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analytics. Partial results from the progressive analytics enhance the scatterplot, list, and tree visualizations without interfering with
users’ cognitive workflow.

Abstract— As datasets grow and analytic algorithms become more complex, the typical workflow of analysts launching an analytic,
waiting for it to complete, inspecting the results, and then re-launching the computation with adjusted parameters is not realistic for
many real-world tasks. This paper presents an alternative workflow, progressive visual analytics, which enables an analyst to inspect
partial results of an algorithm as they become available and interact with the algorithm to prioritize subspaces of interest. Progressive
visual analytics depends on adapting analytical algorithms to produce meaningful partial results and enable analyst intervention
without sacrificing computational speed. The paradigm also depends on adapting information visualization techniques to incorporate
the constantly refining results without overwhelming analysts and provide interactions to support an analyst directing the analytic. The
contributions of this paper include: a description of the progressive visual analytics paradigm; design goals for both the algorithms
and visualizations in progressive visual analytics systems; an example progressive visual analytics system (Progressive Insights) for
analyzing common patterns in a collection of event sequences; and an evaluation of Progressive Insights and the progressive visual
analytics paradigm by clinical researchers analyzing electronic medical records.

Index Terms—Progressive visual analytics, information visualization, interactive machine learning, electronic medical records.

1 INTRODUCTION

The goal of visual analytics is to help users perform complex data
exploration, analysis, and reasoning tasks. These systems typically
work by combining the power of automated statistical computations
with interactive visual interfaces, which can support analysts as they
develop, test, and validate hypotheses from data.
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Interactive performance is at the core of these emerging visual an-
alytics methods, allowing users to dynamically manipulate data via
flexible exploration. However, for many applications this interactive
capability is being threatened by two important trends: (1) a surge in
“big data,” and (2) the development of more sophisticated and com-
putationally expensive algorithms. Both of these trends can contribute
to slower performance rates for automated analytics. As rates grow
slower, delays in analytic processing can produce “speed bumps” in
users’ exploratory workflows: periods of time between visual interac-
tions where users are forced to wait for automated analytics algorithms
to finish before continuing.

A range of techniques can be applied to overcome this challenge.
One common approach is to pre-compute analytics on a large data set
before allowing interactive visualization. This avoids delays due to
analytic processing, but limits creative exploration by preventing new
rounds of analytics with input data or the adjustment of parameters due
to data-driven insights. An alternative approach is to accelerate ana-
lytic algorithms through massively parallel processing (e.g., MapRe-



duce [7, 8]). However, such methods can require significant hard-
ware resources to accelerate long-running analytics over large data sets
(which would normally require hours or perhaps days to complete) to
interactive rates.

In this paper, we explore an alternative approach: progressive vi-
sual analytics. This method is based on the idea that analytic algo-
rithms can be designed to produce semantically meaningful partial
results during execution. These progressive results can then be inte-
grated into interactive visualizations that allow users to immediately
explore partial results, examine new results as soon as they are com-
puted, and perform new rounds of exploratory analytics without wait-
ing for previous analyses to complete. This approach is a sharp con-
trast to pre-computation and acceleration, both of which assume that
analytics must run to completion before results are available for visual
interaction. This approach also differs from techniques that deal with
streaming data: in streaming data, new raw data arrives, while in pro-
gressive visual analytics, the raw data remains constant but new results
derived from analytics on the data arrive.

A progressive approach promises many advantages for visual ana-
lytics. For example, the time that had been spent waiting for analytics
to complete can now be spent evaluating early partial results. Based
on those partial results, users can adjust input parameters, change
data sets, or simply terminate mis-directed analytics that are produc-
ing unimportant results. In summary, progressive visual analytics
promises to speed users’ analyses by eliminating the periods of time
between user interactions and the execution of computational analyt-
ics.

This vision, however, relies upon two requirements: (1) analytics
must be designed to produce meaningful partial results during execu-
tion, and (2) the visual interface must be designed to properly manage
the partial results as they are produced without interfering with the
user’s cognitive workflow. The research contributions we outline in
this paper focus on these two issues. In particular, we describe:

• Design goals for supporting progressive visual analytics, a novel
concept for user-driven visual exploration of in-progress analyt-
ics;

• An implementation of a progressive visual analytics system, Pro-
gressive Insights, for exploring frequent sequences of temporal
patterns;

• A case study of domain experts using Progressive Insights to ex-
plore frequent patterns in electronic health records.

The remainder of this paper is organized as follows. We begin with
a brief review of related work. We then motivate our work with a
scenario for progressive visual analytics from the healthcare domain.
Next, we outline a set of progressive visual analysis design require-
ments and describe a prototype system that we designed around these
requirements. Finally, we present a case study that demonstrates the
benefits of our approach to an analyst working in the medical domain.

2 RELATED WORK

There has recently been a variety of research into handling the chal-
lenges of visualization with “big data.” Examples include Dix and
Ellis’s by chance [10] which uses statistical sampling to visualize
very large data sets, Rosenbaum et al.’s progressive refinement tech-
niques [29, 30] that visualize large data sets at progressively finer-
grained detail, Liu et al.’s imMens [20] that uses similar techniques
to supports visualization and interaction of binned aggregate data, and
Lins et al.’s nanocubes [19] which provides infrastructure support for
approximate data cubes. However, while these techniques focus on
making the visualizations perform at interactive speeds, there has been
relatively little work on making the analytics interactive with large
scale data.

