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ABSTRACT Previous face deblurring methods have utilized semantic segmentation maps as prior
knowledge. Most of these methods generated the segmentation map from a blurred facial image, and restore
it using the map in a sequential manner. However, the accuracy of the segmentation affects the restoration
performance. Generally, it is difficult to obtain an accurate segmentation map from a blurred image. Instead
of sequential methods, we propose an efficient method that learns the flows of facial component restoration
without performing segmentation. To this end, we propose a multi-semantic progressive learning (MSPL)
framework that progressively restores the entire face image starting from the facial components such as
the skin, followed by the hair, and the inner parts (eyes, nose, and mouth). Furthermore, we propose
a discriminator that observes the reconstruction-flow of the generator. In addition, we present new test
datasets to facilitate the comparison of face deblurring methods. Various experiments demonstrate that
the proposed MSPL framework achieves higher performance in facial image deblurring compared to the
existing methods, both qualitatively and quantitatively. Our code, trained model and data are available at
https://github.com/dolphin0104/MSPL-GAN.

INDEX TERMS Facial image deblurring, semantic mask, progressive learning, generative adversarial
network, deep learning

I. INTRODUCTION

F
ACIAL image deblurring is to restore a blurred face
image as a sharp face image. Although human faces

are highly variable, they have hierarchical structures that
comprise components, such as skin, hair, eyes, nose, and
mouth. These facial components are the crucial elements that
characterize a specific face; each element has inherent shapes
and textures. Thus, most face deblurring methods utilize the
prior knowledge (i.e., reference face [1], [2], 3D face [3],
face landmark [4], [5], 2D face sketch [6] and semantic
segmentation map [7], [8]) of face images to estimate a
unique solution.

Recently, deep learning-based methods [7], [8] have
achieved state-of-the-art performances in facial image de-
blurring by utilizing the semantic segmentation map as prior
knowledge. These methods consist of a two-step process
that generates the segmentation map from the blurred image,
and restores the facial image using this segmentation map
in a sequential manner. In these methods, the semantic seg-
mentation map is employed to localize the position of each
facial component and the boundaries between them for the
deblurring process.

However, these methods have a limitation. Accuracy of
the estimated segmentation map affects the restoration per-
formance due to their sequential properties. In general, it
is nontrivial to obtain an accurate segmentation map from
a blurred image. Inaccurate segmentation results often lead
to inaccurate localization of facial components, and con-
sequently generate a deblurred result with distorted shapes
and/or blurred textures [3], [9].

Specifically, small components of the face (that is, the eye-
brows, eyes, nose, and lips) which characterize the faces, are
significantly affected by inaccurate segmentation compared
to the large components such as hair and skin. In general,
each facial component is different in size, and has large
deviations. For instance, the eyes have a very small number of
pixels compared to the skin or hair regions. Moreover, these
small components of the face are more likely to lose informa-
tion due to noise and blur artifacts than the large components.
Due to this degradation, it is difficult to obtain accurate se-
mantic segmentation maps especially for small components
from the blurred images. Thus, small components require
more attention than the large components for the restoration
of their exact shapes and textures. This problem, called the
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(a) Input (b) Shen et al. [7] (c) Yasarla et al. [8] (d) Ours (e) Ground-truth

FIGURE 1. Qualitative comparison of the proposed method and existing face deblurring methods. Our approach reconstructs more textures and finer details

of facial components such as the eyes, nose, mouth, and hair.

class imbalance in Yasarla et al. [8], is one of the major
challenges in the previous method [7], [8].

As investigated in [3], [8], Shen et al. [7] often fails to
restore the small components of the face when the generated
segmentation results are inaccurate. To address this problem,
Yasarla et al. [8] proposed measuring the confidence score
of the facial components from the generated segmentation.
If the estimated segmentation maps have low confidence,
their model reduces the impact of segmentation maps in
the deblurring process. This method can effectively reduce
the effects of inaccurate segmentation maps. However, their
solution is suboptimal, because they do not provide how
to utilize the semantic prior when the segmentation map is
inaccurate due to severe blurs.

To deal with this problem, we propose a multi-semantic
progressive learning (MSPL) framework based on the gener-
ative adversarial network (GAN) [10]. Our method leverages
the semantic prior information of the face without performing
segmentation to prevent the side effects of an inaccurate
segmentation map. Furthermore, our method progressively
restores the face within four steps, inspired by the success
of progressive learning techniques [11], [12]. Conventional
progressive learning [11], [12] does not consider the semantic
context of the target object in an image. Therefore, we mod-
ified the concept of the conventional coarse-to-fine approach
to understand the underlying semantic structure of the target
object better.

Specifically, the proposed generator network has a cas-
caded architecture with sub-networks to restore the entire
face progressively and incrementally, starting with the sim-
pler facial components. Our network is trained to focus
on low-frequency components first and then incrementally
restore the smaller and high-frequency components in the
face image, instead of learning all the components of the face
image simultaneously. During training, each sub-network
focuses on restoring both the shape and texture for their
assigned class-specific facial components. This is achieved
by minimizing the difference between the sharp and output
facial components using masks obtained by precise ground-

truth segmentation maps. In addition, the architecture of
our generator mitigates the class-imbalance problem. The
proposed generator consists of multiple sub-networks. Each
sub-network is trained to focus on restoring the assigned
facial key component. This simple method allows the pro-
posed method to handle the class imbalance problem of face
deblurring more effectively. Fig. 1 clearly shows the effects
of the proposed framework. Our MPSL framework restores a
sharper face with fine-detailed facial components compared
to the previous methods [7], [8].

To generate facial images that are more photo-realistic, we
propose a multi-semantic discriminator in our GAN frame-
work. It is designed to handle all the intermediate outputs of
the generator using a single classifier network by allowing
the flow of gradients at all semantic components in the
discriminator to the generator. Through this, our discrimina-
tor oversees the entire flow of reconstructions of the facial
components.

