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Abstract - A progressive Vector Quantization (VQ) compression approach is discussed which

idecomposes image data into a number of levels using full search VQ. The final level is

I losslessly compressed, enabling lossless reconstruction. The computational difficulties are
<f

j addressed by implementation on a massively parallel SIMD machine. We demonstrate

progressive VQ on multispectral imagery obtained from the Advanced Very High Resolution
i

Radiometer instrument and other Earth observation image data, and investigate the trade-offs in

selecting the number of decomposition levels and codebook training method.

EDICS Category IP 1.1 (Coding).

Dr. M. Manohar, (current address) Computer Science Department, Bowie State University,
Bowie, MD 20715. (301) 464-7852 (Voice), (301) 286-1776 (FAX), manohar@chrpalg.gsfc.
nasa.sov (Internet). Dr. James C. Tilton, Mail Code 935, NASA GSFC, Greenbelt, MD 20771.
(30lf 286-9510 (Voice), (301) 286-1776 (FAX), tilton@chrpisis.gsfc.nasa.gov (Internet).
Address correspondence to Dr. Tilton.

I. INTRODUCTION

The large data volumes from space-borne instruments, such as those being developed for the

Earth Observation System (EOS), pose significant data handling problems [1]. We describe here

a progressive vector quantization data compression approach that can serve as a basis for an

effective data archive and distribution system.

A. Vector Quantization

The basic premise of Vector Quantization (VQ) is to represent vectors by scalar indices.

Compression occurs because the scalar indices are smaller than the vectors they represent. We

refer the reader to Gray [2] for a detailed description of and rationale for VQ. In the case of two-

dimensional image data, VQ vectors are obtained by systematically extracting non-overlapping

blocks from the image. Such vectors allow VQ to exploit the two-dimensional spatial

correlations in the image data. If the image is multispectral, non-overlapping cubes may be used,



allowing VQ to exploit the spectral as well as spatial correlations. The blocks (or cubes) are

converted to vectors by performing a raster scan (band by band) of each block. A discussion of

VQ compression techniques for multispectral images can be found in [3].

VQ requires that a dictionary of representative vectors, called codevectors, be created before

an image can be VQ encoded. An image is VQ encoded by replacing each image vector with the

address of the closest codevector from this dictionary, commonly called the VQ codebook. The

VQ codebook is created through a training process in which an optimal codebook is learned

from the input samples using an error criterion such as mean squared error. The most widely

used training algorithm is the generalized Lloyd algorithm (GLA) as described in [4]. An

alternative approach is based on the self organizing feature map (SOFM) developed by Kohonen

[5]. Our specific implementation of SOFM training is described in [6].

Both the training and coding phase of VQ require finding the codevector which is the closest

match to a given vector. Computing this closest match requires computations proportional to the

size of the codebook, making this step computationally expensive. Computational cost can be

reduced by employing suboptimal approaches such as tree-searched VQ (TSVQ) [2]. We prefer

to overcome the computational burden by employing a massively parallel implementation of full

search VQ on a SIMD (Single Instruction, Multiple Data stream) massively parallel computer, as

described in a following section.

While VQ codebook training and data encoding are computationally intensive, data decoding

is a table lookup process that can be performed quickly on conventional sequential computers.

This makes VQ attractive for the one central encoder and many decoders environment of a data

archive and distribution center. In contrast, most transform based compression techniques have

nearly the same computational requirements for encoding and decoding.

B. Progressive Compression

Progressive compression is a form of image data compression in which the first part of the

compressed data can be used to reconstruct an approximate representation of the image. The



remaining portions of the compressed data contribute increasingly detailed information to the

reconstruction of the image until the image is losslessly reconstructed.

In the data archive and distribution setting, one needs to be able to browse through the

available data to find the data most appropriate for a given application. With progressive

compression, the browse data and archive data can be seamlessly integrated. The browse data

(initial progressive rendition of the data) should be an accurate enough representation of the data

so that it is possible to make a decision concerning whether or not the data is useful. If the

decision is negative, the cost of the decision is just the cost of obtaining the browse data. If the

decision is positive, there are two options: i) the user can either get the successive detail data

adding to the initial browse data until the data precision is adequate and then terminate the

transmission, ii) or the user can get all the remaining data and losslessly reconstruct the data.

C. Progressive Vector Quantization

Two main types of progressive VQ are reported in the literature. One type progressively

refines the VQ index, and is usually based on tree-structured VQ. An extension of this idea to

full search VQ is given in [7]. The second type uses one or more (multiple) stages or levels of

VQ followed by lossless compression of the residual. Our approach is of this latter type. Much

of the research on multiple stage VQ, also called residual vector quantization (RVQ), has

focused on the joint optimal design of codebooks for each stage [8].