The most relevant prior research on progressive visual analytics is
the work by Angelini and Santucci [2] and Fisher et al. on incremental
visualization [14]. Angelini and Santucci motivated this research by

describing how computation time might necessitate progressive visu-
alization and model the errors that stem from doing so. Fisher et al.
built a system, sampleAction, that supports an analyst exploring big
data through statistical summaries of massive database tables by in-
crementally taking larger and larger samples from the table. For each
sample, the authors use methods to determine statistical error bounds
of extrapolating the sampled data to the full data and present this to the
user. As each larger sample is processed, the view is updated to incor-
porate the more precise information. Our work builds on this research
by generalizing past large database queries to data mining algorithms
as well as providing the analyst with the ability to direct the course of
the running analytic.

Progressive visual analytics is inherently dynamic, and there have
been a number of commercial and research approaches to handling
dynamics in visualization. Hetzler et al. [16] present design criteria
for dynamic visualization that our design requirements for progres-
sive visual analytics extend. Recent approaches, such as Tableau [35],
Spotfire [37], Google Charts [15], Cubism.js [34], and Huron et al.’s
Visual Sedimentation [17], update views at fixed intervals to visualize
the most recent data. Analytic-backed dashboards, for example, Krsta-
jic et al.’s Cloudlines [18] follow this same pattern of updating at fixed
intervals, but rather than visualizing raw data, these systems visualize
the results of an analytic on the dynamic data. Some work balances
stability by giving users control of updates, for example, Hetzler et al.
and Federico et al. [13] both use a slider to define how often updates
occur.

In Section 5, we demonstrate an application of progressive visual
analytics on data exploration of temporal patterns. There have been
many previous systems designed to support this common task, and
Aigner et al. provides a survey of time-series visualization tech-
niques [1]. Within this larger field, researchers have more specifically
studied using visualization to identify patterns in large event series
collections. Systems such as LifeLines [27, 28], LifeLines2 [39, 40],
PatternFinder [12], DataJewel [3], LifeFlow [43], OutFlow [42], and
EventFlow [22, 23] all visualize event series in order to highlight com-
mon patterns so that they can be recognized and utilized by analysts.
Wong et al. [41] have built a system that makes use of a similar analytic
to the SPAM algorithm [4] that we adapt into a progressive analytic.
Perer and Wang [25] introduced Frequence, a system that also inte-
grates data mining and visualization for finding frequent patterns using
an adaptation of SPAM to handle multiple levels-of-detail, temporal
context, concurrency, and outcome analysis. In all of these systems,
however, the event series data is pre-processed and pre-computed be-
fore visualization, and therefore does not satisfy the criteria or reap the
benefits of progressive visual analytics.

3 MOTIVATION

The challenges that motivate progressive visual analytics—extremely
large data sets and complex, long-running analytics—are common to
a wide variety of domains. In this section, we describe a specific sce-
nario for progressive analytics motivated by challenges faced by some
of our research collaborators in the healthcare industry.

Medical institutions, including both hospitals and outpatient facil-
ities, are collecting increasingly detailed information about their pa-
tients. Traditional paper folders are being replaced with electronic
health record (EHR) systems that combine information about diag-
noses, procedures, medications, laboratory test results, and more.
These records, which institutions collect for each of their thousands or
millions of patients, serve primarily to help doctors capture and review
the medical histories of individual patients. However, EHR data is also
being used to conduct population-based studies through secondary use
applications [31].

One example of a secondary use study is the identification of med-
ical patterns—frequently appearing sequences of treatments, diag-
noses, etc.—that are associated with unusually positive or negative
outcomes [25]. In such applications, a medical analyst would gener-
ally apply a pattern mining algorithm to a very large set of EHR data.
After supplying a set of input parameters, the algorithm might run for
hours or days to produce a list of highly frequent event sequences.



Fig. 2. A comparison between a traditional batch workflow and a work-
flow utilizing progressive visual analytics. The latter workflow avoids
inefficiencies associated with ‘compute-wait-visualize’.

The long processing time is due in part to the complexity of medical
data. It is common to find datasets with tens of thousands of distinct
types of medical events1, thousands or even millions of patients, and
multiple years of medical data per patient. The long compute time is
also due to the complexity of the mining algorithm itself as it traverses
the complete search space to find frequent patterns.

Analysts working to understand a dataset must therefore initiate a
round of analytics, wait for them to complete, and then visualize the
results to understand what patterns exist, how frequently they appear,
and how they associate with specific medical outcomes (e.g., mortality,
cost, or hospital readmission rate). This process may be repeated many
times as each analyst explores new hypotheses. Each change to any
data mining parameters, or to the dataset itself (e.g., to focus on a
specific set of patients who exhibit a pattern of interest) introduces a
huge delay—a speed bump—to the analyst’s investigation.

The above medical scenario is used throughout the remainder of
this paper to provide concrete examples of how the concepts we in-
troduce can help support this type of investigation. Moreover, we
have applied our prototype implementation, Progressive Insights, to
this specific frequent pattern problem in the evaluation we present in
Section 6.

4 PROGRESSIVE VISUAL ANALYTICS

Thomas and Cook define visual analytics as “the science of analytical
reasoning facilitated by interactive visual interfaces” [36]. A common
implementation of such systems, which we refer to as batch visual an-
alytics, is when the core components (computational analysis and in-
teractive visualization) are designed to operate in series. This may lead
to an inefficient workflow of ‘compute-wait-visualize’, where compu-
tation is often performed first and then results are visualized once the
computation has completed. Consider a typical batch visual analytics
workflow such as the one illustrated at the top of Figure 2. Analysts
cannot proceed with visual analysis while the analytic is running. As a
result, each time the analysts inspect the visualized results and decide
to filter the dataset or modify parameters, they hit a speed bump and
must wait again for the analytic to fully complete execution.

