
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences (2019) 76:4887–4904 

https://doi.org/10.1007/s00018-019-03148-8

ORIGINAL ARTICLE

Proin�ammatory NFkB signalling promotes mitochondrial dysfunction 
in skeletal muscle in response to cellular fuel overloading

Raid B. Nisr1 · Dinesh S. Shah1 · Ian G. Ganley2 · Harinder S. Hundal1

Received: 28 January 2019 / Revised: 8 May 2019 / Accepted: 13 May 2019 / Published online: 17 May 2019 

© The Author(s) 2019

Abstract

Sustained nutrient (fuel) excess, as occurs during obesity and diabetes, has been linked to increased inflammation, impaired 

mitochondrial homeostasis, lipotoxicity, and insulin resistance in skeletal muscle. Precisely how mitochondrial dysfunction 

is initiated and whether it contributes to insulin resistance in this tissue remains a poorly resolved issue. Herein, we examine 

the contribution that an increase in proinflammatory NFkB signalling makes towards regulation of mitochondrial bioenerget-

ics, morphology, and dynamics and its impact upon insulin action in skeletal muscle cells subject to chronic fuel (glucose 

and palmitate) overloading. We show sustained nutrient excess of L6 myotubes promotes activation of the IKKβ-NFkB 

pathway (as judged by a six-fold increase in IL-6 mRNA expression; an NFkB target gene) and that this was associated with 

a marked reduction in mitochondrial respiratory capacity (>50%), a three-fold increase in mitochondrial fragmentation and 

2.5-fold increase in mitophagy. Under these circumstances, we also noted a reduction in the mRNA and protein abundance 

of PGC1α and that of key mitochondrial components (SDHA, ANT-1, UCP3, and MFN2) as well as an increase in cellular 

ROS and impaired insulin action in myotubes. Strikingly, pharmacological or genetic repression of NFkB activity amelio-

rated disturbances in mitochondrial respiratory function/morphology, attenuated loss of SDHA, ANT-1, UCP3, and MFN2 

and mitigated the increase in ROS and the associated reduction in myotube insulin sensitivity. Our findings indicate that 

sustained oversupply of metabolic fuel to skeletal muscle cells induces heightened NFkB signalling and that this serves as a 

critical driver for disturbances in mitochondrial function and morphology, redox status, and insulin signalling.
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Abbreviations

GLC  Glucose

PA  Palmitate

FAs  Free fatty acids

DAG  Diacylglycerol

NFKB  Nuclear factor kappa-light-chain-enhancer of 

activated B cells

IL6  Interleukin-6

TNF  Tumor necrosis factor-α

IKKβ  Inhibitor of nuclear factor kappa-B kinase subu-

nit beta

IKBα  Inhibitor of nuclear factor kappa-B

ROS  Reactive oxygen species

ANT-1  Adenine nucleotide translocase type 1

UCP3  Uncoupling protein 3

SDHA  Succinate Dehydrogenase

PGC1α  Peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha

MitoQ  Mitoquinone

TLR-4  Toll-like receptor-4

2DG  2-Deoxyglucose

FCCP  Carbonilcyanide 

p-trifluromethoxyphenylhydrazone

OPA1  Optic atrophy 1

MFN2  Mitofusin 2

DRP1  Dynamin-related protein 1
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Introduction

There is mounting evidence that chronic activation of 

proinflammatory signalling in tissues such as skeletal 

muscle and adipose is a significant contributing factor in 

the development and progression of metabolic disorders 

such as insulin resistance, obesity and Type II diabetes 

[1, 2]. This inflammatory response is triggered by circu-

lating proinflammatory cytokines such as interleukin-6 

(IL-6), tumour necrosis factor-α (TNFα) and by sustained 

increases in the concentration of free fatty acids (FAs), 

such as palmitate. The actions of these stimuli serve to 

not only further induce tissue expression and secretion 

of IL-6 and TNFα (via the NFκB pathway, [3, 4]), but 

impair control of numerous signalling pathways regulat-

ing skeletal muscle insulin signalling, glucose uptake, 

mitochondrial fuel oxidation and respiration that impact 

negatively upon skeletal muscle energy homeostasis [2, 

5–7]. Indeed, mitochondrial dysfunction and/or a reduc-

tion in mitochondrial content, as characterised by a fall in 

oxidative capacity, has been reported in skeletal muscle 

and adipose tissue from obese and diabetic subjects [8, 

9]. Notably, the sustained oversupply of metabolic fuel 

(glucose and fatty acids) to skeletal muscle, as seen dur-

ing Type II diabetes and obesity, impairs the ability of 

mitochondria to shift between use of lipid during fasting 

and use of carbohydrate in the post-prandial state. This 

metabolic inflexibility imposes a major substrate burden 

on the oxidative machinery of muscle and the continued 

oversupply of carbon fuel eventually surpasses the respira-

tory drive and cellular demand for ATP synthesis [10]. As 

a result, FAs undergo incomplete oxidation and greater 

partitioning into lipotoxic derivatives [e.g., diacylglycerol 

(DAG) and ceramides] which have been strongly impli-

cated in the pathogenesis of insulin resistance [11, 12]. 

