ := [0, 1] and assume that each shock αt is drawn from the

discrete distribution G(·|λ) on A := {u, d}, where

G(α|λ) = λHu(α) + (1 − λ)Hd(α).

(Hz(·) is the Heaviside step function centered at z ∈ R.) We assume that u > d > 0, and let

∆ := u − d. Thus, the buyer experiences either a “good” shock (u) or a “bad” shock (d) in each

period, and the probability λ of experiencing the higher shock is fixed across time.

4.1. Simplifying the Seller’s Relaxed Problem

We approach the seller’s optimal contracting problem by first simplifying the single-deviation

and participation constraints in the relaxed problem (R). Since (IC-t) is essentially a static incen-

tive compatibility constraint, we have the following “standard” result (whose proof may be found
8
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in the appendix) that the period-t constraints may be replaced by a monotonicity condition and a

downward incentive compatibility constraint:

LEMMA 4.1. The period-t incentive compatibility and individual rationality constraints (IC-t) and (IR-t),

where t = 1, . . . , T, are satisfied if, and only if, for all αt−1 ∈ At−1 and all λ ∈ Λ,

Ut(u, αt−1, λ)− Ut(d, αt−1, λ) ≥ q̄t(d, αt−1, λ)∆; (IC′-t)

q̄t(u, αt−1, λ) ≥ q̄t(d, αt−1, λ); and (MON′-t)

Ut(d, αt−1, λ) ≥ 0. (IR′-t)

Notice that at the time of initial contracting (unlike in period t ≥ 1), the buyer’s private informa-

tion does not directly affect her flow payoffs. Rather, the realization of λ only affects the buyer’s

beliefs about the evolution of her future preferences. Therefore, the buyer in period zero has pref-

erences over the entire sequence of allocations, and so we cannot appeal to a single-crossing con-

dition to simplify the initial-period constraints. However, using an envelope argument (detailed

in the appendix), we can show that the period-zero single-deviation constraint necessarily implies

that the buyer’s interim (in the initial period) expected utility depends only upon the the expec-

tation of future payoff gradients; in particular, this observation—in conjunction with the period-t

single-deviation constraints (IC′-t)—allows a reformulation of the seller’s relaxed problem (R)

into one involving only allocation rules (and not the payment rules).

LEMMA 4.2. If the period-zero incentive compatibility constraint (IC-0) is satisfied, then the derivative

U′
0(λ) of the buyer’s period-zero expected utility is given by

U′
0(λ) =

T

∑
t=1

δt
∫

At−1

(
Ut(u, αt−1, λ)− Ut(d, αt−1, λ)

)
dWt−1(αt−1|λ). (IC′-0)

We should point out that (IC′-0) is a necessary implication of period-zero incentive compatibil-

ity, but that it is not sufficient. Although this expression allows us to simplify the optimization

problem by eliminating transfers from the seller’s objective function, those transfers remain a part

of the problem’s constraints. In addition, note that the nonnegativity of allocation probabilities

implies that U′
0(λ) ≥ 0 whenever condition (IC′-t) is satisfied for all t. Therefore, U0 is increasing

in any solution to the seller’s problem, and the period-zero participation constraint (IR-0) becomes

U0(0) ≥ 0. (IR′-0)

Finally, we may return to the seller’s problem. Since (IC′-0) must hold in any incentive compat-

ible mechanism, we may use standard techniques to reformulate the problem (R) as

max
{q,p}





− U0(0) +
∫

Λ

T

∑
t=1

δt
∫

At

(
qt(α

t, λ)v(αt)− c(qt(α
t, λ))

)
dWt(αt|λ)dF(λ)

−
∫

Λ

T

∑
t=1

δt
∫

At

(
Ut(u, αt−1, λ)− Ut(d, αt−1, λ)

) 1 − F(λ)

f (λ)
dWt(αt|λ)dF(λ)





subject to (IC-0), (IC′-t), (MON′-t), (IR′-0), and (IR′-t) for all t = 1, . . . , T.

9
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Clearly, U0(0) = 0 in any solution to this problem, as this is merely an additive constant that is

bounded by the constraint (IR′-0); as is standard, providing additional surplus to the lowest type

only reduces the seller’s profit without generating incentives for truth-telling. In addition, it is

clear that, for all (αt−1, λ) ∈ At−1 × Λ, we must minimize Ut(u, αt−1, λ)−Ut(d, αt−1, λ). However,

the constraints (IC′-t) provide a lower bound on this difference, and so these downward incentive

constraints must bind. We can then rewrite the seller’s objective function as
∫

Λ

T

∑
t=1

δt
∫

At

(
qt(α

t, λ)v(αt)− q̄t(d, αt−1, λ)∆
1 − F(λ)

f (λ)
− c(qt(α

t, λ))

)
dWt(αt|λ)dF(λ).

Finally, note that

T

∑
t=1

δt
∫

At
q̄t(d, αt−1, λ)dWt(αt|λ)

=
T

∑
t=1

δt
∫

At

(
qt(d, αt−1, λ)v(αt−1)

+
T

∑
s=t+1

δs−t
∫

As−t
qs(α

s
−t, d, αt−1, λ)v(αs

−t, αt−1)dWs−t(αs
−t|λ)

)
dWt(αt|λ)

=
T

∑
t=1

δt
∫

At

(
T

∑
s=t

δs−t
∫

As−t
qs(α

s
−t, d, αt−1, λ)v(αs

−t, αt−1)dWs−t(αs
−t|λ)

)
dWt(αt|λ)

Interchanging the order of summations, we may write this expression as

T

∑
t=1

δt
∫

At
q̄t(d, αt−1, λ)dWt(αt|λ) =

T

∑
t=1

t

∑
s=1

δt
∫

At
qt(α

t
−s, d, αs−1, λ)v(αt

−s, αs−1)Wt(αt|λ). (6)

Substituting from Equation (6) into the seller’s problem then yields the following relaxed problem:

max
{q,p}





T

∑
t=1

δt
∫

Λ

∫

At

(
qt(α

t, λ)v(αt)− c(qt(α
t, λ))

−
t

∑
s=1

qt(α
t
−s, d, αs−1, λ)v(αt

−s, αs−1)∆
1 − F(λ)

f (λ)

)
dWt(αt|λ)dF(λ)





subject to (IC-0), (MON′-t), and (IR′-t) for all t = 1, . . . , T.

(R′)

Before proceeding to the solution of the seller’s problem, it is helpful to interpret the objective

function in (R′), especially by way of comparison with a standard (static) nonlinear pricing setting.

For all t and each λ ∈ Λ, we can rewrite the inner integrand in this objective function as

∑
αt∈At

Pr(αt|λ)
(
v(αt)qt(α

t, λ)− c(qt(α
t, λ)

)

− ∑
αt∈At

∆
1 − F(λ)

f (λ)

t

∑
s=1

Pr(αt
−s, αs−1|λ)v(αt

−s, αs−1)1d(αs)qt(αt, λ)

= ∑
αt∈At

Pr(αt|λ)

(
v(αt)

[
1 −

t

∑
s=1

1d(αs)
∆/αs

1 − λ

1 − F(λ)

f (λ)

]
qt(αt, λ)− c(qt(α

t, λ))

)
,

10
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where 1d(αs) is the indicator function for the event {αs = d}. Thus, the seller is essentially maxi-

mizing, in the Myersonian tradition, virtual surplus, where the buyer’s virtual value is

ϕ(αt, λ) := v(αt)

[
1 −

t

∑
s=1

1d(αs)
∆/αs

1 − λ

1 − F(λ)

f (λ)

]
= v(αt)− v(αt)

t

∑
s=1

1d(αs)
∆/d

1 − λ

1 − F(λ)

f (λ)
. (7)

As in the static mechanism design setting, the first term in this expression is the buyer’s con-

tribution to the social surplus, while the second term represents the information rents that must

be “paid” to the buyer in order to induce truthful revelation of her private information. The

inverse hazard rate (1 − F(λ))/ f (λ) appears since any information rents paid to a buyer with

initial type λ must also be paid to buyers with higher initial types. The final term in the expres-

sion above reflects the persistent impact of the buyer’s initial-period type and future values: as is

well-established in the dynamic mechanism design literature, distortions in the optimal contract

depend upon the sensitivity of future values to the buyer’s initial private information.

To more clearly see that v(αt)∑
t
s=1 1d(αs)

∆/d
1−λ is the measure, in our setting, of the informational

linkage between λ and vt, we can use the “independent shock approach” of Esö and Szentes

(2007) to characterize the responsiveness of values to changes in λ. In particular, let ξs ∈ [0, 1] be

a uniform random variable that is independent of λ. We can then write the period-s shock αs as

α̃s(ξs, λ) = d + ∆H1−λ(ξs),

where H1−λ(·) is the Heaviside step function centered at 1 − λ. Thus, we can identify the buyer

with shock αs = d with the “average buyer” with ξs < 1 − λ, and the buyer with shock αs = u

with the “average buyer” with ξs ≥ 1 − λ. It is then straightforward to see that

E

[
∂α̃s(ξs, λ)

∂λ

∣∣∣∣α̃s(ξs, λ) = u

]
= ∆

∫ 1
1−λ dH1−λ(ξs)
∫ 1

1−λ dξs

= 0 and

E

[
∂α̃s(ξs, λ)

∂λ

∣∣∣∣α̃s(ξs, λ) = d

]
= ∆

∫ 1−λ
0 dH1−λ(ξs)∫ 1−λ

0 dξs

=
∆

1 − λ
.