The focus of our research is on the development of methods to avoid
such speed bumps, where analysts can begin making decisions imme-
diately after starting the analytic, as illustrated at the bottom of Fig-
ure 2. Visualizing partial results can provide early, meaningful clues
that allow analysts to more quickly begin the next phase of exploration
and revise their hypotheses, without waiting for long-running analyt-
ics to terminate. Analysts can also use partial results to quickly detect

1Even ignoring procedures, medications, and lab tests, there are well over

10,000 distinct diagnosis codes in ICD-9-CM, a diagnosis coding system

published by the United States Centers for Medicare and Medicaid Services

(CMS). ICD-9-CM is widely used within the United States healthcare system.

and abort analytic processes that are unlikely to produce meaningful
results, avoiding futile, time consuming executions. As the size of
data and complexity of analytics grows, these timely and informed de-
cisions can reduce both wasted analyst time and wasted computational
resources. This strategy, which we refer to as progressive visual an-
alytics, is in sharp contrast to the batch visual analytics paradigm of
‘compute-wait-visualize’.

However, in order for systems to provide progressive visual analyt-
ics capabilities, the analytics and visualization components that make
up the system must be designed in specific ways. In the following sec-
tions, we describe the key design requirements and enumerate a set of
concrete design goals.

4.1 Progressive and User-Driven Analytics

Progressive analytics are statistical algorithms that produce seman-
tically meaningful partial results that improve in quality over time.
While many algorithms produce partial results during execution, only
a subset produce meaningful partial results that are reflective of an
overall dataset and appropriate for inspection and interpretation by an-
alysts. In other words, the partial results of progressive algorithms are
of the same format as the final results of those algorithms. For exam-
ple, both K-means [21] and EM [9] clustering algorithms are examples
of progressive analytics, as their intermediate results are interpretable
estimates of the final result. In the case of K-means, each iteration of
the algorithm assigns each data point to a cluster. In the case of EM,
after each M-step, each data point has an expected probability distri-
bution over possible clusters. Analysts may inspect the current state
of these algorithms at any time, aware that the clusters or distributions
may change as the analytic progresses.

User-driven analytics are statistical algorithms that can adapt to in-
put by analysts. An example user-driven analytic would be an EM
clustering algorithm that allows the analyst to pre-set class weights for
data points. As opposed to non-user-driven analytics, this class of al-
gorithms enables analysts to incorporate their domain knowledge or
data-driven insights into the analysis.

In some cases, existing analytics can be adapted to be progres-
sive and/or user-driven. For example, the K-means algorithm can be
adapted to store partial results in a database and to allow an analyst to
manually classify certain points.

4.2 Progressive and Interactive Visualizations

Just as progressive analytics produce more complete results over time,
a progressive visualization is able to incorporate partial results into the
visual display as they are produced by an analytic algorithm. How-
ever, as changes of the retinal properties of visual elements (such as
position, size, and color) often distract users, a design conflict exists
between (a) showing the most up-to-date information and (b) keeping
analysts from being distracted by constant updates.

The challenge of progressive visualization is in balancing the trade-
offs between these two imperatives. A compromise suggests that
progressive visualizations should inform analysts of new information
through subtle, ambient cues. Furthermore, analysts should determine
when to incorporate changes using refresh-on-demand interaction to
choose when to replace or update the information. This solution min-
imizes distractions, informs analysts of the current visualization’s ac-
curacy, and provides analysts with control over the analytic process.

Progressive visualizations by their nature act as interfaces from the
underlying computational algorithms to the analysts using the system,
communicating what the statistical analytics have uncovered. Since
interactive analytics are written to adapt to analysts’ input, however,
the visualization must also function as an effective interface from the
analyst to the computation. A visualization should provide the analyst
with apparent affordances for adjusting and directing the analytic, in
addition to effectively communicating the results of the analysis to the
analyst.

4.3 Design Goals for Progressive Visual Analytics

In summary, we enumerate seven specific design goals for systems that
support progressive visual analytics. These goals are an extension of



Hetzler et al.’s [16] design guidelines for dynamic visualization. First,
analytics components should be designed to:

1. Provide increasingly meaningful partial results as the algorithm
executes

2. Allow users to focus the algorithm to subspaces of interest

3. Allow users to ignore irrelevant subspaces

Visualizations should be designed to:

4. Minimize distractions by not changing views excessively

5. Provide cues to indicate where new results have been found by
analytics

6. Support an on-demand refresh when analysts are ready to explore
the latest results

7. Provide an interface for users to specify where analytics should
focus, as well as the portions of the problem space that should be
ignored

When followed, these design goals can help ensure that a system’s
components provide the capabilities required to support a progressive
visual analysis workflow. To demonstrate the benefits of this approach,
the next section describes Progressive Insights, a prototype implemen-
tation designed around these goals.

5 PROGRESSIVE INSIGHTS

In order to demonstrate the benefits of progressive visual analytics,
we have built a prototype system called Progressive Insights. Progres-
sive Insights is designed to support an analyst searching for common
patterns of events as in the motivating healthcare example outlined in
Section 3. Progressive Insights provides a user interface with mul-
tiple coordinated views (see Figure 1) that integrate closely with an
event-pattern mining module. The pattern analysis component em-
ploys a modified implementation of Ayers et al.’s SPAM algorithm [4],
which we redesigned to meet the progressive and user-driven require-
ments outlined in the previous section. The interface includes several
progressive and interactive visualizations, including two List Views,
a Scatterplot View, and a Tree View. Adhering to our design goals
for progressive and interactive visualizations, each visualization pro-
vides subtle visual cues when new information is available and sup-
ports user-driven direction of the underlying pattern mining process.
In this section we provide a brief description of our adaptations to the
original SPAM algorithm and describe Progressive Insight’s three pri-
mary view types. We conclude with a discussion of the overall system,
capturing how the views and analytics work together to provide a pro-
gressive visual analytic experience.