To the best of our knowledge, there are only a few public
test datasets avaliable for facial image deblurring. Shen et

al. [7] provided a pioneering test dataset for evaluation.
However, most of the provided images are of low quality
with unknown blocking artifacts. In addition, all of the test
faces are well aligned and centered with the same facial
key points. However, in the real-world scenarios, faces are
captured in various shapes and poses. Thus, these images are
not appropriate to fully evaluate various methods for a range
of cases; in view of this, we provide new test datasets that are
suitable for a more practical evaluation of face deblurring.

The contributions of our work are summarized as follows:

• We propose an MSPL network, which progressively
learns the semantics of a human face for deblurring the
facial images from complex motion blur. To the best of
our knowledge, this is the first time that the idea of a
semantic coarse-to-fine manner has been introduced in
face deblurring.

• We propose the Multi-Semantic discriminator, which
can observe all the outputs of a generator. From this, our
generator reconstructs more photo-realistic face compo-
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nents in addition to the entire face.
• To conduct a more accurate and practical evaluation of

face deblurring, we suggest new test datasets with exten-
sive and high-quality images. The experimental results
show that the proposed model significantly outperforms
the previous methods.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the previous works on image
deblurring. In Section III, we present the details of our pro-
posed framework. Section IV provides the quantitative and
qualitative results of the proposed method compared to the
existing methods. Finally, Section V presents the conclusions
and discusses the future works.

II. RELATED WORK

Image deblurring has been studied for a long time in the field
of image processing and computer vision. In this section, we
briefly review the image deblurring methods and recent deep
learning-based progressive learning approaches.

A. GENERIC IMAGE DEBLURRING

Single image deblurring is a highly ill-posed problem; thus,
the traditional deblurring methods utilize natural image pri-
ors, such as sparsity priors [13], [14], L0 gradient priors
[15], low-rank priors [16], patch priors [17], [18] and channel
priors [19], [20]. Although these handcrafted priors suffice
for a small subset of the scene, it is difficult to apply them to
real-world images with complex blurs.

After the advent of deep learning [21], various convolu-
tional neural network (CNN) models have been proposed to
estimate the complex blur kernels [22], [23]. Sun et al. [22]
proposed to predict the probabilistic distribution of motion
blur at patch level. Chakrabarti et al. [23] predicted the
complex Fourier coefficients of a deconvolution filter and
applied them to an input patch. These methods combine
the CNNs and maximum a posteriori probability (MAP)-
based algorithms. On the other hand, several CNN models
directly restore the sharp image from blurred image in an
end-to-end manner [24]–[29]. Nah et al. [24] proposed a
multi-scale CNN model. They first extended the traditional
coarse-to-fine pipeline to a CNN-based deblurring field and
achieved impressive results. Tao et al. [25] investigated a
multi-scale strategy for the recurrent neural network (RNN)
based multi-scale architecture. To restore the realistic images,
Kupyn et al. [30] introduced a GAN-based deblurring model
that exploited Wasserstein GAN with a gradient penalty and
perceptual loss.

B. FACE IMAGE DEBLURRING

While the aforementioned methods perform well for natural
image deblurring, they often do not perform satisfactorily
on domain-specific images such as face images. Therefore,
several studies have proposed estimating various types of
prior facial knowledge such as the face alignment [4], face
sketches [6], reference faces [2], [31], 3D face models [3],

and face segmentation maps [7], [8]. The reference prior-
based methods [2], [31] extract useful information to restore
the face image from a sharp face similar to a degraded face
image. However these methods require a redundant collect-
ing and matching computation process to utilize the exemplar
face images. Ren et al. [3] proposed a video deblurring
method for faces by generating 3D facial priors. They trained
the 3D face reconstruction network to estimate more textured
facial priors. Despite satisfactory result on video deblurring,
their model was unable to perform on a single image. More
recently, Shen et al. [7] and Yasarla et al. [8] proposed the
use of semantic prior of the face for the deblurring process
and achieved state-of-the-art results. These methods are two-
step process. The steps include generating the semantic labels
from the blurred face first, and then using them as strong prior
knowledge for the deblurring process. However, extracting
the segmentation map from the blurred face is difficult, and
the erroneous prior information directly degrades the quality
of the reconstructed face image. To reduce the side effects
of inaccurate segmentation maps, Yasarla et al. [8] proposed
measuring the confidence score of an estimated semantic
map. However, they do not provide how to utilize the se-
mantic prior when the segmentation map is inaccurate due
to severe blurs. Unlike previous works [7], [8], the proposed
method exploits only the ground-truth segmentation maps for
training purposes, instead of generating them from blurred
images. Using this procedure, our method can be trained
with accurate segmentation maps, regardless of the degree of
blurs, and prevent the side effects of inaccurate segmentation
maps. In addition, the architecture of the proposed generator
allows the restoration of the small components of the face
more effectively.

C. PROGRESSIVE LEARNING

Progressive learning is a training strategy that involves start-
ing with an easy task and gradually refining the details. Most
existing methods that use progressive learning are based on
a multi-scale (coarse-to-fine) approach. Multi-scale frame-
works have made significant progress in estimating complex
motion blur kernels in single image deblurring [13], [24],
[25], [32], [33]. In addition to the single image deblurring
field, the multi-scale approach is widely used in other image
processing fields such as depth map estimation [34]–[36],
and video frame prediction [37]. In recent years, progressive
learning [11], [12], [20], [38]–[42] has been actively applied
to CNN-based image synthesis. In particular, Karras et al.

[11] proposed a progressive growing technique that progres-
sively increases the depth of the layer as well as the resolution
of the generated image. Karnewar et al. [12] proposed the
multi-scale gradient generative adversarial network (MSG-
GAN) by allowing the flow of gradients from the discrim-
inator to the generator at multi-scales. Meanwhile, Yang
et al. [43] proposed a method to generate the background
and foreground recursively and separately. In contrast to
the conventional methods, we suggest progressive learning
techniques according to the semantic information of the face.
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FIGURE 2. Overview of the proposed face deblurring framework comprising of a generator and a discriminator. The generator reconstructs the image in

four steps, and the discriminator observes all the output images from the generator.