Thus, only the “bad” d shocks are responsive to changes in λ. Of course, since the buyer’s value

is the product of multiple shocks, the overall responsiveness of the period-t value to λ is then

t

∑
s=1

v(αt
−s, αs−1)1d(αs)

∆

1 − λ
= v(αt)

t

∑
s=1

1d(αs)
∆/d

1 − λ
.

Thus, in order to guarantee the satisfaction of downward incentive constraints and minimize the

information rents paid to buyers with high values, the seller must introduce additional distortions

for each reported low shock, where the size of these distortions depend upon λ.

Before moving on, we introduce the following condition on the distribution F of the buyer’s

initial-period private information:

CONDITION A. The distribution F of initial-period private information is such that

1 − F(λ)

(1 − λ) f (λ)

is decreasing in λ.
11
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This is a sufficient condition for the monotonicity of the buyer’s virtual value: it guarantees

that ϕ(αt, λ) is nondecreasing in λ for all t = 1, . . . , T and all αt ∈ At. We should note that this

condition is strictly stronger than the standard assumption that F is log-concave; however, similar

sufficient conditions are frequently needed in dynamic and multidimensional mechanism design

settings.10 Moreover, this condition is satisfied by a large variety of distributions F on the unit

interval. For instance, the uniform distribution, as well as any power distribution F(λ) = λx,

where x ≥ 1, satisfies this condition. Similarly, the beta and Kumaraswamy distributions satisfy

Condition A whenever their shape parameters are a ≥ 1 and b > 0.

4.2. Single-Unit Demand and Constant Marginal Cost

We now solve for the optimal long-term contract for the benchmark case in which the buyer has

single-unit demand in each period, and the good is produced at a constant marginal cost, so that

c(q) = cq for some constant c ≥ 0. In this case, the seller’s relaxed optimization problem is

max
{q,p}





T

∑
t=1

δt
∫∫

Λ×At

(
ϕ(αt, λ)− c)qt(α

t, λ)
)

dWt(αt|λ)dF(λ)





subject to (IC-0), (MON′-t), and (IR′-t) for all t = 1, . . . , T.

Notice that for all t, the seller’s objective function is linear in qt(αt, λ) for all αt ∈ At and λ ∈

Λ. Therefore (temporarily ignoring the constraints (IC-0), (MON′-t), and (IR′-t)), the seller sets

qt(αt, λ) = 1 if, and only if, ϕ(αt, λ) ≥ c, and otherwise sets qt(αt, λ) = 0.

Consider a history (αt, λ) where ∑
t
s=1 1d(αs) = k, and note that the condition ϕ(αt, λ) ≥ c may

be rewritten as

ut−kdk

(
1 −

∆/d

1 − λ

1 − F(λ)

f (λ)
k

)
≥ c.

Since ∆/d
1−λ

1−F(λ)
f (λ)

> 0 for all λ < 1, the left-hand side of this inequality is decreasing in k. Therefore,

for every t = 1, . . . , T and every initial-period type λ, the buyer is allocated an object as long as

she has experienced sufficiently few downward shocks d.11 Formally, we define

kt(λ) := max
{

k ∈ Z+ : ut−kdk

(
1 −

∆/d

1 − λ

1 − F(λ)

f (λ)
k

)
≥ c

}
, (8)

where we let kt(λ) := 0 if the set being maximized over is empty. The cutoff kt(λ) is finite for all

λ < 1. To see this, note that as long as F has a derivative of any order that is nonzero when λ = 1,

l’Hôpital’s rule implies that

lim
λ→1

∆/d

1 − λ

1 − F(λ)

f (λ)
= γ for some constant γ > 0; (9)

thus, for any t, a buyer who has experienced more than 1/γ downward shocks d will have a

negative virtual value. Clearly, if our sufficient condition on the distribution F is satisfied, then the

cutoff kt(λ) is nondecreasing in λ for all t.

10The utility of such conditions was first noted by Baron and Besanko (1984) and Besanko (1985), and an analogous
“attribute ordering” condition was imposed by Matthews and Moore (1987) in a multi-dimensional screening setting.
11Note that, for a buyer with initial-period type λ = 1, ϕ(αt, λ) = v(αt) for all αt ∈ At; thus, such a buyer’s allocation is
never distorted away from the efficient allocation. We do not focus on this, however, as this is a zero-probability type.
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Finally, let us denote the optimal allocations in the relaxed problem as

q∗t (α
t, λ) :=





1 if ∑
t
s=1 1d(αs) ≤ kt(λ),

0 otherwise.
(10)

Since the term ∑
t
s=1 1d(αs) simply counts the number of realized d shocks in a given history of

signals αt, it is trivial to see that q∗t (u, αt−1, λ) ≥ q∗t (d, αt−1, λ) for all αt−1 ∈ At−1 and λ ∈ Λ.

This also implies that q∗s (α
s
−t, u, αt−1, λ) ≥ q∗s (α

s
−t, d, αt−1, λ) for all s > t and all αs

−t ∈ As−t. Since

this holds for every realization of αs
−t, it must also hold when taking expectations (given λ), and

therefore condition (MON′-t) is satisfied. This fact, combined with the fact that the constraints

(IC′-t) bind, implies that the complete set of period-t (for t ≥ 1) single-deviation constraints (IC-t)

are satisfied.

Of course, these single-deviation constraints are only a (necessary) subset of the full set of incen-

tive constraints that must be satisfied. In particular, the constraints (IC-t) guarantee only that the

buyer prefers reporting her type truthfully in period t ≥ 1 to a single deviation from truthfulness;

this property is not, in general, sufficient to guarantee that the buyer does not wish to misreport

her type multiple times. However, the allocation rule in Equation (10) depends only on the number

of downward shocks d the buyer has experienced, but not the order in which they were received—

q∗t is path independent. This observation suggests that combining the optimal allocation rule with

a path-independent payment rule may lead to “full” incentive compatibility.

The payment scheme we propose is essentially a sequence of prices determined by the standard

(static) Myersonian payment rule applied to the entire range of possible values in each period, and

not just those that are possible given a particular history of reports. Thus, the “price” of the good

in each period t ≥ 1 is simply the lowest possible reported period-t value for which the buyer still

receives the good:

p∗t (α
t, λ) :=





ut−min{t,kt(λ)}dmin{t,kt(λ)} if ∑
t
s=1 1d(αs) ≤ kt(λ),

0 otherwise.
(11)

Having fixed a payment scheme for all future periods, the period-zero “entry fee” is easily pinned

down. Using the definition of U0(λ) in Equation (1), we can use Lemma 4.2 (combined with the

fact that the constraints (IC′-t) and (IR′-0) bind) to show that the initial payment must be

p∗0(λ) :=
T

∑
t=1

δt
∫

At

(
q∗t (α

t, λ)v(αt)− p∗t (α
t, λ)

)
dWt(αt|λ)− U0(λ)

=
T

∑
t=1

δt
∫

At

(
q∗t (α

t, λ)v(αt)− p∗t (α
t, λ)

)
dWt(αt|λ)

−
T

∑
t=1

δt
∫ λ

0

∫

At
q̄∗t (d, αt−1, µ)∆ dWt(αt|µ)dµ.

(12)

Note that this contract (q∗, p∗) guarantees that p∗t (α
t, λ) ≤ q∗t (α

t, λ)v(αt) for all (αt, λ) ∈ At × Λ,

and so the buyer’s expected flow payoff (when truthful) in each period is always nonnegative.

Therefore, the individual rationality constraints (IR′-t) are all satisfied.

13



BOLESLAVSKY AND SAID

One natural way to think about the allocation and payment rules above is to consider the cor-

responding indirect mechanism: the seller can implement the contract described above by giving

the buyer a choice among several “plans” differentiated by their initial up-front cost and future

sequence of prices. In each period after the initial choice of plan, the seller does not elicit any

further information from the buyer, but instead simply presents her with a deterministic sequence

of prices. Since the buyer’s behavior after the initial period does not affect future prices, she can

simply make the myopically optimal choice of purchasing the good in period t if the price is lower

than her value.

This elimination of dynamic incentives is precisely the feature of the proposed contract that

guarantees satisfaction of the “full” set of incentive compatibility constraints: the contract induces

truthful reporting by the buyer even after histories in which she previously misreported her pri-

vate information (be it λ or αt for some t). This is because a period-t misreport (for t ≥ 1) has one of

two effects: over-reporting the number of d shocks leads to the exclusion of the buyer in situations

where truthful reporting may have led to a profitable allocation, while under-reporting the num-

ber of d shocks leads to allocations at prices greater than the buyer’s value. As neither of these two

outcomes affects future prices or values, the buyer has no ability to manipulate the mechanism in

future periods, and so there is neither a static nor dynamic incentive for misreporting one’s value.

Thus, it only remains to verify that the proposed solution satisfies the initial-period single-

deviation constraint (IC-0). As previously noted, the “localized” version of the constraint derived

in Lemma 4.2 is generally only a necessary, but not sufficient, condition for period-zero incentive

compatibility. However, since it guarantees the monotonicity of the allocation in λ, Condition A

is sufficient for incentive compatibility in the initial period. The theorem below (whose proof is

found in the appendix) demonstrates this fact.

THEOREM 1. Suppose that the distribution F satisfies Condition A. Then the contract (q∗, p∗), where q∗

denotes the quantity schedules from Equation (10) and p∗ denotes the payment rules from Equations (11)

and (12), is an optimal contract that solves the seller’s problem (R′).

So as to fully appreciate the optimal mechanism proposed above, it is helpful to consider the

special case where the good is produced at zero cost in each period. In this case, the condition

ϕ(αt, λ) ≥ c is equivalent to the requirement that

∆/d

1 − λ

1 − F(λ)

f (λ)

t

∑
s=1

1d(αs) ≤ 1.