Wang and Goldberg [9] present a progressive image transmission scheme based on RVQ that

is very similar to the one we describe here. However, there are some key differences. Wang and

Goldberg assume very small codebooks (up to 16 codewords per codebook in their progressive

examples), while our codebooks are quite large (the size of the MasPar MP-2, i.e., 16,384

codewords per codebook). Thus, while Wang and Goldberg can send their small codebooks as

overhead along with their encoded data, we cannot. Instead, we create appropriate standard

codebooks from representative samples of the type of data we expect to encode, and make these

codebooks available to the decoder in an off-line process which does not count against our



compression values. In addition, Wang and Goldberg use individualized codebooks for each

residual level, while we use a single generic codebook for all residual levels.

II. IMPLEMENTATION OF PROGRESSIVE VQ

Our implementation of progressive VQ is shown in block schematic form in Figure 1. The

input image data is first VQ encoded and the VQ indices are losslessly compressed, producing

output stream qj. This first level VQ encoding is then decoded and subtracted from the input

image to produce the first residual image which is then subject to the same process performed on

the input image data, producing output stream q2- The VQ encoded first residual is then decoded

and differenced with the original first residual to produce a second residual. This process can be

repeated any number of times until the last (n-lth) residual is formed. In the last (/ith) stage, this

last residual is not VQ encoded, but rather is losslessly compressed to produce output stream qn.

The input image data is VQ encoded with a codebook designed to produce a relatively high

compression ratio (e.g., compression ratios of 30 to 50). In the second level of compression, the

first residual image is VQ coded with a different codebook than used for the first level. A single

codebook is used to code residual data at ensuing levels making it very easy to perform any

number of levels of decomposition.

The two codebooks (one for the input image data, and the other for all levels of residual

images) are generated using a training set which does not include the images that are being

compressed. In the cases we have tested, the successive residual images from this

decomposition have monotonically decreasing entropy, and appear to possess the stationarity

properties that would make it possible for a single codebook to be adequate for all residual

images. The final residual image and the VQ encoding indices from each level are losslessly

compressed using either the Rice algorithm [10] or the Ziv-Lempel algorithm [11].

The progressive VQ decoding is exactly the reverse process (see Figure 2). The codebooks

are assumed to be available at the receiving end. The first level browse image. Ij, is obtained by

a lossless decompression and a VQ table look-up decoding of the first data received from



progressive the VQ scheme. Refinements can be obtained by decoding the successive levels of

compressed residual image data and adding the result to the reconstructed image from the

previous level. The decoding for the last level consists only of a lossless decompress. When all

the levels of the progressive VQ are processed, the image is losslessly reconstructed as In.

III. IMPLEMENTATION OF FULL SEARCH VQ ON A SIMD MACHLNE

The training and coding phases of full search VQ are computationally intensive. We have

chosen to address the computational problem by implementing full search VQ on a Single

Instruction, Multiple Data-Stream (SIMD) multiprocessor, the MasPar model MP-2.

The MasPar MP-2 at the NASA Goddard Space Flight Center has 16,384 4-bit Processing

Elements (PEs), with 64 Kbytes of local memory at each PE. As shown in Figure 3, the input

image (in this case, a multispectral image) is vectorized such that spatially adjacent pixels in

contiguous spectral channels form the elements of a vector. In this example, a 4x4x2 data cube

is extracted as a vector in which the first 16 elements of the vector come from the 4x4 window in

the first spectral band, and next 16 elements are from the 4x4 window in the second spectral

band.

The codebook (Yj, Y2, ..., Yn) is stored in the local PE memory as shown in the Figure 3.

The image is vectorized and each vector (Xj) is broadcast throughout the PE local memory. The

Euclidean distances between each input vector and the code vectors are computed

simultaneously by all the processors and the result is stored in a distance array (Dj, D2 ,..., Dn ).

The time taken for computation of this distance array is proportional to the size of the vector in

pixels. The closest match can be then found by finding the least value in the distance array.

This can be done in a time equal to the product of number of bits per one element of distance

array (i.e., 32 - the number of bits for a real number) and the clock cycle of the MasPar. The

vector in the codebook corresponding to the location of this minimum distance value is the

closest match. In training, this vector (plus a set of neighboring vectors in case of SOFM) is

updated. For coding, the address of the closest match is the code index, and is written to the



output file. This process is then repeated for all the vectors from the input image, forming one

iteration of training or a complete coding of the input image.