III. PROPOSED METHOD

As illustrated in Fig. 2, our MSPL framework is composed
of a generator (G) and a discriminator (D). G generates a
sharp face image Ideblur from a blurred face image Iblur. Our
proposed G incrementally generates the facial components
step-by-step in the order of skin, hair, inner parts (eyes,
nose, and mouth), and then the entire face. Meanwhile, the
proposed discriminator (D) oversees all the generated face
image components from the G. A detailed explanation of
each network is provided in the following subsections.

A. SEMANTIC PROGRESSIVE GENERATOR

Following Yasarla et al. [8], we divide the ground-
truth segmentation labels into three classes as fol-
lows: M1 = {skin}, M2 = {hair}, M3 =
{nose, eyes, eyebrows, ears, mouth, lip}, and M4 =
{entire}. Here, Mi is a binary mask image with 1 for
the assigned region, and 0 for other regions. Note that M4

represents the entire area of the image, including the face
and background. From Fig. 2, it can be observed that G

consists of multiple functional blocks as h, gi, and t, where
1 ≤ i ≤ 4. First, h is an initial 1 × 1 convolution layer
that converts an input RGB image Iblur, to a feature map
Finit, for the following layer g1. Thus, h can be defined as
h : Iblur 7→ Finit. Second, gi is a function of our sub-
network defined by

gi : Fi−1 7→ Fi , where 1 ≤ i ≤ 4, F0 = Finit. (1)

Finally, t is a 1× 1 convolution layer that converts the output
feature map Fi generated from gi to an output RGB image
Oi, as t : Fi 7→ Oi. Then, the Oi can be defined as

Oi = t(gi(Fi−1)) = t(Fi), where 1 ≤ i ≤ 4. (2)

Thus, the entire network G can be defined as a sequential
composition of all sub-networks as

G : Iblur 7→ {O1, O2, O3, O4}. (3)

In our framework, gi is the key module of our network
that focuses on restoring each semantic structure of the face.
Each gi shares the same network architectures; however, their
roles are different as each gi renders each facial component
using the previous feature maps generated from the gi−1

layer. For this, we design each gi as a fully convolutional
U-shaped network, which consists of residual blocks [44]. As
investigated in [45], [46], we remove the normalization layers
from the standard residual blocks because the normalization
layers get rid of flexibility from the network for low-level
tasks. To extract more focused features, we apply a channel-
attention mechanism [47], [48] to our residual blocks. The
entire architecture of gi is shown in Table 1. In Table 1, each
row of the "Kernel" column specifies the kernel size and,
the number of filters and strides. For example, "3×3, 64, s1"
represents the 64 filters of size 3×3, with stride 1.

Our goal is to train each gi to reconstruct the assigned
facial component perfectly. For this, we define the facial
component loss (Lc

i ), which is defined as L1 distance be-
tween the facial components of the ground truth (GT) images
and those generated from gi as

Lc
i = ‖(IGT ⊙Mi)− (Oi ⊙Mi)‖1 , (4)

where ⊙ represents the Hadamard product. To refine the
entire face more naturally and restore the background of the
face, we compare the last output image O4, and the entire
target image IGT . This allows all sub-networks to share a
common objective and provide stability during training. The
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TABLE 1. Architecture of the proposed sub-network (gi). Fi−1 is an input

feature of ith sub-network gi. "W" and "H" represent the width and height of

the feature, all of the "downconv" layers represent convolutional layer with

stride 2 for the downsampling operation, and "upconv" layers represent the

transpose convolution for upsampling, and "+" represents a channel-wise sum

operation.

Blocks In→Out Kernel Output size
Resblock×2 Fi−1 →r1 3×3, 128, s1 W×H
downconv1 r1→d1 4×4, 128 s2 (W/2)×(H/2)
Resblock×2 d1→r2 3×3, 128, s1 (W/2)×(H/2)
downconv2 r2→d2 4×4, 128, s2 (W/4)×(H/4)
Resblock×4 d2→r3 3×3, 128, s1 (W/4)×(H/4)
upconv1 r3→u1 4×4, 128, s2 (W/2)×(H/2)
Resblock×2 r2+u1→r3 3×3, 128, s1 (W/2)×(H/2)
upconv2 r3→u2 4×4, 128, s2 W×H
Resblock×2 r1+u2→ Fi 3×3, 128, s1 W×H

total facial component loss of our G (LG) can be formulated
as follows:

LG =
4∑

i=1

Lc
i . (5)

Our proposed objective function in Eq. (5) allows a single gi
to focus on the specified facial component using only ground-
truth segmentation maps. Thus, our G is able to reconstruct
more precise shapes and finer details of the target face
without suffering from the side effects of using an inaccurate
segmentation map.

B. MULTI-SEMANTIC DISCRIMINATOR

We also propose a multi-semantic discriminator D in our
method. Inspired by the MSG-GAN [12], our D handles
multiple outputs of G which allows the restoration of more
realistic facial components at all intermediate layers. As
shown in Fig. 2, multiple intermediate images are fed to our
single D. Thus, a single network D is a function of multiple
input images and predicts a final probability p ∈ [0, 1] as

D : {x1, x2, x3, x4} 7→ p, (6)

where xj is a jth input RGB image of D. Let dj be the jth

intermediate layer of D, and let Aj be an output feature map
of dj . Then, dj can be defined as

dj : (xj , Aj−1) 7→ Aj , where 1 ≤ j ≤ 4, A0 = ∅. (7)

Each dj consists of a 3×3 convolutional layer c, and a single
concatenation operation. Then, Aj is formulated as

Aj = dj(xj , Aj−1) = c(c(xj)⊕Aj−1), (8)

where ⊕ represents a channel-wise concatenation operation.
D is alternatively trained using either the ground-truth image
or the result of G. Thus, when training D with the outputs
from G, x1 becomes O4, and xj is the generated facial
component (O5−j ⊙ M5−j), where 2 ≤ j ≤ 4. On the
other hand, when xj is the ground-truth facial component
(IGT ⊙M5−j), D learns the real face component, and x1 is
IGT . Then, the last block d5 acts as a classifier to estimate the

TABLE 2. Architecture of the proposed discriminator. All the multiple input

images are denoted as x1, x2, x3 and x4. "lReLU" is a leaky ReLU, "SN" is a

spectral normalization, and "⊕" represents a channel-wise concatenation

operation.