Thus, the optimal allocation rule is time independent, and simply sets an upper bound k̄(λ) on the

number of downward shocks d permitted over the course of the relationship for every period-zero

report λ. Moreover, given Condition A, the optimal contract partitions the set of initial-period

types into a set of intervals Λn := [λn−1, λn) such that k̄(λ) = n for all λ ∈ Λn. Each of these

intervals corresponds to a “plan” of future price paths offered by the seller.

Within each plan, the path of prices is straightforward, with the price changing at a predeter-

mined rate in each period—in the plan designated for a buyer with λ ∈ Λn, the price grows by a

factor d in each of the first n periods, and then by a factor u in every period thereafter. This initial

14
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period of slower price growth is essentially a “honeymoon” phase, after which the slope of the

price path rises. Thus, the set of plans offered by the seller vary by the length of their honeymoon

phases, with longer honeymoon phases demanding higher entry fees. Indeed, in order to justify

paying a larger entry fee, the buyer must anticipate that her future surplus will be sufficiently high

to fully compensate her for the initial cost—paying a larger initial fee for a future price discount is

justified only if the probability λ of experiencing “good” shocks u is sufficiently high.

Additionally, it is important to note that the length of the honeymoon phase in each plan is

finite, as is the number of plans offered. (This finiteness follows from the observation in Equa-

tion (9).) Thus, the seller never finds it optimal to continue serving a buyer after they have ex-

perienced a fixed finite number of downward shocks, regardless of the number of upward shocks

already experienced. Furthermore, note that k̄(λ) is independent of the length of the time horizon

T (as well as the discount factor δ). This implies that early (inefficient) termination of the contract

will occur with probability arbitrarily close to 1 given a sufficiently long time horizon T. Indeed,

the law of large numbers implies that, for all λ < 1, the probability of the buyer experiencing more

than k̄(λ) downward d shocks in the first n < T periods approaches 1 as n grows large. Once this

occurs, the buyer will make no additional payments, and will never again receive the good. Thus,

the seller commits to early termination of the relationship so as to increase her revenue.

When the cost of producing the good is strictly positive, then the optimal allocation rule q∗t
need not be time independent, nor does the seller necessarily offer a finite number of plans. In

particular, kt(λ) ≥ kt+1(λ) when u < 1, and kt(λ) ≤ kt+1(λ) when u > 1. In this latter case,

a buyer with a virtual value that is positive but less than the marginal cost c will be excluded,

but if her value recovers with sufficiently many u shocks, she may be allocated the object again.

However, note that since ϕ(αt, λ) ≤ 0 whenever ∑
t
s=1 1d(αs) > k̄(λ), we must have kt(λ) ≤ k̄(λ)

for all t, where k̄(λ) is the upper bound from the costless production case discussed above—once

the buyer’s virtual value becomes negative, it remains negative and the buyer is excluded in all

future periods. Thus, the “price” of the good will eventually grow deterministically at the higher

rate u, while the buyer’s value will only probabilistically grow at that rate—as time proceeds, the

seller progressively screens the buyer by restricting supply when she receives a downward shock

d so as to extract additional rents from the buyer when she receives the higher u shocks. With a

sufficiently long time horizon T, this rent extraction leads to the eventual exclusion of all buyers.

The rationale for increasing inefficiency in the optimal contract follows from the persistent in-

formational linkage between the buyer’s private information at the time of contracting and her

values in future periods. As first shown by Baron and Besanko (1984), distortions are most ef-

fective at reducing information rents at histories where the buyer’s value is most affected by her

initial type. For instance, when values are i.i.d. in each period, the initial type is uninformative

about future values and only the initial period is distorted; on the other hand, when values do

not change over time, the initial type is perfectly informative and distortions are constant. Since

values in our environment are the product of conditionally independent shocks that depend on

the buyer’s initial type, the impact of λ accumulates with each additional shock; therefore, the

distribution of values becomes more sensitive to λ over time. Therefore, distortions increase over

time, manifesting in progressive screening and increasingly aggressive exclusion of buyers.
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4.3. Convex Costs

The results presented above extend beyond the unit-demand setting above; a similar contrac-

tual structure arises when the seller faces an increasing convex cost function and we relax the

assumption of single-unit demand. To see this, consider the case where the seller can produce q

units in each period at a cost of c(q) = q2/2. Then the seller’s relaxed problem (R′) becomes

max
{q,p}





T

∑
t=1

δt
∫∫

Λ×At

(
ϕ(αt, λ)qt(α

t, λ)−
q2

t (α
t, λ)

2

)
dWt(αt|λ)dF(λ)





subject to (IC-0), (MON′-t), and (IR′-t) for all t = 1, . . . , T.

Pointwise maximization (for each (αt, λ) tuple) of the integrand while ignoring (for now) the con-

straints yields the following solution:

q∗t (α
t, λ) := max

{
v(αt)

(
1 −

t

∑
s=1

1d(αs)
∆/d

1 − λ

1 − F(λ)

f (λ)

)
, 0

}
. (13)

Notice that this allocation rule distorts the buyer’s quantity away from the first-best (efficient)

allocation by a factor that depends on the number of downward shocks d that the buyer reports.

Thus, a report of d in period t affects the buyer’s allocation in two ways: first, it leads to a decrease

in her reported value (relative to the inferred value resulting from a report of u), thereby de-

creasing the (efficient) quantity she would have been allocated in a complete-information setting;

and second, it leads to an increase in the distortion away from the efficient allocation. Moreover,

both of these effects carry through to the allocation in all future periods. Therefore, for every

t = 1, . . . , T and s ≥ t,

q∗s (α
s
−t, u, αt−1, λ) ≥ q∗s (α

s
−t, d, αt−1, λ) for all αt−1 ∈ At−1, αs

−t ∈ As−t, and λ ∈ Λ.

Since this inequality holds for every realization of αs
−t, it also holds in expectation (conditional on

λ), and therefore the constraint (MON′-t) is satisfied. Since the constraints (IC′-t) also bind, this

implies that the complete set of period-t (t ≥ 1) single-deviation incentive constraints are satisfied.

Again, we must note that the satisfaction of these constraints need not, in general, guarantee

that the buyer prefers truthful reporting of her type to (potentially complicated) compound de-

viations. However, as was the case in Section 4.2, the allocation rule defined in Equation (13) is,

essentially, a function of λ and the buyer’s reported period-t value alone—for each λ ∈ Λ and all

t, q∗t (α
t, λ) = q∗t (α̂

t, λ) for any αt, α̂t ∈ At such that v(αt) = v(α̂t). Therefore, we make use of a

path-independent payment rule in order to incentivize the buyer to treat her reporting decision in

any period t ≥ 1 as a single-period (static) problem.

To this end, we make use of the standard (static) nonlinear pricing rule á la Mussa and Rosen

(1978); however, instead of applying this pricing rule to the set of possible values conditional on

the reported history αt−1 (that is, over the set {uv(αt−1, dv(αt−1)}), we apply it to the entire set of

possible period-t values {ut, ut−1d, . . . , udt−1, dt}. Thus, letting

m(αt) :=
t

∑
s=1

1d(αs),
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we define, for all t = 1, . . . , T and all (αt, λ) ∈ At × Λ,

p∗t (α
t, λ) := q∗t (α

t, λ)v(αt)−
t

∑
j=m(αt)+1

q∗t (d, . . . , d︸ ︷︷ ︸
j

, u, . . . , u︸ ︷︷ ︸
t−j

)∆ut−jdj−1. (14)

Note that, with the payments defined above, the buyer’s flow payoff in each period (assuming

truthful reporting of αt) is

q∗t (α
t, λ)v(αt)− p∗t (α

t, λ) =
t

∑
j=m(αt)+1

q∗t (d, . . . , d︸ ︷︷ ︸
j

, u, . . . , u︸ ︷︷ ︸
t−j

)∆ut−jdj−1 ≥ 0.

Therefore, the individual rationality constraints (IR′-t) are satisfied for all t ≥ 1. Moreover, the

initial-period payment p∗0(λ) is uniquely determined by combining the definition of U0(λ) in

Equation (1) with the envelope condition from Lemma 4.2:

p∗0(λ) :=
T

∑
t=1

δt
∫

At

(
q∗t (α

t, λ)v(αt)− p∗t (α
t, λ)

)
dWt(αt|λ)

−
T

∑
t=1

δt
∫ λ

0

∫

At
q̄∗t (d, αt−1, µ)∆ dWt(αt|µ)dµ.

(15)

Again, it is helpful to interpret the direct mechanism above by considering its indirect counter-

part. In the period zero, the seller offers the buyer her choice from a menu of options

{p∗0(λ), {q∗t (·, λ), p∗t (·, λ)}T
t=1}λ∈Λ,

where each period-zero menu choice consists of an entry fee and a predetermined sequence of price-

quantity schedules. Then, in each period t ≥ 1, the buyer is free to choose any of the t + 1 price-

quantity pairs on the period-t schedule that correspond to the t + 1 possible values in period t.

Crucially, her choice in any period t ≥ 1 does not alter the prices or quantities available to her in

any future periods. This implies that, given any initial-period report of λ, the buyer’s decision

problem in each period t ≥ 1 is decoupled from her decision problem in any other period t′ ≥ 1.

Her choice of price-quantity pair then (myopically) maximizes her flow utility in that period.