5.1 The SPAM Algorithm

The Sequential PAttern Mining (SPAM) algorithm, proposed by Ayres
et al. [4], is designed to efficiently—in terms of time required to pro-
cess an entire dataset—identify the most common sequences occurring
in a large collection of event series. To briefly demonstrate how the al-
gorithm works, we present a toy example of the algorithm’s execution.

Consider an event series collection with an event library contain-
ing four distinct event types: {W,X ,Y,Z} and four individual event
sequences:

• X → Y → Z
• X → Z → Y
• X → Y → X → X
• Z → X → Y →W

SPAM is designed to identify subsequences within this data that oc-
cur frequently. One key parameter, therefore, is the minimum support
threshold which specifies the smallest fraction of event series in which
a pattern must be found to be reported as “frequent” by the algorithm.
For this example, consider a minimum support level of 50%, which

Fig. 3. An example of an execution tree to illustrate how the SPAM
algorithm mines patterns. In this example, SPAM was configured to
have a minimum support threshold of 2.

would require that a pattern be present in at least two of the four pat-
terns.

SPAM begins with the creation of bitmap representations of each
event type in the event library. It uses a highly-scalable vertical bitmap
representation that allows for the efficient extension of patterns and
checking of support counts, even for very large data sets. We refer the
reader to [4] for more details about the bitmap representation and its
efficiencies, as well as its support for handling patterns with concurrent
events.

Once these bitmaps have been built, the algorithm identifies all of
the singleton events that pass the minimum support threshold as an
initial set of patterns. In our example, X , Y , and Z all occur at least
twice while W only occurs once. Since W itself does not occur often
enough to pass the minimum support threshold, it is clear that no pat-
terns involving W can pass the threshold. This means that any pattern
involving W can safely be ignored as infrequent.

The algorithm recursively extends each pattern with each of the
other frequent singleton patterns until reaching a user-set maximum
length. If a pattern’s support is found to be below the support thresh-
old, the pattern is ignored as infrequent and is no longer extended.
Effectively, SPAM performs a depth-first traversal over a tree repre-
senting all possible frequent patterns, pruning the tree wherever the
minimum support is not reached. Thus, it begins by extending the X
pattern with Y . Since X → Y appears in all four series, the algorithm
outputs the pattern as frequent. It then extends X →Y with X , forming
X → Y → X , which only appears in one series. It is therefore ignored
and the algorithm returns to X → Y . This is extended with Z, forming
X → Y → Z , which again appears in only one sequence. This process
continues, producing the tree shown in Figure 3.

5.2 Progressive and Interactive SPAM

The SPAM algorithm is natively progressive in that it reports patterns
as it finds them. This partially satisfies Design Goal #1. However, the
depth-first nature of the algorithm—both as originally proposed and
in the publicly available implementations of the algorithm2—means
that the partial results reported early in the process are not broadly
representative of the overall dataset. In addition, the original SPAM
algorithm was not designed to allow user control over how and when
it traverses the search space as required by Design Goals #2 and #3.

To better support these design goals, we modified the SPAM algo-
rithm to utilize a breadth-first traversal of patterns. This change pro-
vides two significant benefits. First, the revised breadth-first imple-
mentation of the algorithm reports patterns from shortest to longest,
giving an overview of short but frequent patterns before moving on
to find those that are longer and more specific. This change more
fully supports Design Goal #1. Second, the queue-based implemen-
tation employed during breadth-first traversal can be used to support
priority-based steering of the analytic algorithm. For example, driven
by user input, specific patterns of interest can be moved to the front
of the processing queue. In addition to prioritization, the queue can
be used to support analyst-driven pruning. Patterns explicitly marked
as irrelevant by a user can be removed from the queue to immediately
prune the execution tree. These interactive capabilities directly sup-
port Design Goals #2 and #3. Moreover, this example demonstrates

2e.g., the SPMF Framework: http://www.philippe-fournier-viger.com/spmf/



Ranking Function Description

Support Number of event series containing pattern

Correlation Pearson correlation of the pattern’s presence

with an outcome measure

|Correlation| Absolute value of Correlation

∆ Correlation Difference between pattern’s prefix’s Corre-

lation to the pattern’s Correlation

∆ Sibling Correlation Difference between this pattern’s ∆ Correla-

tion and the mean of it and its siblings’ ∆

Correlations

Extremes The pattern’s distance from the origin in the

scatterplot visualization. (E.g. the normal-

ized sum of |Support| and |Correlation|).

Table 1. A list of the ranking functions implemented in Progressive In-
sights

that rather minor changes to the design of an analytic algorithm can
make dramatic differences with respect to how it supports progressive
visual analytics requirements.

5.3 List View

Fig. 4. Progressive Insight’s list view consists of a) on the left, the ranked
list featuring histograms of the ranking metric, and b) on the right, a
mini-map of the complete list. In this example, the selected pattern is
highlighted in blue in the list and in the mini-map. The prefixes of the
pattern are highlighted in light blue. New patterns from the progressive
results are indicated in the list by purple lines, and in the mini-map by
purple regions.

The list view is the first of three visualization views included within
the Progressive Insights system. Designed following the guidelines
outlined in Section 4.3, this view provides a simple but progressive vi-
sualization of a dynamic top-n list. The list view is used in Progressive
Insights to display the list of patterns detected by the SPAM algorithm
sorted by one of several ranking measures. Two instances of the list
view are provided in the default configuration of the interface, allow-
ing analysts to compare two different ranking methods simultaneously.
By switching between different ranking metrics, the view allows an-
alysts to rapidly browse patterns that the algorithm determines have
the highest level of support, correlation, or any of the other ranking
functions listed in Table 1.

Figure 4 depicts an instance of a list view. Each list view consists
of three sub-views: (a) the ranked list; (b) a histogram paired with the
items in the list; and (c) a dynamically updating Seesoft-esque [11]
mini-map of the complete pattern list.