Blocks Operation In→Out Kernel
d1 Conv2d, lReLU, SN x1→A1 3×3, 64, s1

d2
Conv2d, lReLU, SN x2→C2 3×3, 64, s1
Conv2d, lReLU, SN C2⊕A1→A2 3×3, 64, s1

d3
Conv2d, lReLU, SN x3→C3 3×3, 64, s1
Conv2d, lReLU, SN C3⊕A2→A3 3×3, 64, s1

d4
Conv2d, lReLU, SN x4→C4 3×3, 64, s1
Conv2d, lReLU, SN C4⊕A3→A4 3×3, 64, s1

d5

Conv2d, lReLU, SN A4→C5 4×4, 64, s2
Conv2d, lReLU, SN C5→C6 4×4, 128. s2
Conv2d, lReLU, SN C6→C7 4×4, 256, s2
Conv2d, lReLU, SN C7→C8 4×4, 512, s2
Conv2d, lReLU, SN C8→p 4×4, 1, s2

probability of multiple input images being real or fake. Table
2 shows the detailed architecture of our discriminator. We
applied spectral normalization [49] to all the convolutional
layers to stabilize the training of discriminator.

Following Goodfellow et al. [10], we optimized G and D

in an alternating manner to solve the following adversarial
min-max function V (G,D):

min
G

max
D

V (D,G) =

Ey[logD(y)] + EIblur
[log(1−D(G(Iblur)))].

(9)

Here, y is a set of images corresponding to the ground-truth
components of faces as y = {yi|yi = (IGT ⊙Mi), 1 ≤ i ≤
3, y4 = IGT }. Then, the adversarial loss (Ladv) is defined as
follows:

Ladv = − log(D(G(Iblur))). (10)

During training the generator, the error is backward-
propagated to the intermediate layers of G from the interme-
diate layers of the D simultaneously. This provides stability
in training, because the sub-networks of the generator can
share the same goal. Meanwhile, the discriminator observes
not only the final output of G, but also all the intermediate
outputs of G.

Recently, perceptual loss [50] has been widely adopted for
better visual quality. To take advantage of this, we employed
a VGG-face loss Lvgg which is defined by

Lvgg = ‖φ(IGT )−φ(Ideblur)‖1 , (11)

where φ(·) represents the feature extracted from the Pool5
layer of the VGG-Face network [51].

The total loss of our MSPL framework Ltotal is the com-
bination of all the above loss functions discussed so far (LG

in Eq. (5), Ladv in Eq. (10), and Lvgg in Eq. (11)) as

Ltotal = LG + λ1Ladv + λ2Lvgg, (12)

where λ1 and λ2 represent the weights used to balance the
different loss terms. We empirically set the weights of our
loss terms as λ1 = 0.05 and λ2 = 0.05.
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(a) Shen et al. [7] (b) MSPL-Center (c) MSPL-Random

FIGURE 3. Comparison of testsets of Shen et al. [7] and our MSPL testsets. The sample ground-truth faces from (a) Shen et al. [7], (b) MSPL-Center, and (c)

MSPL-Random testset.

TABLE 3. Results of image quality assessment on face deblurring testsets. We compare the quality of GT images using the four image quality assessment

metrics. Each result is an average of the number of GT images. Best results are highlighted as bold.

Testset # GT images NIQE [52] (↓) BRISQUE [53] (↓) NRQM [54] (↑) PIQE [55] (↓) PI [56] (↓)
Shen et al. [7] Testset 200 18.8742 34.5743 5.8856 48.2324 11.4944
MSPL-Center 240 18.8740 30.3057 6.6018 42.5591 11.1363

TABLE 4. Results of image quality assessment on CelebA images in testsets. Best results are highlighted in bold.

CelebA # GT images NIQE [52] (↓) BRISQUE [53] (↓) NRQM [54] (↑) PIQE [55] (↓) PI [56] (↓)
Shen et al. [7] Testset 100 18.8744 32.7266 6.0758 43.6343 11.3992
MSPL-Center 80 18.8743 30.7639 6.6247 42.6092 11.1265

IV. EXPERIMENTAL RESULTS

A. DATASETS

1) Training Data

For training, we used the CelebAMask-HQ dataset [57],
which provides 30,000 high-quality (1024×1024 resolution)
face images. Each image has 19 classes of segmentation
labels such as skin, nose, eyes, eyebrows, ears, mouth, lips,
hair, hat, eyeglass, earring, necklace, neck, and cloth. We
regrouped these labels into three classes, which are the skin,
hair and inner parts, as [8]. Following [58], we synthesized
18,000 motion blur kernels using the method of [23]. As
trained in [7], [58], the size of the generated motion blur
kernels ranges from 13×13 to 27×27. After applying the blur
kernel to the image, we added Gaussian noise with σ = 0.03.
The generated images were then split into two subsets: the
training images (24,183 images), and the validation images
(5,817 images).