Notice, however, that since q∗t (·, λ) is decreasing in the reported number of downward d shocks

for all t and all λ, it is increasing in the buyer’s value. Standard results from static mechanism

design then imply that the period-t menu is incentive compatible (in the static sense), regard-

less of the buyer’s initial-period report, and so the buyer will choose the price-quantity pair that

corresponds to her true value.12 Thus, for any initial-period report λ, the contract described in

Equations (13), (14), and (15) is “fully” incentive compatible: the buyer has no incentive to ever

misreport her shocks, even when multiple deviations are permitted.

Of course, this observation does not imply that the initial-period single-deviation constraint

(IC-0) is satisfied—recall that the envelope condition in Lemma 4.2 is only a necessary implication

of period-zero incentive compatibility. However, Condition A implies that the quantity schedules

are increasing in λ for all t and all possible reports αt ∈ At. The following theorem (with proof

12Note that this does not imply that the period-t menu is the optimal menu for (statically) screening across the buyer’s
potential period-t values in a setting where λ is commonly known.

17



BOLESLAVSKY AND SAID

in the appendix) shows that this property is, in fact, sufficient to guarantee that the buyer reports

truthfully in the initial period, and therefore the incentive compatibility of the proposed contract.

THEOREM 2. Suppose that the distribution F satisfies Condition A. Then the contract (q∗, p∗), where q∗

denotes the quantity schedules from Equation (13) and p∗ denotes the payment rules from Equations (14)

and (15), is an optimal contract that solves the seller’s problem (R′).

In this setting, the sufficient condition on F guarantees that q∗t is monotone increasing in λ;

therefore, the seller’s menu is infinite. However, as in the indivisible goods case, the optimal

contract permits only a fixed finite number of reported d shocks before permanently excluding the

buyer, where this upper bound depends only on the buyer’s report of λ. Thus, each additional d

shock reported by the buyer not only decreases the quantity she is allocated, but it also brings her

closer to contract termination. Since such shocks occur with strictly positive probability whenever

λ < 1, inefficient exclusion is unavoidable given a sufficiently long time horizon T.

5. CONTINUOUS SHOCKS

We now present a more general formulation of the model where, instead of discrete shocks,

the buyer’s valuation shocks in each period are drawn from a continuous distribution. More

specifically, we now assume that Λ := [λ, λ̄] with 0 ≤ λ < λ̄ ≤ ∞. We assume that f , the

density of F, is strictly positive and differentiable on Λ. Moreover, we assume that the support of

the conditional distribution G(·|λ) is the interval A := [α, ᾱ] with 0 ≤ α < ᾱ ≤ ∞. We assume

that G is twice continuously differentiable, and denote by g(·|λ) the conditional density of G(·|λ).

Finally, we assume that g(·|λ) is strictly positive on A for all λ ∈ Λ. Note that we maintain our

earlier assumption of first-order stochastic dominance, implying that ∂G(α|λ)/∂λ ≤ 0.

5.1. Simplifying the Seller’s Relaxed Problem

As in Section 4, our analysis of the seller’s relaxed problem (R) begins with simplifying the

single-deviation and participation constraints. With continuous shocks, we can use the Mirrlees

(1971) first-order approach (with details in the appendix) to “localize” the period-t constraints:

LEMMA 5.1. The period-t single-deviation and individual rationality constraints (IC-t) and (IR-t) are sat-

isfied if, and only if, for all t = 1, . . . , T, and all (αt−1, λ) ∈ At−1 × Λ,

∂

∂αt
Ut(αt, αt−1, λ) = q̄t(αt, αt−1, λ) for all αt ∈ A; (IC′′-t)

q̄t(αt, αt−1, λ) is nondecreasing in αt; and (MON′′-t)

Ut(α, αt−1, λ) ≥ 0. (IR′′-t)

Recall that the buyer’s initial-period private information λ does not directly affect her payoffs.

Therefore, the standard single-crossing condition does not apply, and we resort instead to an en-

velope argument (with proof in the appendix) to simplify the seller’s relaxed problem and remove

the payment rules from the objective function. As with discrete shocks, this envelope condition is

a necessary implication of period-zero incentive compatibility, but it is not in general sufficient.
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LEMMA 5.2. Suppose that the single-deviation constraints (IC-0) and (IC-t) are satisfied for all t. Then the

derivative U′
0(λ) of the buyer’s period-zero expected utility is given by

U′
0(λ) = −

T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)/∂λ

g(αt|λ)
dWt(αt|λ). (IC′′-0)

Moreover, if the single-deviation constraints are satisfied, then the period-zero incentive rationality con-

straint (IR-0) is equivalent to the requirement that

U0(λ) ≥ 0. (IR′′-0)

With these results in hand, we return to the seller’s problem. Since (IC′′-0) must hold in any in-

centive compatible mechanism, standard techniques imply that the relaxed problem (R) becomes

max
{q,p}





−U0(λ) +
∫

Λ

T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)/∂λ

g(αt|λ)

1 − F(λ)

f (λ)
dWt(αt|λ)dF(λ)

+
∫

Λ

T

∑
t=1

δt
∫

At

(
qt(α

t, λ)v(αt)− c(qt(α
t, λ))

)
dWt(αt|λ)dF(λ)





subject to (IC-0), (MON′-t), (IR′′-0), and (IR′′-t) for all t = 1, . . . , T.

Since U0(λ) is an additive constant in the objective function above, it must be the case that the

individual rationality constraint (IR′′-0) binds. Moreover, note that we may write

T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)/∂λ

g(αt|λ)
dWt(αt|λ)

=
T

∑
t=1

δt
∫

At
qt(α

t, λ)
t

∑
s=1

v(αt
−s, αs−1)

∂G(αs|λ)/∂λ

g(αs|λ)
dWt(αt|λ).

(16)

Thus, the relaxed version of the seller’s problem becomes

max
{q,p}





T

∑
t=1

δt
∫∫

Λ×At

(
qt(α

t, λ)

[
v(αt) +

t

∑
s=1

v(αt
−s, αs−1)

∂G(αs|λ)/∂λ

g(αs|λ)

1 − F(λ)

f (λ)

]

− c(qt(α
t, λ))

)
dWt(αt|λ)dF(λ)





subject to (IC-0), (MON′-t), and (IR′′-t) for all t = 1, . . . , T.

(R′′)

5.2. The Optimal Contract

As in Section 3 (and as is standard in optimal mechanism design more generally), the seller here

is essentially maximizing virtual surplus, where the buyer’s virtual value in period t = 1, . . . , T is

ϕ(αt, λ) := v(αt) +
t

∑
s=1

v(αt
−s, αs−1)

∂G(αs|λ)/∂λ

g(αs|λ)

1 − F(λ)

f (λ)

= v(αt) + v(αt)
t

∑
s=1

1
αs

∂G(αs|λ)/∂λ

g(αs|λ)

1 − F(λ)

f (λ)
. (17)
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The first term in each of these expressions is the buyer’s contribution to the social surplus, while

the second term represents the information rents that must be left to the buyer in order to induce

truthful revelation of her private information.13 The inverse hazard rate (1 − F(λ))/ f (λ) appears

since any information rents paid to a buyer with initial type λ must also be paid to buyers with

higher initial types. Finally, the additional ∑
t
s=1

v(αt)
αs

∂G(α|λ)/∂λ
g(α|λ)

term is the continuous-shock analog

of the summation in Equation (7): it is an “informativeness measure” as in Baron and Besanko

(1984) that reflects the persistent informational linkage between λ and future values, where we

sum over all s ≤ t to account for the different shocks through which this influence manifests.

We will now specialize the problem to the case where the seller faces the increasing and convex

cost function c(q) = q2/2. Pointwise maximization (for each (αt, λ) tuple) of the integrand in (R′′)

while ignoring (for now) the remaining constraints yields the following solution:

q∗t (α
t, λ) := max

{
ϕ(αt, λ), 0

}
.

It is important to note that (unlike the buyer’s virtual value when values follow a recombinant

binomial tree), the virtual value ϕ(αt, λ) need not be path independent: without additional re-

strictions on the conditional distribution G(·|λ), there may be αt, α̂t ∈ At such that v(αt) = v(α̂t)

but the summation in Equation (17) yields ϕ(αt, λ) 6= ϕ(α̂t, λ).14 Meanwhile, our approach to solv-

ing for the optimal long-term contract (considering the single-deviation relaxation of the seller’s

problem) relies on pairing a path-independent allocation rule with a path-independent pricing

rule to guarantee incentive compatibility with respect to compound deviations.

To justify this approach, we require an additional separability assumption on the conditional

distribution of shocks that is sufficient for the path-independence of the allocation rule:

CONDITION B.1. There exist constants a, b ∈ R and a function γ : Λ → R such that, for all α ∈ A and

all λ ∈ Λ,
∂G(α|λ)/∂λ

g(α|λ)
= α(a + b log(α))γ(λ).

Notice that when this condition is satisfied, we may write the buyer’s virtual value as

ϕ(αt, λ) = v(αt)

(
1 +

t

∑
s=1

[a + b log(αs)]γ(λ)
1 − F(λ)

f (λ)

)

= v(αt)

(
1 +

(
at + b log(v(αt))

)
γ(λ)

1 − F(λ)

f (λ)

)
;

that is, the period-t virtual value (and hence the allocation rule above) depends only on t, on λ,

and on the buyer’s value in that period, but not on the specific sequence of shocks generating

that value. Thus, Condition B.1 is a key part of our characterization of environments in which

incentives decouple over time.