The mini-map provides a clickable overview of all patterns iden-
tified by the analytics, while the ranked list provides details of each
pattern. Each pattern is augmented with a histogram bar whose length
is proportional to the magnitude of the selected ranking feature. If
the selected ranking is signed (e.g., correlation can be positive or neg-
ative), the histogram’s color indicates whether the pattern correlates
with a positive (green) or negative (red) outcome.

The list view is used to display a continuously changing list of pat-
terns, which grows dynamically as new patterns are detected by the

Fig. 6. Progressive Insight’s scatterplot view. The top 10 patterns ac-
cording to the selected metric are shown in orange. All frequent pat-
terns found by the system are represented in aggregate by the purple
heatmap. Patterns that were formerly in the top 10 but have since fallen
out are shown as empty circles. The selected pattern is highlighted in
blue and its prefixes are highlighted in light blue.

progressive SPAM algorithm. One beneficial property of a ranked list
view for dynamic data is that the items already in the list will not
change positions relative to each other; i.e. if a pattern is ranked higher
than another pattern, that pattern will always be ranked higher. How-
ever, given the progressive nature of our pattern mining algorithm, new
patterns are often discovered that are ranked between previously found
patterns. Therefore, a critical challenge for the list view is the process
by which these new insertions are added to the display.

In order to minimize movement (Design Goal #4), the list views do
not immediately insert discovered patterns into their place in the list.
Instead, while the items in the list remain unchanged, the list container
provides visual cues as to where in the list new patterns would be in-
serted if the view were to be fully refreshed. The cues are rendered
using purple, horizontal marks that appear between entries in the list.
The presence of these marks quickly conveys that the current list is not
up-to-date (Design Goal #5), and their locations show where the new
results will appear when fully integrated into the view. The color sat-
uration of the marks conveys how many patterns will be inserted at a
given position in the list - a darker mark implies the existence of more
patterns waiting to be added to the view.

Following Design Goal #6, analysts are given explicit control over
when to refresh the views with the latest results. Analysts can use their
judgment to determine when, or if, it is most valuable to perform such
a refresh. For example, if the top five patterns are already displayed,
and a number of lower-ranked patterns have since been found but not
yet loaded, the analyst may choose to not refresh the view, avoiding an
unproductive yet major visual change.

In addition to the local cues provided by the horizontal marks in the
list, the mini-map provides a global picture of where in the list new
unloaded patterns are waiting to be visually integrated. In the mini-
map, purple regions represent the number and positions of patterns that
have not yet been loaded, while white regions show portions of the list
for which no new patterns are pending. In combination with the local
cues embedded within the list itself, the mini-map design provides
analysts with a clear indication regarding where new results have been
reported by a progressively running analytic (Design Goal #5).

A final interaction supported by the list view is the ability to select
a pattern by clicking on its entry in the list. This action highlights the
pattern by changing the color of the pattern in the list to orange. At the
same time, all patterns that are the prefix for the selected list item are
highlighted in blue. The same highlighting occurs in the mini-map,
providing a clear overview of the relative rankings between a selection
and related patterns. As discussed in Section 5.6, the system brushes
this selection in all other views which provides a coordinated selection
capability across the entire user interface.



Fig. 5. In Figure 1, the analytics were still in-progress. This figure shows Progressive Insights after the analytics have completed, and after the user
has performed a refresh to clear any partial results that are no longer highly ranked.

5.4 Scatterplot View

The second view in the Progressive Insights system is the scatterplot
view. Like the list view, the scatterplot view provides analysts with
information on the highly ranked patterns. However, the scatterplot
provides enhanced interactive capabilities that let an analyst use his
or her knowledge to explore the information in a more user-directed
fashion.

The scatterplot displays patterns using two metrics at a time, pro-
viding analysts with a sense of how a given pair of dimensions relate
to each other within the data set. Unlike the list view, which primarily
conveys rank, the scatter plot provides analysts with a more precise
visualization for comparing the magnitude of the differences in score
between patterns.

We represent patterns with orange circles located within the two
dimensional scatter plot. The size of the circles can be mapped to a
third, user-selected metric. Moreover, to avoid over-plotting and to fo-
cus users’ visual attention to the most highly ranked events, the system
displays only the top n patterns according to the selected metric. The
analyst can dynamically select and experiment with various metrics
and values of n as part of an interactive exploratory analysis. Ana-
lysts can choose from the same list of metrics used in the list view (see
Table 1).

Analysts can also choose the two dimensions that control the axes
of the scatterplot for the data domain. For example, in the electronic
medical records use case that we describe in Section 6, the two selected
axes for the scatterplot view are (a) the fraction of patients in which
the pattern was found (support) and (b) the correlation that the pattern
had with the patient avoiding hospitalization.

Like the list view, selecting a pattern by clicking on its mark in
the scatterplot highlights the pattern in orange and the prefixes of the

pattern in blue. However, the scatterplot view also provides a more
direct visual representation of this pattern-to-prefix relationship. In
particular, an analyst can choose to connect the selected pattern to its
parent, grandparent, and all other prefix patterns with a black line. As
shown in Figure 5, the line provides a connected path from the selected
pattern all the way to the first singleton event that started the pattern.
This allows the user to visually see the development of a pattern from
the initial event through to the full sequence. Such a capability allows
for the identification of patterns that increase or decrease correlation
with the positive outcome.

While we have described the basic functionality, a number of more
advanced features have been developed to address the unique chal-
lenges of progressive analytics. First, the progressive nature of the
pattern mining algorithm means that the list of top n patterns—the
group of patterns selected for explicit display within the scatterplot—
can change dynamically as new patterns are detected.