2) Test Data

For face deblurring, Shen et al. [7] provide a pioneering
testset to evaluate the motion-blurred faces. However, many
GT images in the testset are of low quality with unknown
block artifacts (see Fig. 3(a)). Because the purpose of image
deblurring is to restore a sharp and high-quality image,

these low-quality GT images are not suitable for evaluating
performance. In addition, facial images in their testset are
well aligned with the same facial key points [59]. However,
the blurred face images are not aligned in the real world,
because faces are usually captured under a wide range of
conditions. Therefore, their testset does not condsider the
practical situations where these blurred face images occur.
Therefore, we generated two types of test datasets called
the MSPL-Center and MSPL-Random. We collected 240
sharp face images from three different datasets (i.e., 80
images each from CelebA [60], CelebAMASK-HQ (CelebA-
HQ) [57] and Flickr-Faces-HQ thumbnails (FFHQ) [42]).
Note that each dataset is aligned with different facial key
points. Subsequently, we synthesized 240 random motion
blur kernels using the method presented in [23]. Following
the protocol by Shen et al. [7], the size of blur kernels ranges
from 13×13 to 27×27. As shown in Fig. 3(b), MSPL-Center
contains high-quality and differently aligned face images.
Meanwhile, MSPL-Random comprises images that are ran-
domly augmented versions using MSPL-Center (samples are
shown in Fig. 3(c)). To be specific, we conducted random
crops, random rotation, and random horizontal flips to the
MSPL-Center images and convolved the random blur kernels
synthesized using [23].
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3) Image Quality Comparison

Following [61]–[63], we used four of the no-reference im-
age quality assessment (NRIQA) metrics (i.e., NIQE [52],
BRISQUE [53], NRQM [54], and PIQE [55]) to compare
the quality of the images of our testset (MSPL-Center) and
testset provided by Shen et al. [7]. The NIQE and BRISQUE
metrics measure the image naturalness (or its lack thereof)
based on their own natural scene statics (NSS) model [52],
[53]. NRQM provides the quality scores of the images based
on extracted features from the trained CNN model [54]. PIQE
is a perception-based image quality evaluation method that
estimates the amount of distortion present in a given image
[55]. We also employ the perception index (PI) metric [56],
which is formulated as the adjusted mean value of NIQE and
NRQM.

Shen et al. [7] and MSPL-Center testsets were compared
because they both consist of centered facial images. As afore-
mentioned, the face images in MSPL-Random are randomly
transformed version of the MSPL-Center. Thus, we do not
compare the MSPL-Random dataset with the Shen et al. [7]
testset. All the results of image assessments are listed in
Table 3. When comparing [7] and MSPL-Center, the values
of NIQE are comparable. However, the MSPL-Center dataset
achieved better BRISQUE, NRQM, and PIQE than the Shen
et al. [7] testset.

For a fair comparison, we evaluated the image quality of
the Shen et al. [7] and MSPL-Center subsets, both of which
were synthesized using CelebA [60]. The results in Table
4 show that the test images in Shen et al. [7] are clearly
degraded compared to those in MSPL-Center, even when
considering the images selected from the same face dataset
[60]. These assessment metrics quantify the noise, artifacts,
sharpness and overall quality of the image. Therefore, the
comparative results indicate that the Shen et al. [7] testset
consist of low-quality GT images and the proposed MSPL
testsets are more suitable for the evaluation of face deblurring
performance.

B. TRAINING DETAILS

To implement our models, we used Pytorch [64]. The genera-
tor and discriminator were trained using the Adam optimizer
[65] with β1 = 0.9, β2 = 0.999. The learning rate was
initialized as 1× 10−5 and decayed exponentially by a factor
of 0.99 for every epoch. When training, we first resized
the 1024×1024 images to 512×512 images using bilinear
downsampling. Then, we randomly cropped the images to
448×448 and resized them to 128×128. We augment the
resized images with random horizontal flips and random
rotations in the range [0◦, 90◦]. We set the batch size as 16
and trained the model with a single NVIDIA TITAN-RTX
GPU.

C. EVALUATION METRICS

To evaluate the performances of various methods, we used
PSNR and SSIM [66], which are widely used in image
restoration fields. The feature distance (dV GG) of the VGG-

TABLE 5. Ablation studies on CelebA of MSPL-Center Testset. All inner

components of the face is denoted as "Inner", and the whole image as

"Entire". Best result is highlighted as bold.

Method
Intermediate outputs of G (corresponding mask)

PSNR SSIM
O1 O2 O3 O4

Baseline - - - Entire (M4) 28.12 0.922
MSPL_a Entire (M4) Skin (M1) Hair (M2) Inner (M3) 27.17 0.906
MSPL_b Inner (M3) Hair (M2) Skin (M1) Entire (M4) 28.00 0.920
MSPL w/o GAN Skin (M1) Hair (M2) Inner (M3) Entire (M4) 28.67 0.923

MSPL_GAN Skin (M1) Hair (M2) Inner (M3) Entire (M4) 28.07 0.921

TABLE 6. PSNR values for each facial component on CelebA-HQ in

MSPL-Center Testset. We measured the metrics using individual classes of

GT segmentation maps.

Method
Facial Components

Skin Hair Inner parts Average
PSNR(↑) PSNR(↑) PSNR(↑) PSNR(↑)

Shen et al. [7] 19.75 19.76 16.16 18.56
Yasarla et al. [8] 23.52 22.55 19.46 21.85
MSPL w/o GAN O1 26.77 24.40 19.10 23.42
MSPL w/o GAN O2 27.30 26.58 22.68 25.52
MSPL w/o GAN O3 28.30 27.22 24.84 26.79
MSPL w/o GAN O4 30.40 28.31 25.74 28.15

Face network [67] was measured to compare the similarity in
facial identity between the GT images and the deblurred face
images. Following [68], we computed the L2 distance using
the output features from the Pool5 layer of the VGG-Face
network [67]. Following the 2020 NTIRE challenge [63], we
employed the LPIPS [69] distance, which is computed as the
L2 distance using the output features from the learned CNN
for computing human visual perception.

D. ABLATION STUDY

1) Effect of the Semantic Progressive Generator

To investigate the impacts of the reconstruction procedure
of the face components, we gradually modified the baseline
model and compared the differences. We set the baseline
model to the same architecture as G, with the difference
being that it is trained without facial component losses (Lc

1
,

Lc
2
, and Lc

3
) and discriminator. Thus, the baseline model

generates only a single output image at the final image
convert layer (t(F4)) of G. This baseline was trained with
only Lc

4
loss between the O4 and IGT , which is commonly

used in image restoration studies. From this baseline model,
we added intermediate output layers and compared the per-
formance of the models (denoted as MSPL) trained with
different restoration procedures.