Whilst some have suggested that sufficient mitochondrial 

capacity remains under such circumstances [13], others 

submit that without energy demand such capacity is irrel-

evant and that metabolic dysfunction associated with the 

“effective” mitochondrial insufficiency may exacerbate 

effects of lipotoxicity [14–18].

Mitochondrial fuel overload also increases produc-

tion of reactive oxygen species (ROS) [19, 20] that may 

serve to trigger or prime mechanisms that not only induce, 

but also sustain the loss in mitochondrial function. For 

example, it is has been suggested that increased ROS 

generation may suppress expression of PGC1α (a major 

regulator of mitochondrial biogenesis) and that of genes 

encoding components of the respiratory chain, but may 

also act as a stimulus activating proinflammatory NFkB 

signalling that intersects with processes influencing mito-

chondrial function [21, 22]. In support of this latter idea, 

signalling initiated by toll-like receptor-4 (TLR-4) and 

the tumor necrosis factor-α (TNF-α) receptor results in 

activation of the NFkB pathway, which has been linked to 

reduced mitochondrial respiration and suppressed activa-

tion of transcriptional regulators that promote mitochon-

drial biogenesis and the shift towards a muscle oxidative 

phenotype [23, 24]. We, and others, have also previously 

demonstrated that obesity in rodents and chronic oversup-

ply of metabolic fuel to skeletal muscle cells in vitro is 

associated with an increase in proinflammatory NFkB sig-

nalling and insulin resistance [17, 25, 26]. We hypothesise 

that sustained oversupply of metabolic fuel will promote 

activation of proinflammatory NFkB signalling in mus-

cle cells and that this contributes significantly to distur-

bances in mitochondrial biology that impact negatively 

upon myocellular insulin sensitivity. The studies reported 

herein have tested this proposition.

Materials and methods

Chemicals and reagents

Culture media α-MEM (α-minimum essential medium), 

DMEM (Dulbecco’s Modified Eagle’s medium), Medium 

199, foetal bovine serum, horse serum, Mitosox, prolong 

diamond antifade mountant, and mitotracker dyes were all 

purchased from Thermo Fisher Scientific (UK). α-MEM 

media-lacking glucose was purchased from PAN Biotech, 

UK, Mitoquinone (Mito Q) was obtained from Cambridge 

biosciences, UK). BI605906 was a generous gift from Pro-

fessor Sir Philip Cohen (MRC Protein Phosphorylation Unit, 

University of Dundee), but also purchased from Tocris (Bris-

tol, UK), MitoSpy™ Green FM was from BioLegends, UK 

and MitoPYI, Mitotempo, hepatocyte growth factor, dexa-

methasone, basic FGF, gelatine, vitamin B12, retinoic acid, 

VAS2870, palmitate, oligomycin, FCCP (carbonyl cyanide 

p-trifluoromethoxyphenylhydrazone), rotenone, antimycin-

A, hygromycin B, apo-transferrin human,  SYBR® Green 

JumpStart Taq Ready Mix, and Polyberen were all purchased 

Sigma-Aldrich, UK).

Rat and human skeletal muscle cell culture, 
transfection and fatty acid treatment

L6 muscle cells were cultured to myotubes as described 

previously [27] in α-minimal essential media (αMEM) 

containing 2% (v/v) foetal bovine serum (FBS) and 1% 

(v/v) antibiotic/antimycotic solution (100 units/ml penicil-

lin, 100 μg/ml streptomycin, and 250 ng/ml amphotericin 

B) at 37 °C with 5%  CO2. In some experiments, L6 myo-

tubes were infected with adenovirus harbouring a mutated 

IκBαS32A/S36A construct. This virus was kindly provided 
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by Dr Harry Heimberg (Vrije Universiteit Brussel, Belgium) 

and was initially propagated in HEK293 cells and stored at 

– 80 °C. The viral titre was determined by standard plaque 

assay in HEK293 cells. Confluent mononucleated L6 myo-

blasts were infected with the adenovirus at 5.5 pfu/cell for 

IκBαS32A/S36A in serum free α-MEM for 2 h at 37 °C. 

Cells were subsequently maintained in fresh α-MEM con-

taining 2% FBS at 37 °C and allowed to differentiate into 

myotubes prior to experimental use. For some studies, we 

also used human (LHCN-M2) myotubes. These were cul-

tured in DMEM/M199 medium (4:1) supplemented with 

penicillin streptomycin (100 μg/ml), FBS 15% (v/v) HEPES 

(20 mM), Zinc sulphate (30 ng/ml), vitamin B12 (1.4 μg/

ml), dexamethasone (55 ng/ml), hepatocyte growth factor, 

recombinant human (2.5 ng/ml), and basic FGF (10 ng/ml) 

on plastic ware that had been coated overnight with gelatin 

(0.1% (w/v) at room temperature. Confluent myotubes were 

differentiated by change of culture media to DMEM/medium 

199 containing zinc sulphate, HEPES, vitamin B12, insulin 

(10 μg/ml), and apotransferrin (100 μg/ml) and refreshing 

this every 48 h for 9–10 days until myotubes were 70–80% 

differentiated.