Clearly, this condition is not without loss of generality. However, there are many natural and

commonly used parametric classes of distributions that satisfy Condition B.1. For example, when

13Recall that ∂G(α|λ)/∂λ ≤ 0 (due to first-order stochastic dominance), and so these information rents are not paid by
the buyer, but rather to her.
14It is still true, however, that shocks commute: ϕ(αt, λ) = ϕ(σ(αt), λ) for all αt ∈ At and all possible permutations σ.
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α = λz (where z is an independent random variable drawn from an arbitrary distribution that

admits a density), then ∂G(α|λ)/∂λ
g(α|λ)

= − α
λ . Similarly, if the shocks are distributed according to an

exponential distribution with mean λ, a Pareto distribution with minimum value λ and arbitrary

shape parameter, or a truncated normal distribution with mean 0 and variance λ2, then the ratio

in question again equals − α
λ . If G is a lognormal distribution with mean λ and arbitrary nonzero

variance, then ∂G(α|λ)/∂λ
g(α|λ)

= −α. Another example is the power distribution G(α|λ) = (κα)λ for

α ∈ [0, 1/κ] and κ > 0; in this case, ∂G(α|λ)/∂λ
g(α|λ)

= α log(κα)
λ . Thus, while the class of environments we

characterize is restricted, it certainly includes many cases of interest.

Whenever Condition B.1 is satisfied, it is possible to write the optimal allocation rule as a func-

tion q̂∗t of the buyer’s reported value v(αt) instead of the specific sequence of shocks αt:

q̂∗t (v(α
t), λ) := q∗t (α

t, λ) = max{ϕ(αt, λ), 0}. (18)

We then pair this path-independent allocation rule with a path-independent payment rule that

simply screens across each period’s values as in a standard nonlinear pricing problem: we define

p∗t (α
t, λ) := q̂∗t (v(α

t), λ)v(αt)−
∫ v(αt)

αt
q̂∗t (v

′, λ)dv′, (19)

where αt is the buyer’s lowest possible value in period-t. Thus, in each period t, the seller offers

what is essentially a static screening mechanism (q∗t (·, λ), p∗t (·, λ)) that depends only on the initial

report of λ. Note that Condition B.1 implies that incentives for truthful reporting in the period-t

mechanism are completely decoupled from the incentives in any other period—the initial-period

report of λ determines the menu offered in period t, but does not affect the buyer’s incentives

within that menu. Therefore, the single-deviation constraints (IC-t) are sufficient for “full” incen-

tive compatibility. Standard results then yield the following necessary and sufficient condition for

the proposed allocation rule in Equation (18) to satisfy these single-deviation constraints:

CONDITION B.2. For all t = 1, . . . , T, the allocation rule q∗t in Equation (18) is increasing in v(αt).

Moreover, note that—since q̂∗t (v(α
t), λ) ≥ 0 for all (αt, λ) ∈ At × Λ—Equation (19) implies that

the buyer’s flow utility in each period (when reporting truthfully) is nonnegative. This immedi-

ately implies that the period-t participation constraints (IR-t) are satisfied for all t ≥ 1.

The final remaining piece of the optimal contract is the period-zero payment. However, since

we have p∗t for all t ≥ 1, this payment is easily determined using the integral representation of

U0(λ) from Lemma 5.2. In particular, note that Equation (1) implies that

p∗0(λ) :=
T

∑
t=1

δt
∫

At
(q∗t (α

t, λ)v(αt)− p∗t (α
t, λ))dWt(αt|λ)− U0(λ)

=
T

∑
t=1

δt
∫

At

∫ v(αt)

αt
q̂∗t (v

′, λ)dv′ dWt(αt|λ)

+
T

∑
t=1

δt
∫ λ

λ

∫

At
q̄∗t (α

t, µ)
∂G(αt|µ)/∂λ

g(αt|µ)
dWt(αt|µ)dµ.

(20)
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It remains to be seen that this contract is, in fact, incentive compatible, as the envelope condi-

tion derived in Lemma 5.2 is, in general, only a necessary condition for the initial-period single-

deviation constraint (IC-0). As in Section 4, the additional assumption that the quantity schedules

are increasing in λ does yield initial-period incentive compatibility.

CONDITION B.3. For all t = 1, . . . , T, the allocation rule q∗t in Equation (18) is increasing in λ.

This condition is the counterpart to Condition A, and the following theorem (which we prove

in the appendix) is the counterpart in this more general setting to Theorems 1 and 2.

THEOREM 3. Suppose that Conditions B.1, B.2, and B.3 are satisfied. Then the contract (q∗, p∗), where q∗

denotes the quantity schedules from Equation (18) and p∗ denotes the payment rules from Equations (19)

and (20), is an optimal contract that solves the seller’s problem (R′′).

Having established this result, let us explore the dynamic properties of the optimal contract in

our setting. To this end, define kt(αt−1, λ) to be the lowest value of αt that the buyer can report in

period t that, given her previous reports (αt−1, λ) ∈ At−1 × Λ, leads to a nonnegative allocation

in period t; that is, let

kt(α
t−1, λ) := inf

{
α′

t ∈ A : q∗t (α
′
t, αt−1, λ) > 0

}
(21)

for all t = 2, . . . , T, where we let kt(αt−1, λ) := ᾱ if the set above is empty. Notice that Condi-

tions B.2 and B.3 imply that q∗t is increasing in λ and αs for all s ≤ t, so kt is decreasing in each of

its arguments. Therefore, the optimal contract is more permissive for those “lucky” buyers who

have experienced relatively high shocks or who have a high value of λ.

Despite this permissiveness, however, the optimal contract in our environment is unforgiving:

once the buyer is excluded in period t, she is excluded in all future periods. This is most easily

seen using a recursive formulation of the buyer’s virtual value: note that the buyer’s period-(t+ 1)

virtual value, given αt ∈ At and λ ∈ Λ, may be written as

ϕ(αt+1, αt, λ) = v(αt+1)

(
1 +

t+1

∑
s=1

1
αs

∂G(αs|λ)/∂λ

g(αs|λ)

1 − F(λ)

f (λ)

)

= αt+1v(αt)

(
1 +

t

∑
s=1

1
αs

∂G(αs|λ)/∂λ

g(αs|λ)

1 − F(λ)

f (λ)

)
+ v(αt)

∂G(αt+1|λ)/∂λ

g(αt+1|λ)

1 − F(λ)

f (λ)

= αt+1 ϕ(αt, λ) + v(αt)
∂G(αt+1|λ)/∂λ

g(αt+1|λ)

1 − F(λ)

f (λ)
. (22)

Since ∂G(α|λ)/∂λ ≤ 0 for all α and λ via first-order stochastic dominance, Equation (22) implies

that ϕ(αt+1, αt, λ) ≤ 0 for all αt+1 ∈ A whenever ϕ(αt, λ) ≤ 0; equivalently, kt+1(α
t, λ) = ᾱ

whenever αt ≤ kt(αt−1, λ). Therefore, if the buyer is excluded in some period t, she continues to

be excluded in all future periods, regardless of her reported shocks—once a buyer has been “cut

off,” she is cut off permanently.

In addition, the optimal contract involves a form of “tightening the screws,” as the set of reports

that lead to a positive quantity in any period t + 1 ≤ T is contained in the corresponding set for

period t. To see this, suppose that αt = kt(αt−1, λ) > α, so that the buyer is “just barely” excluded
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in period t. Since this implies that ϕ(αt, αt−1, λ) = 0, Equation (22) can be rewritten, for any

period-(t + 1) shock αt+1 > αt, as

ϕ(αt+1, αt, λ) = v(αt)
∂G(αt+1|λ)/∂λ

g(αt+1|λ)

1 − F(λ)

f (λ)
≤ 0.

Therefore, q∗t+1(αt+1, αt, λ) = 0 and kt+1(kt(αt−1, λ), αt−1, λ) = ᾱ. Thus, a buyer who is on the cusp

of allocation in period t is always excluded in period t + 1.

Finally, recall that kt+1(α
t, λ) is decreasing in αt. This property, combined with the observa-

tion above, implies that, for any αt ≥ kt(αt−1, λ), the set of “admissible” period-(t + 1) reports

[kt+1(α
t, λ), ᾱ] that lead to a positive allocation in period t + 1 is a subset of the corresponding set

of “admissible” period-t reports [kt(αt−1, λ), ᾱ].

These features of the optimal contract are the continuous analogs of the finite honeymoon

phases that arise with discrete shocks and single-unit demand. Recall that the optimal contract

in that setting allowed, for each initial-period report λ, a fixed number of “low” d reports before

excluding the buyer from future allocations, implying that the probability of contract termination

by the seller was increasing over time. In the continuous-convex setting considered here, this effect

is captured by the fact that the set of reports that lead to an allocation is shrinking over time. Thus,

the seller progressively screens the buyer by restricting supply and increasing the probability of

permanent exclusion as the relationship progresses.

6. CONCLUDING REMARKS

In this paper, we examine a model of long-term contracting in which the buyer is not only

privately informed about her value at every point in time, but also about the process by which her

value evolves. We introduce sufficient conditions on the underlying primitives that allow us to

solve for the seller’s optimal contract, taking into account the buyer’s incentives for participation

and for truthful revelation throughout the interaction. These conditions characterize a class of

environments in which incentives decouple over time. When this is the case, the optimal long-

term contract features surprisingly simple menus of options that vary not only by upfront cost

and future strike price, but also by the generosity of quantity provision over the course of the

contract. In particular, these more generous choices require greater upfront investments by the

buyer in exchange for lower strike prices. Moreover, we identify an additional mechanism by

which the seller discriminates across buyers with differing willingness to pay: over time, sales are

made to fewer and fewer buyers, as the seller progressively screens and excludes lower-valued

buyers and ratchets prices upwards, thereby reducing the rents paid to higher-valued buyers. In

the long run, this leads to inefficiently early termination of the buyer-seller relationship.