Table 5 shows the performances of all the conducted mod-
els trained with different reconstruction procedures and iden-
tical training settings and data. The Mi specified in Table 5
represents the semantic mask used to train the corresponding
intermediate output of the MSPL model. MSPL_a is a model
that is trained to restore a blurry input image in the order of
entire image, skin, hair, and inner components. Comparing
the results of MSPL_a and other models, it can be observed
that restoring the entire face from the last module is crucial to
the accuracy of the restoration process. MSPL_b is a trained
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(a) Input (b) O1 (c) O2 (d) O3 (e) O4 (f) GT

FIGURE 4. Intermediate outputs of the proposed network.

model in reverse order of the proposed method except the
entire component. This model restores the facial components
starting from small and high-frequency components first
(inner components), and restore the large and low-frequency
components (hair, skin) later. The results of the MSPL_b
also show that the wrong order of the face reconstruction
degrades the deblurring performance. MSPL w/o GAN is a
model trained to restore facial components with the proposed
procedure using Eq. (5). The results in Table 5 demonstrate
that the architecture trained with the proposed order improves
the restoration performance compared to the other orders.

In addition, Table 6 quantitatively demonstrates the ef-
fect of our progressive generator for each facial component.
When comparing the PSNRs of O1, O2, O3, and O4, we can
confirm that the PSNR values of all the facial components
gradually increase. These results indicate that the proposed
method performs the deblurring incrementally. All the sub-
networks enhance the quality of the image compared to the
output image of the previous stage. Furthermore, we can ob-
serve that each sub-network is gradually improving not only
the class-specific component, but also the entire face. This is
because all the sub-networks share the goal of restoring the
whole face. This lends stability to our progressive training
method.

In Fig. 4, we can qualitatively observe the deblurring
procedure in our proposed method that progressively restores
the face image in the order of skin, hair, inner parts (eyes,
eyebrows, nose, and mouth) and the entire face. From a
blurred input face, the first sub-network generates the first
output image O1. At this stage, we can see that the overall
shape of the facial skin is restored excluding the other facial
components (see Fig. 4(b)). In Fig. 4(c), we confirm that
the shape and texture of the hair in O2 are restored from
O1. However, some blurred artifacts remain in the facial
inner parts and background. In the third stage, the O3 (Fig.
4(d)) shows that the inner parts of the face are significantly
restored compared to O2 from the previous stage. The final
output image O4 is shown in Fig. 4(e). The final result
demonstrates that the final sub-network recovers the entire
face and background. In particular, the facial components of

O4 are more natural compared to those of O3.

2) Effect of the Multi-Semantic Discriminator

In our MSPL framework, the multi-semantic discriminator
is utilized to recover the faces that are more photo-realistic.
To study the effects of this, we additionally trained our
generator model with the proposed discriminator and trained
with Ltotal in Eq. (12). We denote our model as MSPL_GAN
which are trained with the loss function Ltotal in Eq. (12).
The results listed in Table 5 indicate that the MSPL_GAN
achieves slightly poor results compared to those archived by
MSPL w/o GAN. However, the visual results presented in
Fig. 5 show that our discriminator assists in reconstructing
the faces that are more realistic. In Fig. 5, we compare the re-
sults of MSPL w/o GAN and MSPL_GAN (the odd rows and
the even rows in Fig. 5, respectively) with the same blurred
image as the input. It can be observed that the MSPL_GAN
model restores the more realistic facial components than
those restored by the MSPL w/o GAN model, especially for
the nose, mouth, eyes, and texture of hair. For example, the
output images in the second row contain more a realistic nose
and mouth than the outputs in the first row. When comparing
the images in the third and fourth rows, we can see a clear
effect of GAN. This demonstrates the effect of our multi-
semantic discriminator that allows the generator to restore
the more realistic facial components. In addition, we confirm
that our discriminator can affect on not only the final output
image O4, but also all the intermediate outputs from O1 to
O3. In our experiments, the performance of MSPL_GAN
model was slightly lower in the PSNR/SSIM compared to
those of the MSPL w/o GAN model. However, MSPL_GAN
model can restore the more visually plausible outputs that
contain inner components, which are more natural, by using
our multi-semantic discriminator.

E. COMPARISONS WITH EXISTING METHODS

We compared the performance of our MSPL framework with
recent methods based on CNN models [7], [8], [58], [68],
[70]. All the experiments were conducted using the official
codes provided by the authors [7], [8], [58], [68], [70]. For
Xia and Chakrabarti [58], we used the model trained in a
supervised manner, as this model has been reported as the
best model in their studies. Since Zhang et al. [70] was
originally trained on the natural scene images, we retrain
their model using our training data to compare under fair
condition, which is denoted as *Zhang et al. [70].

1) Class Imbalance Problem

As mentioned earlier, the class imbalance problem is an
important and challenging issue for the existing face deblur-
ring methods [7], [8]. To compare the restoring capability of
restoring the small and thin components of the face (such
as the eyes, lips, and eyebrows), we compared the PSNR
value of each individual class in the face using a ground-
truth segmentation map, following the experiment presented
by Yasarla et al. [8].
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Input O1 w/o GAN O2 w/o GAN O2 w/o GAN O4 w/o GAN Ground truth

Input O1 w/ GAN O2 w/ GAN O3 w/ GAN O4 w/ GAN Ground truth

Input O1 w/o GAN O2 w/o GAN O3 w/o GAN O4 w/o GAN Ground truth

Input O1 w/ GAN O2 w/ GAN O3 w/ GAN O4 w/ GAN Ground truth

FIGURE 5. Comparisons of MSPL w/o GAN and MSPL_GAN. From left to right, input blurred faces, O1, O2, O3, O4, and the GT faces; rows 1 and 3 of the

figure are the results of the MSPL w/o GAN, rows 2, and 4 are the output of MSPL_GAN.

TABLE 7. Quantitative comparisons on testset of Shen et al. [7]. Best results are highlighted as bold.