Similar to the list view, the scatterplot view is designed to defer
changes to the visual display even as patterns may be pushed out of
the top n by the arrival of new results. This prevents the problem of
“disappearing” patterns: the unexpected removal of a pattern that is
under active investigation by an analyst. Such an abrupt transition
would violate the tenet of avoiding unexpected changes to the display
(Design Goal #4).

Therefore, rather than immediately removing a demoted pattern’s
circle from the view, we subtly transition the fill of the circle to be
transparent and shrink its size to a small radius circle that represents
metric values below the top n threshold.

Over time, this can result in a proliferation of small clear circles
as new results continuously push patterns out of the top n category.
Therefore, a Clear button is provided to let an analyst remove the out-



Fig. 7. Progressive Insight’s tree view shows a hierarchical representa-
tion of each pattern. Each pattern’s last event has a histogram bar of the
ranking metric. User-pruned subtrees have a red strike and user-hidden
patterns are grayed out. Selected patterns are highlighted in blue and
prefixes are highlighted in light blue.

of-date patterns from the display when he or she is ready, following
Design Goal #6.

While showing the top n patterns is important, this may not pro-
vide the analyst with an effective overview of the entire set of pat-
terns identified by the analytic. To resolve this deficiency, we augment
the scatterplot with a background heatmap showing the density of all
identified patterns within the scatterplot’s two dimensional space. The
heatmap is rendered using a k by k grid over the viewport of the scatter-
plot. Zooming and panning the scatterplot does not move the grid. In-
stead, the heatmap is dynamically recomputed with a new grid as users
navigate the scatterplot. This provides dynamically scalable resolution
to the heatmap as users explore the scatterplot’s space. Analysts can
adjust the granularity of the heatmap (the k that defines the k by k
grid) interactively. Each cell is colored using log-scale color mapping
indicating the number of known patterns in the corresponding region
of the scatterplot. The heatmap is updated at regular intervals using a
subtle color change animation. Regions becoming darker (represent-
ing denser) act as ambient cues to the analyst that these regions may
be worth refreshing and investigating, an application of Design Goal
#5.

Users can zoom and pan the view in order to see the heatmap in
more or less detail. Users can also hover over a cell of the heatmap to
see detailed information about how many patterns are represented by
the cell. Moreover, users can explicitly add the corresponding patterns
to the view by double-clicking the cell. In this way, the analyst is not
limited to viewing the top n patterns of a metric and instead can also
view those patterns in regions of interest (Design Goal #2). Finally,
as in the list view, pattern selections are linked with other views to
support multi-view brushing.

5.5 Tree View

The third view supported by Progressive Insights is the tree view, de-
signed to provide a familiar hierarchical view for users to direct the
progressive analytic to subspaces of interest. This view satisfies a crit-
ical requirement for effective progressive visual analysis: the ability
for the analyst to incorporate their domain knowledge to steer the un-
derlying progressive algorithmic analysis process.

The tree view displays all discovered patterns according to the tree
hierarchy of prefix relationships inherent in the patterns. The analyst
can drill down into pattern extensions that are semantically interesting.
This is in contrast to the metric-driven exploration supported by list
and scatterplot views.

Within each level of the tree hierarchy, patterns are sorted according
to one of the available ranking metrics in Table 1. As with the list view,

we provide histograms to go along with each pattern, sized and colored
according to the value of the selected metric. This sorting allows the
analyst to quickly make comparisons between sibling patterns: those
patterns that have the same prefix but a different suffix.

Each pattern in the tree is accompanied by an icon (see Figure 7).
There are three primary icons used within the tree: +, -, or empty.
These icons represent, respectively, (a) a pattern with an expanded list
of one or more children (i.e. extended patterns that share the corre-
sponding pattern as a common prefix), (b) a pattern with a collapsed
list of one or more children, and (c) a pattern with no children that
meet the support threshold for the pattern mining analytic.

These symbols are commonly used in representing vertically-
aligned trees. However, the progressive nature of the algorithm pro-
ducing the items in the tree means that there is uncertainty as to
whether or not a given pattern has any frequent extensions as children.
Moreover, the breadth-first nature of the progressive SPAM algorithm
described in Section 5.2 means that users may expand the tree to reach
a pattern deep enough in the hierarchy that it has not yet been pro-
cessed by a long running pattern mining algorithm. As a result, the
system does not know if there are extensions that meet the support cri-
teria. Therefore, we introduce a fourth, secondary icon that uses a ?
symbol. For these unexplored subspaces, users can click on patterns
with this icon to prioritize the corresponding pattern in the mining al-
gorithms processing queue. This intuitive mechanism allows users to
seamlessly communicate their task requirements directly the under-
lying analytics. This minimizes lag between analyst actions and the
system’s analytic response, an example of Design Goal #2.

Similarly, analysts can also use the tree view to direct the pattern
mining analytic to ignore certain branches as per Design Goal #3.
First, an analyst can prune the execution tree at a certain pattern by
right-clicking the node. By doing so, the analyst directs the analytic
not to extend the pruned pattern any further, even if common exten-
sions exist. Furthermore, the system recursively marks any otherwise
acceptable patterns stemming from the pruned pattern as unaccept-
able. Second, the analyst may hide a pattern by alt-clicking the node.
This command marks all patterns that have the hidden pattern any-
where in the pattern as unacceptable. For example, if the analyst hides
“X →Y ”, then the system would mark “Y → X →Y ” as unacceptable,
even though it is in a different branch of the execution tree. Both of
these actions can be undone by the user. If a prune or hide action is
undone, each pattern marked as unacceptable as a result of the opera-
tion is added to the execution queue to check if it passes the support
threshold or has any frequent extensions.