A critical assumption in our model is that the buyer’s value in each period is the product of a

sequence of conditionally independent shocks. This assumption imposes a great deal of structure

on the environment; in particular, it implies that shocks have a symmetric impact on values (that

is, the buyer’s value is a commutative function of shocks) and that the distribution of shocks in

any given period does not depend on previous values. These two properties are crucial for the

decoupling of incentives over time. When shocks are drawn from different distributions over time

or depend directly on previous values, then the solution to the relaxed problem need not be path
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independent. Of course, this necessitates a different approach to incentive compatibility than that

taken in the present work; Pavan, Segal, and Toikka (2011) provide several interesting and useful

results in this direction.

The present work sets the stage for several avenues of further inquiry. Recall, for instance,

that the optimal contract in our setting is not renegotiation-proof, so our assumption of full com-

mitment power on the part of the seller has substantial bite. Understanding the precise role of

commitment is therefore a natural topic for additional investigation. In addition, there are a num-

ber of settings where the contracting environment or the value of the relationship are influenced

by investments made by the agent. Exploring the dynamics of contracting in such an environment

would advance our understanding of incentive provision beyond the present work’s focus on ad-

verse selection. Finally, competition among both buyers and sellers in a dynamic environment

such as our own is not particularly well-understood; progress in this direction would greatly ad-

vance our knowledge and yield important insights for market analysis and design. We leave these

questions, however, for future research.
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APPENDIX OF OMITTED PROOFS

LEMMA A. For all λ, λ′ ∈ Λ, we may write

Û0(λ
′, λ) = −p0(λ

′) + δ
∫

A
U1(α1, λ′)dG(α1|λ)

+
T

∑
t=2

δt
∫

At−1

∫

A
Ut(α

t, λ′)d[G(αt|λ)− G(αt|λ
′)]dWt−1(αt−1|λ).

PROOF. Notice that for any s = 1, . . . , T, we may write

T

∑
t=s

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ)

=
T

∑
t=s

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ)

+
T

∑
t=s+1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt−s(αt

−s|λ
′)dWs(αs|λ)

−
T

∑
t=s+1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt−s(αt

−s|λ
′)dWs(αs|λ)

= δs
∫

As
Us(α

s, λ′)dWs(αs|λ)− δs+1
∫

As+1
Us+1(αs+1, αs, λ′)dG(αs+1|λ

′)dWs(αs|λ)

+
T

∑
t=s+1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ).

Therefore, we may rewrite Û0(λ′, λ) from Equation (2) as

Û0(λ
′, λ) = −p0(λ

′) + δ
∫

A
U1(α1, λ′)dG(α1|λ)− δ2

∫

A2
U2(α

2, λ′)dG(α2|λ
′)dG(α1|λ)

+
T

∑
t=2

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ).

Substituting in from the expressions above yields

Û0(λ
′, λ) = −p0(λ

′) + δ
∫

A
U1(α1, λ′)dG(α1|λ)− δ2

∫

A2
U2(α2, α2, λ′)dG(α2|λ

′)dG(α1|λ)

+ δ2
∫

A2
U2(α2, α1, λ′)dG(α2|λ)dG(α1|λ)− δ3

∫

A3
U3(α

3, λ′)dG(α3|λ
′)dW2(α2|λ)

+
T

∑
t=3

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ).

Proceeding inductively in this manner, we may conclude that

Û0(λ
′, λ) = −p0(λ

′) + δ
∫

A
U1(α1, λ′)dG(α1|λ)

+
T

∑
t=2

δt
∫

At−1

∫

A
Ut(α

t, λ′)d[G(αt|λ)− G(αt|λ
′)]dWt−1(αt−1|λ). �
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PROOF OF LEMMA 4.1. For any αt, α′
t ∈ A, αt−1 ∈ At−1 and λ ∈ Λ, adding and subtracting

qt(α
′
t, αt−1, λ)v(α′

t, αt−1) +
T

∑
s=t+1

δs−t
∫

As−t
qs(α

s
−t, α′

t, αt−1, λ)v(αs
−t, α′

t, αt−1)dWs−t(αs
−t|λ)

from the right-hand side of the single-deviation constraint (IC-t) yields

Ut(αt, αt−1, λ) ≥ Ut(α
′
t, αt−1, λ) + (αt − α′

t)qt(α
′
t, αt−1, λ)v(αt−1)

+ (αt − α′
t)

T

∑
s=t+1

δs−t
∫

As−t
qs(α

s
−t, α′

t, αt−1, λ)v(αs
−t, αt−1)dWs−t(αs

−t|λ)

= Ut(α
′
t, αt−1, λ) + (αt − α′

t)q̄t(α
′
t, αt−1, λ).

Letting αt = u and α′
t = d, we can write the constraint above as

Ut(u, αt−1, λ) ≥ Ut(d, αt−1, λ) + q̄t(d, αt−1, λ)∆ for all αt−1 ∈ At−1 and λ ∈ Λ,

where ∆ := u − d. In addition, letting αt = d and α′
t = u, the inequality above implies that

Ut(d, αt−1, λ) ≥ Ut(u, αt−1, λ)− q̄t(u, αt−1, λ)∆ for all αt−1 ∈ At−1 and λ ∈ Λ.

Notice that rearranging the first of these two inequalities immediately yields condition (IC′-t).

Similarly, adding the two inequalities yields condition (MON′-t).

Finally, with conditions (IC′-t) and (MON′-t) in hand, (IR-t) is satisfied only if

Ut(d, αt−1, λ) ≥ 0 for all αt−1 ∈ At−1 and λ ∈ Λ;

that is, only if (IR′-t) holds.

Note that the sufficiency of the conditions derived above for the period-t single-deviation and

individual rationality constraints follows immediately via basic arithmetic. �

PROOF OF LEMMA 4.2. Using Lemma A and the definition of G(α|λ), we may write

Û0(λ
′, λ) = −p0(λ

′) + δ
(
λ
(
U1(u, λ′)− U1(d, λ′)

)
+ U1(d, λ′)

)

+ (λ − λ′)
T

∑
t=2

δt
∫

At−1

(
Ut(u, αt−1, λ′)− Ut(d, αt−1, λ′)

)
dWt−1(αt−1|λ).

With this in hand, note that

∂

∂λ
Û0(λ

′, λ) =
T

∑
t=1

δt
∫

At−1

(
Ut(u, αt−1, λ′)− Ut(d, αt−1, λ′)

)
dWt−1(αt−1|λ)

+ (λ − λ′)
T

∑
t=2

δt ∂

∂λ

(∫

At−1

(
Ut(u, αt−1, λ′)− Ut(d, αt−1, λ′)

)
dWt−1(αt−1|λ)

)
.

Since condition (IC-0) requires that Û0(λ, λ) = maxλ′{Û0(λ′, λ)} for all λ, the envelope theorem

(see Milgrom and Segal (2002)) implies that

U′
0(λ) =

∂

∂λ
Û0(λ

′, λ)

∣∣∣∣
λ′=λ

=
T

∑
t=1

δt
∫

At−1

(
Ut(u, αt−1, λ)− Ut(d, αt−1, λ)

)
dWt−1(αt−1|λ). �
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PROOF OF THEOREM 1. Note that we may rewrite Û0(λ′, λ) as

Û0(λ
′, λ) =

∫ λ′

0

T

∑
t=1

δt
E

[
q̄∗t (d, αt−1, µ)∆

∣∣∣µ
]

dµ

−
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′
]

+
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ
]

,

where we use the expectations operator E[·] to economize on notation. Therefore,

Û0(λ, λ)− Û0(λ
′, λ) =

λ∫

λ′

T

∑
t=1

δt
E

[
q̄∗t (d, αt−1, µ)∆

∣∣∣µ
]

dµ

−
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ
]

+
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′
]

.

Since q∗t (α
t, ·) is nondecreasing for all t and αt (due to Condition A), so is q̄∗t (d, αt−1, ·). Therefore,

Û0(λ, λ)− Û0(λ
′, λ) ≥

∫ λ

λ′

T

∑
t=1

δt
E

[
q̄∗t (d, αt−1, λ′)∆

∣∣∣µ
]

dµ

+
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′
]

−
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ
]

=
∫ λ

λ′

T

∑
t=1

t

∑
s=1

δt
E

[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ
]

dµ

+
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′
]

−
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ
]

,

where the equality follows from the identity in Equation (6).

For each t = 1, . . . , T, let mt := kt(λ′), and note that for all µ ∈ Λ, we have

E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣µ
]
=

min{mt,t}

∑
j=0

(
t

j

)
µt−j(1 − µ)j

(
ut−jdj − ut−min{mt,t}dmin{mt,t}

)

=





∑
t
j=0 (

t
j)µ

t−j(1 − µ)j
(
ut−jdj − dt

)
if mt ≥ t,

∑
mt
j=0 (

t
j)µ

t−j(1 − µ)j
(
ut−jdj − ut−mt dmt

)
if mt < t.
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Therefore, we may write (for each t = 1, . . . , T)

E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′
]
− E

[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ
]

=





∑
t
j=0 (

t
j)
[
µt−j(1 − µ)j

]λ′

µ=λ
ut−jdj if mt ≥ t,

∑
mt−1
j=0 (t

j)
[
µt−j(1 − µ)j

]λ′

µ=λ
ut−jdj

−∑
mt−1
j=0 (t

j)
[
µt−j(1 − µ)j

]λ′

µ=λ
ut−mdm

if mt < t.