Method
Helen CelebA

PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓) PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓)
Shen et al. [7] 25.58 0.861 91.06 0.1527 24.34 0.860 117.50 0.1832
Lu et al. [68] 20.25 0.705 241.93 0.1654 19.96 0.742 305.96 0.1688
Xia et al. [58] 26.13 0.886 55.97 0.1052 25.18 0.892 68.05 0.1199
Yasarla et al. [8] 27.75 0.897 86.87 0.1086 26.62 0.908 66.33 0.1401
MSPL_GAN 25.91 0.881 47.80 0.0828 24.91 0.885 57.54 0.0962

As shown in Table 6, our model significantly outperforms
the previous state-of-the-arts in restoring individual classes
of the face, especially for the inner parts of the face which
contain small and important features of the face. These
results show that our model effectively restores the facial
image by reducing the class-imbalance problem compared to
the previous methods.

2) Comparisons Using Shen et al. [7] Testset.

We conducted experiments on the testset provided by Shen
et al. [7]. In Table 7, it can be noted that Yasarla et al.

[8], and Xia and Chakrabarti [58] performed the best PSNR
and SSIM. However, as can be seen in Fig. 6, the results
obtained using the previous methods [7], [8], [58] are overly
smoothed images, their models obtain better results in PSNR
and SSIM compared to our model. As mentioned before, the
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Input Shen et al. [7] Lu et al. [68] Xia et al. [58] Yasarla et al. [8] MSPL_GAN Ground truth

FIGURE 6. Qualitative comparison on Shen et al. [7] Testset.

TABLE 8. Quantitative comparisons on MSPL testsets. Best results are highlighted as bold.

MSPL-Center

Method
CelebA CelebA-HQ FFHQ

PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓) PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓) PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓)
Shen et al. [7] 19.75 0.740 113.66 0.3007 19.95 0.755 267.41 0.2865 19.57 0.723 220.87 0.3417
Lu et al. [68] 17.93 0.617 123.35 0.2284 18.63 0.649 243.06 0.1902 18.26 0.630 177.00 0.2256
Zhang et al. [70] 20.40 0.744 117.68 0.3143 20.90 0.764 239.04 0.2952 20.64 0.743 170.41 0.3426
*Zhang et al. [70] 23.98 0.824 45.13 0.2412 24.84 0.844 83.36 0.2115 23.52 0.813 71.51 0.2866
Xia et al. [58] 25.03 0.873 39.58 0.1790 25.79 0.886 83.46 0.1608 24.66 0.859 57.66 0.2081
Yasarla et al. [8] 22.73 0.817 55.01 0.2132 23.02 0.827 102.97 0.1956 22.19 0.795 86.43 0.2506
MSPL_GAN 28.07 0.921 18.19 0.1152 28.82 0.929 40.93 0.0968 27.36 0.908 25.39 0.1325

MSPL-Random

Method
CelebA CelebA-HQ FFHQ

PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓) PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓) PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓)
Shen et al. [7] 18.89 0.711 90.37 0.3310 19.18 0.729 157.49 0.3185 19.03 0.713 127.71 0.3356
Lu et al. [68] 17.41 0.631 46.05 0.2693 18.04 0.664 72.56 0.2297 17.94 0.654 65.06 0.2589
Zhang et al. [70] 19.36 0.702 86.772 0.3276 19.85 0.726 144.738 0.3109 19.77 0.715 122.070 0.3331
*Zhang et al. [70] 23.35 0.794 30.456 0.2535 24.09 0.817 54.063 0.2267 23.54 0.804 46.027 0.2546
Xia et al. [58] 23.66 0.849 30.94 0.2044 24.48 0.861 60.95 0.1940 23.95 0.855 44.62 0.2016
Yasarla et al. [8] 21.24 0.777 45.05 0.2448 21.46 0.789 72.56 0.2296 21.28 0.778 65.06 0.2407
MSPL_GAN 28.95 0.936 11.41 0.1090 29.80 0.945 26.91 0.0938 29.22 0.941 15.44 0.0988

problems of low-quality images in the Shen et al. [7] testset
are noteworthy. The results in Fig. 6 show this problem more
clearly. First, we can observe that not a few GT images have
severe blocking artifacts (for example, see the last column
in Fig. 6). Second, our model restores the sharp images that
are even better than GT images. When comparing the GT
images with our images, our results have sharper boundaries
at the border of the facial components without blocking
artifacts. These observations support that the existing Shen et

al. [7] testset has a limitation in providing accurate deblurring
evaluation.

On the other hand, the proposed MSPL w/o GAN and
MSPL_GAN achieved the best performance in dV GG and
LPIPS with a huge margin, as listed in Table 7. The result of

dV GG indicates that our restored faces are similar to the GT
images in terms of face identification. In addition, this shows
that our model is the best model for higher vision task such
as face recognition. LPIPS is the metric, which correlates
better with human perceptual opinions [63]. The results of
LPIPS show that the restored faces using our model are more
visually plausible in terms of human vision.

3) Comparisons Using MSPL Testset.

In extended experiments on MSPL-Center and MSPL-
Random testsets, we observed that our proposed method
achieved the best performance both quantitatively and qual-
itatively. The quantitative results are listed in Table 8. The
result values of PSNR, SSIM, dV GG, and LPIPS indicate that
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Input Shen et al. [7] Lu et al. [68] Xia et al. [58] Yasarla et al. [8] MSPL_GAN Ground truth

FIGURE 7. Qualitative comparison on MSPL-Center Testset.

Input Shen et al. [7] Lu et al. [68] Xia et al. [58] Yasarla et al. [8] MSPL_GAN Ground truth

FIGURE 8. Qualitative comparison on MSPL-Random Testset.

our framework significantly outperformed the existing meth-
ods. Additional visual results in Fig. 7 and Fig. 8 demonstrate
that the proposed method restored sharper and more detailed
face images than previous methods. In our experiments, we
observed that the performance of Shen et al. [7] was sensitive
to alignment and rotation. When a given blurred face image
was aligned differently or rotated differently from the train-
ing face images, the restoration performance of Shen et al. [7]
was severely degraded (refer to the second column images
of Fig. 7). The results of Yasarla et al. [8] were visually

plausible for all the test images. However, the restored small
facial components (i.e., eyes, nose, mouth, and teeth) still
lacked details and textures when the blurred artifacts were
severe in the input image. Meanwhile, the proposed frame-
work achieved superior performance compared to previous
existing methods.