Finally, the analyst can take advantage of the hierarchical structure
of patterns to select specific patterns of interest. As in the other views,
clicking a pattern highlights the pattern in orange, the pattern’s pre-
fixes in blue, and propagates this selection to brush the corresponding
patterns in other views.

5.6 UI and Interaction

As we mentioned at the start of this section, all of the views in Pro-
gressive Insights are linked: when a pattern is selected in one view, that
selection is propagated and the pattern is selected in every view. In ad-
dition to highlighting the selected pattern in dark blue in each view,
we also highlight the prefixes of the selected pattern in light blue.

Selecting a pattern does more than just highlight, however. Follow-
ing Shneiderman’s “overview first, zoom and filter, details on demand”
mantra [32], we include two methods for accessing details on demand.
First, hovering over any representation of a pattern, whether a circle in
the scatterplot view or a pattern string in the list or tree views, brings
up a tooltip with the full pattern string and the pattern’s metric values.
Second, Progressive Insights displays the full pattern string of any se-
lected pattern and all available metric values in a small panel at the
bottom of the interface.

Progressive visual analytics depends on the ability to make deci-
sions while the analysis is still computing. One such capability (men-
tioned in Section 4) is the ability to adjust the parameters for a given
analytic algorithm without waiting for a potentially long-running an-
alytic process to complete. Users should be able to view early, initial



results, decide what new analytic parameters are required, and imme-
diately restart the analytic with adjusted parameters. With this require-
ment in mind, and applying Design Goal #7, we dedicate the lower-
right corner of the Progressive Insights user interface to widgets that
can control the various parameters of the SPAM algorithm: the min-
imum support required, the level of detail, and the maximum pattern
length. The analyst can adjust these parameters at any time and restart
the analysis with new settings. This action pauses the current run and
places the new settings at the top of a run stack. With the run stack, an-
alysts can experiment with various parameter settings and harmlessly
revert back to previous settings without throwing away possibly time-
consuming results by pressing a “Resume previous” button, as shown
in the bottom of Figure 5. A tooltip on the “Resume previous” but-
ton shows parameters of the previous run to help users keep track of
paused runs. In addition, the number of paused runs on the run stack
is displayed in the text of the button itself.

Similarly, another decision that analysts can make (as highlighted
in Section 4) is to change the input dataset being sent to the underly-
ing analytic algorithm. For example, a medical analyst might wish to
only compare patterns amongst a subset of patients known to have a
specific important pattern found earlier in an analysis. To support this
task, Progressive Insights allows analysts to restart analytic on arbi-
trary subsets of patients as selected in any of the provided views.

6 CASE STUDY

In order to evaluate the utility of progressive visual analytics, we chose
to conduct a case study of a real analyst using his own real-world
datasets to demonstrate its effectiveness at reaching insights in prac-
tice. There is a growing belief in the visualization community that
traditional evaluation metrics (e.g. measuring task time completion
or number of errors) are often insufficient to evaluate visualization
systems [5, 26, 33]. Using the evaluation methodology developed by
Perer and Shneiderman [24], we conducted a 2-month long-term case
study with Dr. Stein Olav Skrovseth, a medical informatician at the
Norwegian Centre for Integrated Care and Telemedicine at the Uni-
versity Hospital of North Norway (UNN).

Dr. Skrovseth was interested in using visual analytics to determine
if certain sequences of surgical events correlate with health outcomes
of patients. If such correlations exist, this analysis could guide re-
visions or enhancements to surgical guidelines at his institution. To
do his analysis, he needed to mine frequent patterns of over 87,000
patients in UNN’s surgical department. Each patient has a series of
time-stamped procedures and diagnoses, which comprise the relevant
temporal events to mine. Without a tool such as Progressive Insights,
Dr. Skrovseth would typically have to rely on a team of technolo-
gists to re-run the data mining algorithms, who wait for the lengthy
mining algorithms to complete, then wait for different technologists
to create reports on the results, and then deliver the results so he can
analyze them. Throughout the analysis, he expected the need to test
and modify multiple cohorts, outcome measures, and algorithm pa-
rameters, which made him an ideal candidate for our evaluation, as
each of these modifications in his traditional workflow generate many
computation and human delay speed bumps.

6.1 Early Use

Initially, Dr. Skrovseth wished to understand any patterns among
all 87,000 patients in his surgical department’s database. As hospi-
tal readmissions are often used to monitor quality of patient care in
many health care organizations [38], Skrovseth selected this as the
outcome variable. This divided his patient population into approxi-
mately 17,000 cases (with re-admission) and 70,000 controls (no re-
admissions).

During his analysis, Skrovseth would often need to restart the ana-
lytics by changing parameters such as the support threshold parameter.
Without having to wait for the algorithm to finish, which could take up
to 30 minutes depending on the specified support, he was immediately
able to select nodes of interest (e.g. Cancer diagnoses) from the pro-
gressive results and examine the patterns occurring after such a diag-
nosis. By prioritizing an event, less time was wasted in conversations

with his colleagues about the dataset. The progressive nature of the
tool afforded him and his team flexibility to investigate new hypothe-
ses interactively.

Nonetheless, in this overall cohort, few strong correlations were
found. While many of the strong negative correlations (e.g. emergency
procedures, infections) were sensible, Skrovseth’s team hypothesized
this small amount may be due to a non-balanced population with many
more controls than cases.

After balancing the population cohorts, the correlations became
stronger and more meaningful. It was clear certain surgeries led to
fewer readmissions (Laparoscopic) whereas others were highly corre-
lated with readmission (Gall bladder surgery). When Dr. Skrovseth
presented this to a team of surgeons at a leading hospital, they agreed
these results made clinical sense. One of the surgeons commented,
“The advantage of visualization and Progressive Insights is that you
can insert a very large number of patient variables in the model, and
identify the ones that are most associated with a specific outcome.”