For optimal performance, the codebook size must be equal to the size of the PE array.

However, codebooks smaller or larger than PE array size can be easily handled. If the codebook

size is smaller than the PE array size by factor of 2 or its multiple, simple load balancing

techniques can be used to gain speedups for smaller codebooks. For example, if the codebook

size is half the array size, then each codevector can be split up into two smaller codevectors,

each containing half the number of elements and loaded into the local memories of adjacent PEs.

The input vector is similarly split into two smaller vectors, and propagated such that the first

vector is propagated to PEs with even number address and the second one to PEs with odd

number address. The distances are then computed in each PE separately and combined by shift

operations to find the closest matching vector. Codebooks larger than PE array size by factor of

2 or its multiples can be handled using processor virtualization.

Our MasPar MP-2 implementation of progressive VQ includes options for generating

codebooks using either GLA or SOFM algorithms, modules for coding and decoding image data,

and several other utilities for combining browse with residual data for progressive build up.

IV. PROGRESSIVE VQ PERFORMANCE AND TRADEOFFS

GAG (Global Area Coverage) data from the Advanced Very High Resolution Radiometer

(AVHRR) instrument was used in the first test of our progressive VQ implementation. The

AVHRR test data consists 409-by-512 pixel sections of data with five spectral bands; the first

two bands are shown in Figure 4a. (All images are non-linearly stretched for clearer visual

display.) While the data are stored as 16 bit pixels, the radiometric resolution of the data is

actually 10 bits/pixel. Two pairs of codebooks were generated using GLA and SOFM

algorithms. The training set consists of AVHRR image data other than that used in the test.

In the example, the multispectral AVHRR image data was decomposed into three levels.

Figure 4(b-f) shows the compression results for GLA training. Figure 4b is a VQ coded browse



quality image with compression ratio of 30.71 (0.52 bits/pixel) and MSB of 627.7. In Figure 4c,

a VQ coded (compressed to approx. 30) and reconstructed first order error residual is shown.

When these images are added the resulting refined image (Figure 4d) has a compression ratio of

15.4 (rate of 1.04 bits/pixel) and MSE of 229.9. In this three level decomposition, the lossless

image data is obtained by adding the second order residual shown in Figure 4e, to obtain the

final losslessly reconstructed image (Figure 4f). The image data has been decomposed to browse

quality VQ coding, and first order residual VQ coded data and final error residual. Each of these

were compressed further with the Ziv-Lempel compression algorithm. Similar results are shown

in Figure 5 (a-d) using the SOFM algorithm.

As the number of levels increases, a better distortion performance can be obtained as shown

in Figure 6 for both GLA and SOFM algorithm in the lossy mode. Similarly, the compression

performance of these algorithms as a function of number of levels is given in Figure 7. The first

level compression ratio of with SOFM training is better than that of GLA training for

comparable vector and codebook sizes. The reason for this is that SOFM maps the vectors

(points in k-dimensional Euclidean space) derived from the input image onto a codebook such

that the vectors that are close in k-dimensional space are close in the index range of the

codebook. This ensures correlations in the vector space are preserved in the index range, thus

providing a good lossless compression on the address bits. However, the MSE performance of

the SOFM is not as good as that of GLA. In our experiments we have found in more than one

example the rate-distortion performance of the GLA is better than that obtained with SOFM.

The rate distortion performance of the GLA and for SOFM are shown in Figure 8. We have also

seen that SOFM training requires many more iterations than the GLA to get similar results.

Lossless progressive VQ decomposition can be obtained using any number of levels. In each

case, last residual is losslessly co'mpressed. The lossless compression ratio that can be obtained

from such decompositions depends greatly on how well the given lossless compression

technique performs on the last residual. We have seen that the Rice algorithm compresses the

t The compression ratios quoted here are measured against 16 bit/pixel - the way in which the data is normally
stored. To obtain the compression ratio versus the 10 bit/pixel radiometric resolution of the data, mult iply by 0.625.



image data better than the Ziv-Lempel technique. However, the performance of these techniques

on the address bits of VQ quantized levels are not significantly different. In Figure 9, the lossless

performance of progressive VQ using the GLA is shown with Ziv-Lempel and Rice lossless

compression, and the results are compared with entropy for 8 levels of decomposition. The

lossless performance of progressive VQ using SOFM is shown in Figure 10. Figures 9 and 10

show that the Rice algorithm yields compression ratios close to the rates based on first order

entropy. As regards to number of decomposition levels, the best compression ratio can be

obtained for 5 level decomposition with GLA/Ziv-Lempel, whereas just 2 levels of

decomposition give the best compression for GLA/Rice. Similar results are obtained for

SOFM/Ziv-Lempel and SOFM/Rice (see Figure 10).