4) Real-world blurred Facial Images.

We conducted experiments on the twenty facial images dis-
torted by real-world blur provided by [7], [71]. In the real-
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Input Shen et al. [7] Lu et al. [68] Xia et al. [58] Yasarla et al. [8] MSPL_GAN

FIGURE 9. Qualitative comparison on real-world blurred facial images.

TABLE 9. Comparison of average inference time and the number of
model parameters.

Method Implementation Inference time (S) Parameters (M)
Shen et al. [7] MATLAB(GPU) 0.05 14.8
Lu et al. [68] Pytorch(GPU) 0.02 53.0
Xia et al. [58] Tensorflow(GPU) 0.19 41.8
Yasarla et al. [8] Pytorch(GPU) 0.16 14.4
Ours Pytorch(GPU) 0.08 18.5

world, images are easily degraded with unknown complex
factors such as the motion blur, lens distortion, sensor satura-
tion, nonlinear transform functions, noise, and compression,
in the camera pipeline [71]. However, all of these factors
are not considered when generating the synthetically blurred
images. Therefore, this experiment allows us to confirm the
more practical performances of face deblurring methods that
cannot be evaluated using the synthetically generated blur
testsets. The comparative results of the sample images for the
real-world blur are shown in Fig. 9. As can be seen in Fig.
9, the results of the proposed method show the most sharp
and natural face images compared to other face deblurring
methods. These results indicate that our proposed method has
the capability of reconstructing the highest-quality images
from the facial images with a real-world blur.

5) Inference Time and Model Parameters.

As shown in Table 9, we measured the inference time and
the number of model parameters of the existing methods
and the proposed model. The inference time is measured by
averaging inference time of 10 images with a size of 128 ×
128 on a single NVIDIA Titan Xp GPU.

TABLE 10. Face detection and verification comparisons on the CelebA
from the Shen et al. [7] testset.

Method Detection (%) (↑) Acc (%) (↑) EER (%) (↓)
GT of Shen et al. [7] 96.00 93.47 9.0909
Blurred images 77.40 77.05 18.7509
Shen et al. [7] 94.80 87.03 12.4398
Lu et al. [68] 89.03 80.56 17.4550
Xia et al. [58] 95.95 89.12 10.7587
Yasarla et al. [8] 94.49 87.84 11.9471
Ours 96.55 89.59 10.0025

When comparing the proposed model with the recent state-
of-art model of Yasarla et al. [8], our model is slightly larger
in number of parameters. However, it can be seen that our
model is 2 times faster than Yasarla et al. [8]. This shows
that the proposed method is more efficient than the two-
stage deblurring method [8] consisting of segmentation and
deblurring processes.

6) Face Detection and Verification.

Face detection and verification are important and practical
tasks of localizing the faces and verifying an identity of
each face in the image. One of the major goals of face
deblurring is to increase accuracy in such high level tasks
when the input image is blurry. For this reason, we compared
the performances of face detection and verification using
deblurred images on CelebA testset of Shen et al. [7].

For the detection test, we measured the success rate of
the face detection using OpenFace toolbox [72]. As listed
in Table 10, the success rates of the face detection for GT
images, blurry images, and deblurred images using our model
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are 96.00 %, 77.40 % and 96.55 %, respectively. It can be
observed that our model achieved better performance than
other methods, and even higher performance than the GT
images of Shen et al. [7] testset.

We also measured the performances of the face verification
on deblurred images. The CelebA testset of Shen et al. [7]
contains 8000 blurry images synthesized with 100 GT images
with different identities. From the original CelebA [60], we
collected 200 additional images; 100 images of the same
identities and 100 images of different identities with Shen et

al. [7]. From this collected images, we generated the 8000
positive pairs and 8000 negative pairs. Each positive pair
consists of a blurry image from the Shen et al. [7] testset,
and a sharp image from the original CelebA [60]. They are
different images of the same person. Each negative pair is
also a set of a blurry image and a sharp image selected
from the Shen et al. [7] testset and the original CelebA
[60], respectively. Unlike the positive pair, their identities are
different.

For the verification test, we use MobileNet [73] as a feature
extractor trained with Arcface [74] loss and MS-Celeb-1M
[75], which yields the 99.18 % accuracy on LFW benchmark
[76]. To compare the verification performance, we measured
the estimated mean accuracy (Acc) [76]. Equal error rate
(EER) is another classical metric for face verification, which
indicates the rate where both false acceptance rate and false
rejection rate are equal. In general, the ideal EER value is 0,
and the lower EER represents more accurate face verification
results.

As demonstrated in Table 10, the proposed model achieves
the best performance in Acc and EER. The verification Acc
for the blurred image is 77.05 %, and the Acc for the
deblurred images using our model is increased to 89.59 %.
The EER for the original blurred image is 18.7509 %, while
the EER for the deblurred image using our model is reduced
to 10.0025 %. As shown in Table 10, our model achieves
the lowest error rate compared to the conventional models.
The results prove that our deblurring model is best suited for
high-level tasks such as detection and verification compared
to other methods.

V. CONCLUSIONS

In this study, we propose a multi-semantic progressive learn-
ing framework for facial image deblurring. Our framework
employs an effective GAN-based architecture to restore the
semantic structures of the face progressively without per-
forming semantic segmentation. To evaluate the more prac-
tical and accurate performances of face deblurring methods,
we have provided additional new testsets. Overall, the pro-
posed method outperforms the existing methods both quali-
tatively and quantitatively. To the best of our knowledge, this
is the first study on facial image deblurring using a semantic
in progressive approach. We believe that our framework pro-
vides a potential approach for numerous other facial image
restoration fields.
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