Meanwhile, note that for each t = 1, . . . , T,

t

∑
s=1

E

[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ
]
=

t

∑
s=1

min{mt,t}

∑
j=0

(
t − 1

j

)
µt−1−j(1 − µ)jut−1−jdj∆

=
min{mt,t}

∑
j=0

t

(
t − 1

j

)
µt−1−j(1 − µ)jut−1−jdj∆,

so we must have
t

∑
s=1

E

[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ
]

=





t(µ∆ + d)t−1∆ if mt ≥ t,

∑
mt
j=0 t(t−1

j )µt−1−j(1 − µ)jut−1−jdj∆ if mt < t.

This implies that, for all t such that mt ≥ t,
∫ λ

λ′

t

∑
s=1

E

[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ
]

dµ =
∫ λ

λ′
t(µ∆ + d)t−1∆ dµ

=
t

∑
j=0

(
t

j

) [
µt−j(1 − µ)j

]λ

µ=λ′
ut−jdj.

Meanwhile, for all t such that mt < t, we may write
mt

∑
j=0

t

(
t − 1

j

)
µt−1−j(1 − µ)jut−1−jdj∆

=
mt−1

∑
j=0

t

[(
t − 1

j

)
µt−j−1(1 − µ)j −

(
t − 1
j − 1

)
µt−j(1 − µ)j−1

]
ut−jdj

− t

(
t − 1

mt − 1

)
µt−mt(1 − µ)mt−1ut−mt dmt

=
mt−1

∑
j=0

(
t

j

) [
(t − j)µt−j−1(1 − µ)j − jµt−j(1 − µ)j−1

]
ut−jdj

− t

(
t − 1

mt − 1

)
ut−mt dmt

mt−1

∑
k=0

(
mt − 1

k

)
(−1)kµt−mt+k.
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Thus, for all t with mt < t, we have
∫ λ

λ′

t

∑
s=1

E

[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ
]

dµ

=

(
t

j

)
ut−jdj

∫ λ

λ′

[
(t − j)µt−j−1(1 − µ)j − jµt−j(1 − µ)j−1

]
dµ

− t

(
t − 1

mt − 1

)
ut−mt dmt

∫ λ

λ′

mt−1

∑
k=0

(
mt − 1

k

)
(−1)kµt−mt+k

=

(
t

j

) [
µt−j(1 − µ)j

]λ

µ=λ′
ut−jdj

−
mt−1

∑
k=0

[
t

t − mt + k + 1

(
t − 1

mt − 1

)(
mt − 1

k

)
(−1)kµt−mt+k+1

]λ

µ=λ′

ut−mt dmt .

Finally, note that

t

t − mt + k + 1

(
t − 1

mt − 1

)(
mt − 1

k

)
(−1)kµt−mt+k+1

=
t − mt + 1

t − mt + k + 1

(
t

mt − 1

)(
mt − 1

k

)
(−1)kµt−mt+k+1

=

(
t

mt − 1 − k

)(
t − mt + k

k

)
(−1)kµt−mt+k+1.

Using the binomial identity (n−1
k )(−1)k = ∑

k
j=0 (

n
j)(−1)j, we may write

mt−1

∑
k=0

t

t − mt + k + 1

(
t − 1

mt − 1

)(
mt − 1

k

)
(−1)kµt−mt+k+1

=
mt−1

∑
k=0

k

∑
j=0

(
t

j + mt − k − 1

)(
j + mt − k − 1

j

)
(−1)jµt−mt+k+1

=
mt−1

∑
j=0

j

∑
k=0

(
t

j

)(
j

k

)
(−1)kµt−j+k

=
mt−1

∑
j=0

(
t

j

)
µt−j(1 − µ)j.

Therefore, for each t = 1, . . . , T, we may conclude that
∫ λ

λ′
E

[
q̄∗t (d, αt−1, λ′)∆

∣∣∣µ
]

dµ

+ E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′
]
− E

[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ
]
= 0.

Therefore, for all λ, λ′ ∈ Λ, Û0(λ, λ) ≥ Û0(λ′, λ); that is, for each λ ∈ Λ, Û0(λ′, λ) achieves a

global maximum when λ′ = λ, implying that the buyer has no incentive to misreport her private

information in the initial-period. Combined with the observation that the mechanism (q∗, p∗) is

incentive compatible in all t ≥ 1, this implies that this mechanism does, in fact, maximize the

seller’s profits. �
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PROOF OF THEOREM 2. Note that we may write Û0(λ′, λ) as

Û0(λ
′, λ) =

∫ λ′

0

T

∑
t=1

δt
E

[
q̄∗t (d, αt−1, µ)∆

∣∣∣µ
]

dµ −
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′
]

+
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ
]

=
∫ λ′

0

T

∑
t=1

δt
t

∑
s=1

E

[
q∗s (α

t
−s, d, αs−1, µ)v(αt

−s, αs−1)∆
∣∣∣µ
]

dµ

−
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′
]

+
T

∑
t=1

δt
E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ
]

,

where the equality comes from the identity in Equation (6) and we use the expectations operator

E[·] to economize on notation. Since for all t and all µ ∈ Λ, q∗t (α
t, µ) only depends on αt through

m(αt) = ∑
t
s=1 1d(αs), we will abuse notation slightly and write q∗t (k, µ) to denote the quantity

allocated in period t to a buyer who has reported (αt, µ) with m(αt) = k. Therefore, we can

rewrite the expression above as

Û0(λ
′, λ) =

∫ λ′

0

T

∑
t=1

δt
t−1

∑
k=0

t

(
t − 1

k

)
µt−1−k(1 − µ)kq∗t (k + 1, µ)∆ut−1−kdk dµ

−
T

∑
t=1

δt
t

∑
k=0

(
t

k

)
(λ′)t−k(1 − λ′)k

t

∑
j=k+1

q∗t (j, λ′)∆ut−jdj−1

+
T

∑
t=1

δt
t

∑
k=0

(
t

k

)
λt−k(1 − λ)k

t

∑
j=k+1

q∗t (j, λ′)∆ut−jdj−1.

Taking the partial derivative of the expression above with respect to λ′ yields

∂Û0(λ′, λ)

∂λ′

=
T

∑
t=1

δt
t−1

∑
k=0

t

(
t − 1

k

)
(λ′)t−1−k(1 − λ′)kq∗t (k + 1, λ′)∆ut−1−kdk

−
T

∑
t=1

δt
t

∑
k=0

(
t

k

)(
(t − k)(λ′)t−k−1(1 − λ′)k − k(λ′)t−k(1 − λ′)k−1

) t

∑
j=k+1

q∗t (j, λ′)∆ut−jdj−1

+
T

∑
t=1

δt
t

∑
k=0

(
t

k

)(
λt−k(1 − λ)k − (λ′)t−k(1 − λ′)k

) t

∑
j=k+1

∂q∗t (j, λ′)

∂λ′
∆ut−jdj−1.

Fix an arbitrary t ≥ 1, and note that (ignoring the δt coefficient) the summand in the second line

of the expression above may be rewritten as

t−1

∑
k=0

(
t

k

)(
(t − k)(λ′)t−k−1(1 − λ′)k − k(λ′)t−k(1 − λ′)k−1

) t

∑
j=k+1

q∗t (j, λ′)∆ut−jdj−1,
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where we have used the fact that the innermost (rightmost) summation equals zero when k = t.

Reversing the order of summation, this quantity becomes

t

∑
j=1

j−1

∑
k=0

(
t

k

)(
(t − k)(λ′)t−k−1(1 − λ′)k − k(λ′)t−k(1 − λ′)k−1

)
q∗t (j, λ′)∆ut−jdj−1

=
t−1

∑
j=0

q∗t (j + 1, λ′)∆ut−j−1dj
j

∑
k=0

(
t

k

)(
(t − k)(λ′)t−k−1(1 − λ′)k − k(λ′)t−k(1 − λ′)k−1

)
.

Notice, however, that for any j = 0, 1, . . . , k − 1, we may write

j

∑
k=0

(
t

k

)(
(t − k)(λ′)t−k−1(1 − λ′)k − k(λ′)t−k(1 − λ′)k−1

)

=
j

∑
k=0

(
t

k

)
(t − k)(λ′)t−k−1(1 − λ′)k −

j

∑
k=1

(
t

k

)
k(λ′)t−k(1 − λ′)k−1

=
j

∑
k=0

(
t

k

)
(t − k)(λ′)t−k−1(1 − λ′)k −

j−1

∑
k=0

(
t

k + 1

)
(k + 1)(λ′)t−k−1(1 − λ′)k

=

(
t

j

)
(t − j)(λ′)t−j−1(1 − λ′)j +

j−1

∑
k=0

((
t

k

)
(t − k)−

(
t

k + 1

)
(k + 1)

)
(λ′)t−k−1(1 − λ′)k

= t

(
t − 1

j

)
(λ′)t−j−1(1 − λ′)j,

where the final equality makes use of the fact that
(

t

k

)
(t − k)−

(
t

k + 1

)
(k + 1) =

t!(t − j)

(t − j)!j!
−

t!(j + 1)
(t − j − 1)!(j + 1)!

= 0.

Therefore, the first and second lines of the expression for ∂Û0(λ′, λ)/∂λ′ sum to zero; that is,

∂Û0(λ′, λ)

∂λ′
=

T

∑
t=1

δt
t

∑
k=0

(
t

k

)(
λt−k(1 − λ)k − (λ′)t−k(1 − λ′)k

) t

∑
j=k+1

∂q∗t (j, λ′)

∂λ′
∆ut−jdj−1.