Interesting, the surgeons wondered if there were also some inher-
ent biases in the data. For instance, for patients who travel very far
from home, they might get readmitted in their local hospitals and this
readmission data would not be captured within the dataset.

It was interesting to note that the mined event sequences turned out
to be very short. While not initially expected by Skrovseth, when he
analyzed the data closely, this made sense as most of the events happen
concurrently with the surgery. The ability for Progressive Insights to
handle concurrent events turned out to be critical.

6.2 Mature Use

After using the tool extensively and exploring multiple hypotheses,
Skrovseth and his colleagues found promise in investigating a sub-
set of surgical patients: those having an episode of gastrointestinal
surgery, which left them with a cohort of 35,131 patients. However,
using Progressive Insights, it became clear that only 20% (7011) of
these patients admitted to the surgery department ended up having an
operation, so the cohort was further refined to included only patients
with operations.

After several progressive analysis sessions, where various parame-
ters were examined, Skrovseth and his colleagues became interested
in patients that were readmitted with a hospitalization within 30 days
after index surgery. However, initial results viewed in Progressive In-
sights raised questions if there was a location bias where patients may
follow-up at their local hospital instead of UNN. The dataset was re-
fined once again to filter out patients whose home address was out-
side the region where UNN is the local hospital, as those patients may
have been admitted to a different hospital. As Skrovseth became in-
terested in how certain patterns correlate with gender, age, and length
of hospital visit, these variables were also augmented to the dataset.
Furthermore, as patterns were explored, they became curious of the
correlation of patterns with admissions into the Intensive Care Unit, a
separate department in UNN. This was the final augmentation of the
dataset.

Skrovseth noted that the ability to quickly interpret progressive re-
sults of the cohorts allowed them to reach preliminary insights about
the dataset, and afforded them the flexibility to iteratively improve the
cohort without constraints. In fact, many of the insights emerged while
only partial results were available. An example of this exploration is
captured in Figure 8. Ultimately, this led to a variety of interesting
findings relevant to understanding correlations with hospital readmis-
sions. For example, patterns containing surgical events (Laparoscopic
Surgery, Appendectomy) are strongly associated with patients who are
not re-admitted, whereas others (Endoscopic insertion of stent into bile
duct, Loop enterostomy) strongly correlate with re-admitted patients.
Not all of the correlations were expected by the clinical research team,
and they are currently tabulating their findings into a medical publica-
tion to bring this to the attention of their peers.

6.3 Outcome

Using Progressive Insights, Dr. Skrovseth and his colleagues were
able to understand the temporal patterns among their surgical patients



Fig. 8. A screenshot of one of Dr. Skrovseth’s sessions using Progressive Insights to discover insights in his surgical database.

and understand how certain medical events correlate with hospital
readmissions. They noted that the ability to receive progressive feed-
back during their analysis allowed them to reach decisions faster and
afforded them freedom to do more explorations of additional datasets
than they otherwise would have using traditional tools. The ability to
restart analytics and then select event types of interest allowed the re-
searchers to direct the algorithm to investigate their hypotheses, and
this allowed them to get fast real-time feedback, and minimize the
speed bumps while interacting with time-sensitive medical experts.

The resulting analysis has led Skrovseth and his peers to a variety of
findings that are currently being reported in a manuscript for a leading
medical informatics journal. Skrovseth believes the potential impact
of these findings is quite large, as this knowledge can inform his com-
munity about important clinical practices. Skrovseth believes these
findings can lead to clues to reduce hospital re-admissions which, even
if by a small percentage, can be hugely significant to hospital budgets
and surgical department operations. Without progressive visual ana-
lytics, Skrovseth admits that some of their findings may have never
been discovered.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduce progressive visual analytics, a paradigm
that gives users access to semantically meaningful partial results dur-
ing the execution of analytics, and allows exploration of these partial
results in integrated, interactive visualizations. We then provide design
goals for how analytics can be designed to produce meaningful partial
results during execution, and design goals for how visualizations can
be designed to properly manage partial results without interfering with
users’ cognitive workflow. We also provide details of an implemen-
tation of a progressive visual analytics system, Progressive Insights,
for exploring frequent sequences of temporal patterns. We then pro-
vide concrete evidence of the promise of progressive visual analytics
by showcasing a long-term case study of clinical researchers utiliz-
ing progressive results while exploring frequent patterns in electronic
health records.

However, there remain many aspects of progressive visual analytics
to be explored. While we have presented generalizable design goals,

we have only provided a concrete implementation and evaluation for
a single algorithm and task: frequent sequence mining analytics. We
plan to apply the progressive visual analytics paradigm to other ana-
lytical algorithms and tasks and more complex data cases such as an-
alyzing heterogeneous results of multiple progressive algorithms. The
system we presented also utilizes a linear search strategy, and we hope
to explore the design constraints for alternative search strategies such
as a provenance-driven nonlinear approach [6]. Another unexplored
aspect of progressive visual analytics is that progressive analytics may
produce partial results at very different frequencies. We plan to en-
hance our guidelines for progressive visualization designers anticipat-
ing varying rates of updates. Furthermore, we plan to evaluate pro-
gressive visual analytics with additional case studies in other domains
besides medicine.

While we deliberatively opted not to run a controlled study so we
could hear insight-based stories of success from domain experts, fu-
ture work demands to concretely measure the advantages and disad-
vantages of interfaces that do and do not support progressive analytics.
Such analysis will enhance the discussion of the benefits and trade-offs
of our approach.

While much future work remains in the area of progressive visual
analytics, we conclude by reiterating that in the age of Big Data with
users requiring results from complex analytics, the need for interac-
tive, user-directed analytics is clear. We view our work as a first step
in highlighting the promise of integrating continuous partial results
into visual analytics tools.
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