The lossless compression ratio for level 0 in Figures 9 and 10 corresponds to straight

application of Ziv-Lempel or Rice compression on the image data. From Figure 9, the level 0

lossless compression ratio for the GLA/Ziv-Lempel combination is 1.44 (rate = bits per pixel/CR

= 16/1.44 = 10.83). Using 2 levels of decomposition the compression ratio is improved to 1.82

(rate = 8.79). Similarly, for the GLA/Rice combination, the level 0 lossless compression ratio is

improved from 2.1 to 2.31 using 2 levels of decomposition (rates 7.62 and 6.93, respectively in

Figure 9). Similar improvements with number of levels can be seen for SOFM based lossless

decomposition in Figure 10.

With increasing number of decomposition levels we see an increase in the compression

performance until an optimum point is reached and the compression performance starts to

decrease. The number of levels that gives the best compression depends on the type of lossless

compression used. In this case, the best performance with Ziv-Lempel occurs at 5 levels, while

the best performance with Rice occurs at 2 levels. We note, however, that as the number of

levels increase the reconstruction costs are higher. Therefore, the optimum number of levels of

decomposition is a tradeoff between compression ratio and computational burdens in

reconstructing the data. We see that after certain number of decomposition levels, the

computational burden outweighs the compression savings. We have found that 2 to 3 level



decomposition is usually adequate for progressive refinement and best compression without

excessive computational burden.

Progressive VQ was also tested on a 512-by-512 pixel section of bands 2 and 3 of Thematic

Mapper (TM) image of Washington, DC. Two level progressive VQ improved the overall

lossless compression ratio from 2.05 to 2.35 compared to Lempel-Ziv compression and one level

progressive VQ improved the overall lossless compression ratio slightly from 2.31 to 2.34

compared to Rice compression. Similar results were also obtained using a subset of Coastal

Zone Color Scanner (CZCS) data.

This correspondence described a progressive VQ compression approach which is

implemented on a massively parallel machine, on which training and coding can be performed in

reasonable processing times. Reconstruction is a table look-up process that can be easily

performed on a sequential machine. The performances of the two training techniques, namely

GLA and SOFM, differ marginally, with GLA scoring slightly higher on the test data. In both

cases, two level progressive VQ produced a higher or comparable overall lossless compression

than a non-progressive application of lossless compression. The advantages of progressive

transmission combined with this improvement in compression outweigh the marginal

computational problems associated with reconstructing the data from progressive VQ.
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Figure Captions

Figure 1. Block schematic of progressive vector quantization (VQ) encoding. The same
codebook (codebook2) is used for encoding all residual images. The browse level
approximation is qj, while q2,..., qn are quantization residuals.

Figure 2. Block schematic of progressive VQ decoding. Ij is the browse level reconstruction,
I2,... In.j are intermediate level reconstructions, and In is the lossless reconstruction.

Figure 3. Vector quantization of multispectral data on a SIMD (single instruction, multiple data)
massively parallel machine.

Figure 4. Results of 2 level progressive VQ on bands 1 and 2 of the AVHRR test data set using
the GLA for codebook generation, a) Band 1 and 2 AVHRR data, b) Browse quality (CR=30).
c) Vector quantized residual, d) Refined image obtained by adding images in b and c. e) The
final residual (which is losslessly compressed), f) Losslessly decompressed AVHRR data.

Figure 5. Results of 2 level progressive VQ on bands 1 and 2 of the AVHRR test data set using
the SOFM algorithm for codebook generation, a) Band 1 and 2 AVHRR data, b) Browse
quality (CR=40). c) Vector quantized residual, d) Refined image obtained by adding images in
b and c. e) The final residual (which is losslessly compressed), f) Losslessly decompressed
AVHRR data.

Figure 6. Distortion as a function of the number of levels of progressive VQ (prior to the final
lossless step).

Figure 7. Compression performance as a function of the number of levels of progressive VQ
(prior to the final lossless step).

Figure 8. Rate distortion for progressive VQ (prior to the final lossless step) for both the GLA
and SOFM codebook training algorithms.

Figure 9. Lossless compression performance in bits/pixel of progressive VQ with GLA training
as a function of number of levels. Two lossless compression techniques (Ziv-Lempel and Rice)
are compared with the entropy rate.

Figure 10. Lossless compression performance in bits/pixel of progressive VQ with SOFM
training as a function of number of levels. Two lossless compression techniques (Ziv-Lempel
and Rice) are compared with the entropy rate.
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