=
T

∑
t=1

δt
(
E[Φt(κt)|λ]− E[Φt(κt)|λ

′]
)

,

where Φt(k) := ∑
t
j=k+1

∂q∗t (j,λ′)
∂λ′ ∆ut−jdj−1 is a decreasing function of k and κt is a random variable

drawn from a binomial distribution with parameters t and µ ∈ {λ, λ′}. Therefore, the stochastic

ordering of binomial distributions implies that, for all λ ∈ Λ,

∂Û0(λ′, λ)

∂λ′





> 0 if λ′
< λ,

= 0 if λ′ = λ,

< 0 if λ′
> λ.

Thus, holding λ fixed, Û0(λ′, λ) is maximized when λ′ = λ—the buyer has no incentive to misre-

port her initial-period private information. As established in the main text, the mechanism (q∗, p∗)

is incentive compatible in all periods t ≥ 1, and so this mechanism is, indeed, optimal. �
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PROOF OF LEMMA 5.1. Fix any t ≥ 1, and notice that (IC-t) may be rewritten as

Ut(αt, αt−1, λ) = max
α′t

{
qt(α

′
t, αt−1, λ)αtv(α

t−1)− pt(α
′
t, αt−1, λ)

+
T

∑
s=t+1

δs−t
∫

As−t

(
qs(α

s
−t, α′

t, αt−1, λ)v(αs
−t, αt−1)αt − ps(α

s
−t, α′

t, αt−1, λ)
)

dW(αs
−t|λ)

}
.

Thus, Ut(αt, ·) is an affine maximizer, and therefore a convex function of αt. Moreover, standard

techniques imply that we can rewrite the expressions above as

Ut(αt, αt−1, λ) ≥ Ut(α
′
t, αt−1, λ) + q̄t(αt, αt−1, λ)(αt − α′

t).

Thus, q̄t(αt, ·) is a subderivative of Ut(αt, ·). But since the Ut(αt, ·) is convex, it is absolutely con-

tinuous and, hence, differentiable almost everywhere. Moreover, whenever the partial derivative

exists, it must equal its subderivative. Finally, convexity implies that this partial derivative must

be a nondecreasing function of αt. Thus, the period-t single-deviation constraint (IC-t) implies

conditions (MON′′-t) and (IC′′-t).

In addition, recall that every absolutely continuous function is equal to the definite integral of

its derivative. Therefore, for all αt ∈ At and λ ∈ Λ,

Ut(αt, αt−1, λ) = Ut(α, αt−1, λ) +
∫ αt

α
q̄t(α

′
t, αt−1, λ)dα′

t.

But since the quantity schedule qt(·) is nonnegative, the integrand above is also nonnegative;

therefore, condition (IR-t) is satisfied only if Ut(α, αt−1, λ) ≥ 0.

Note that the sufficiency of the localized conditions derived above for the period-t single-

deviation and participation constraints essentially follows from the Fundamental Theorem of Cal-

culus and monotonicity of the (expected) allocation q̄t. �

PROOF OF LEMMA 5.2. Using Lemma A and the fact that dG(α|µ) = g(α|µ)dα for all µ ∈ Λ in

the continuous-shock setting, we may write

Û0(λ
′, λ) = −p0(λ

′) + δ
∫

A
U1(α1, λ′)g(α1|λ)dα1

+
T

∑
t=2

δt
∫

At
Ut(α

t, λ′)(g(αt|λ)− g(αt|λ
′))dWt−1(αt−1|λ)dαt.

Furthermore, recall that the constraint (IC-0) requires that U0(λ) = maxλ′{Û0(λ′, λ)} for all

λ ∈ Λ. Therefore, the envelope theorem (see Milgrom and Segal (2002)) implies that

U′
0(λ) =

∂

∂λ
Û0(λ

′, λ)

∣∣∣∣
λ′=λ

=
T

∑
t=1

δt
∫

At
Ut(α

t, λ)
∂g(αt|λ)

∂λ
dWt−1(αt−1|λ)dαt

=
T

∑
t=1

δt
∫

At−1

[
Ut(α

t, λ)
∂G(αt|λ)

∂λ

]ᾱ

αt=α

dWt−1(αt−1|λ)

−
T

∑
t=1

δt
∫

At

∂Ut(αt, λ)

∂αt

∂G(αt|λ)

∂λ
dWt−1(αt−1|λ)dαt,
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where the final equality follows from integration by parts. Note, however, that G(α|λ) = 0 for

all λ, and G(ᾱ|λ) = 1 for all λ; therefore, ∂G(α, λ)/∂λ = ∂G(ᾱ, λ)/∂λ = 0. Substituting in the

expression for ∂Ut/∂αt from (IC′′-t) then yields

U′
0(λ) = −

T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)

∂λ
dWt−1(αt−1|λ)dαt

= −
T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)/∂λ

g(αt|λ)
dWt(αt|λ).

Finally, note that qt(·) is nonnegative for all t, implying that q̄t is also nonnegative for all t. In

addition, ∂G(α|λ)/∂λ ≤ 0 for all α ∈ A by first-order stochastic dominance. Therefore, U′
0(λ)

is positive and U0 is an increasing function. This implies that we can replace the period-zero

participation constraint (IR-0) with the requirement that U0(λ) ≥ 0. �

PROOF OF THEOREM 3. Making use of the definition of p∗ from Equations (19) and (20), we may

rewrite Û0(λ′, λ) from Equation (2) as

Û0(λ
′, λ) =

T

∑
t=1

δt
∫

At

∫ v(αt)

αt
q̂∗t (v

′, λ′)dv′ dWt(αt|λ)

−
T

∑
t=1

δt
∫

At

∫ v(αt)

αt
q̂∗t (v

′, λ′)dv′ dWt(αt|λ′)

−
T

∑
t=1

δt
∫ λ′

λ

∫

At
q̄∗t (α

t, µ)
∂G(αt|µ)/∂λ

g(αt|µ)
dWt(αt|µ)dµ.

Taking the partial derivative of this expression with respect to λ′ yields

∂Û0(λ′, λ)

∂λ′
=

T

∑
t=1

δt
∫

At

∫ v(αt)

αt

∂q̂∗t (v
′, λ′)

∂λ
dv′ dWt(αt|λ)

−
T

∑
t=1

δt
∫

At

∫ v(αt)

αt

∂q̂∗t (v
′, λ′)

∂λ
dv′ dWt(αt|λ′)

−
T

∑
t=1

δt
∫

At

∫ v(αt)

αt
q̂∗t (v

′, λ′)dv′

(
t

∑
s=1

∂g(αs|λ′)/∂λ

g(αs|λ′)

)
dWt(αt|λ′)

−
T

∑
t=1

δt
∫

At
q̄∗t (α

t, λ′)
∂G(αt|λ′)/∂λ

g(αt|λ′)
dWt(αt|λ′).

Recall from Equation (16), however, that

T

∑
t=1

δt
∫

At
q̄t(α

t, λ′)
∂G(αt|λ′)/∂λ

g(αt|λ′)
dWt(αt|λ′)

=
T

∑
t=1

δt
∫

At
qt(α

t, λ′)
t

∑
s=1

v(αt
−s, αs−1)

∂G(αs|λ′)/∂λ

g(αs|λ′)
dWt(αt|λ′)

=
T

∑
t=1

δt
t

∑
s=1

∫

At−1

∫

A
q̂∗t (αsv(α

t
−s, αs−1), λ′)v(αt

−s, αs−1)
∂G(αs|λ′)

∂λ
dαs dWt−1(αt

−s, αs−1|λ′).
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Straightforward integration by parts implies that
∫

A
q̂∗t (αsv(α

t
−s, αs−1), λ′)v(αt

−s, αs−1)
∂G(αs|λ′)

∂λ
dαs = −

∫

A

∫ αsv(αt
−s,αs−1)

αt
q̂∗t (v

′, λ′)dv′
∂g(αs|λ′)

∂λ
dαs,

and so
T

∑
t=1

δt
∫

At
q̄t(α

t, λ′)
∂G(αt|λ′)/∂λ

g(αt|λ′)
dWt(αt|λ′)

= −
T

∑
t=1

δt
t

∑
s=1

∫

At

∫ v(αt)

αt
q̂∗t (v

′, λ′)dv′
∂g(αs|λ′)/∂λ

g(αs|λ′)
dWt(αt|λ′).

Thus, we may conclude that

∂Û0(λ′, λ)

∂λ′
=

T

∑
t=1

δt
∫

At

∫ v(αt)

αt

∂q̂∗t (v
′, λ′)

∂λ
dv′ d

[
Wt(αt|λ)− Wt(αt|λ′)

]
.

Note, however, that Condition B.3 implies that, for all t = 1, . . . , T, ∂q̂∗t (v
′, λ′)/∂λ ≥ 0 for all

v′ ∈ [αt, ᾱt] and λ′ ∈ Λ, and therefore
∫ v(αt)

αt

∂q̂∗t (v
′, λ′)

∂λ
dv′

is an increasing functions of αs for all s = 1, . . . , t. The fact that {G(·|λ)}λ∈Λ is ordered by first-

order stochastic dominance then implies that, for all λ ∈ Λ,

∂Û0(λ′, λ)

∂λ′





> 0 if λ′
< λ,

= 0 if λ′ = λ,

< 0 if λ′
> λ.

Thus, holding λ fixed, Û0(λ′, λ) achieves a global maximum when λ′ = λ, implying that period-

zero single-deviation constraint (IC-0) is satisfied.

Finally, note that (as discussed earlier) Conditions B.1 and B.2 imply that the buyer is always

incentivized to report her private information truthfully in any period t ≥ 1, regardless of her

reports (or misreports) in previous periods. Therefore, the contract (q∗, p∗) not only solves the

seller’s relaxed problem (R′′), but is fully incentive compatible: the buyer prefers truthful report-

ing to any potential deviation, regardless how complex. �
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