Prior to use in experiments, L6 myotubes were incubated 

in serum-containing media that either had or lacked D-glu-

cose (5 mM) as indicated in the figures. For palmitate (PA) 

treatments, a 100 mM stock solution of the fatty acid was 

prepared in absolute ethanol as previously reported [28, 29]. 

This stock was subsequently diluted to a final concentra-

tion as indicated in the figure legends by addition to culture 

media containing 2% (w/v) fatty acid-free BSA and allowed 

to precomplex for 1 h at 37 °C before being applied onto 

myotubes for the periods indicated in the figure legends.

Quantitative real-time PCR, mitochondrial DNA 
quanti�cation, and analysis of citrate synthase 
activity

Myotubes were incubated with glucose, palmitate, and 

2-dexoglucose (2DG) or with inhibitors and/or fluores-

cent dyes as indicated in the figure legends and prepared 

for RNA extraction, qPCR analysis, and immunoblotting as 

described previously [17, 25, 30, 31]. Briefly, total RNA 

was extracted from L6 myotubes using the TRizol extrac-

tion protocol (Thermo Fisher Scientific, UK). RNA samples 

were used to prepare cDNA using a qScript cDNA synthe-

sis kit as per manufacturer’s instructions and cDNA quanti-

fied using the real-time PCR Syber Green based method 

to establish mRNA abundance. Analysis of mitochondrial 

DNA (mtDNA) and citrate synthase activity were used as 

a proxy for mitochondrial mass. For mtDNA quantifica-

tion, total DNA was extracted from L6 myotubes using a 

Qiagen DNaesy kit. The mtDNA was quantified by qPCR 

using primers directed against the mitochondrial ND4 

gene and the nuclear-encoded COX4 gene and using the 

Syber Green method. Data were expressed as a ratio of the 

∆∆Ct ND4 to the ∆∆Ct of COX4. The forward and reverse 

primer sequences for the different gene targets are detailed 

in Table 1. Citrate synthase (CS) activity was measured 

using a kit purchased from Sigma-Aldrich/UK (MAK193). 

Myotubes were treated as indicated in the figure legend 

and whole cell extracts prepared at the end of the appro-

priate treatments. 20 μg protein from the cell extract was 

used for each enzymatic analysis (with measurements being 

conducted in triplicate for each experimental determina-

tion at room temperature). Enzyme activity was measured 

spectrophotometrically (using an absorbance wavelength 

of 412 nm) using a µQUNT BIOTEK plate reader from 

LabTech UK with readings taken every 3 min over a 60 min 

assay period. CS activity was calculated as per manufac-

turer’s instructions.

Subcellular fractionation

A mitochondrial-enriched membrane fraction was iso-

lated from L6 myotubes using a mitochondria isolation kit 

(#89874, Thermo Fisher Scientific) as per manufacturer’s 

instructions. The methodological protocol involves homog-

enisation of myotubes that have been harvested from 10 cm 

tissue culture plates having undergone prior experimental 

treatments as indicated in the appropriate figure legends in 

lysis buffer [10 mM HEPES, PH 7.5, 10 mM KCl, 0.1 mM 

EDTA, 0.1 mM DTT, 0.5% (v/v) Nonidet-P40 and 0.5 mM 

Table 1  Primer sequences GENE Forward primer Reverse primer

SDHA GCC ACT CAC TCT TAC ACA CC GCA CTC CCC ATT TTC CAT C

UCP3 GTC AAG CAG TTC TAC ACC CC TTT CCT CTC GCC TCC AGT TC

ANT1 TCA TCT ACA GAG CTG CCT AC TCA TCA TCC TAC GAC GGA C

IL6 AGC CAC TGC CTT CCC TAC TT GCC ATT GCA CAA CTC TTT TCTC 

ND4 GAG GCA ACC AAA CAG AAC GC ATC ATG TTG AGG GTA GGG GGT 

COX4 AAT GTT GGC TAC CAG GGC AC GGG TAG TCA CGC CGA TCA AC

β-ACTIN TGG AGA AGA TTT GGC ACC ACAC CAG AGG CAT ACA GGG ACA ACAC 

PGC1α TGA ACT ACG GGA TGG CAA C AAG AGC AAG AAG GCG ACA C



4890 R. B. Nisr et al.

1 3

PMSF and protease inhibitor cocktail]. The homogenised 

cell material was subject to two differential centrifugation 

steps and within the final centrifugation step the resulting 

mitochondrial pellet was washed twice prior to being solu-

bilised in RIPA buffer. The supernatant from the final spin 

(cytosolic fraction) and the solubilised mitochondrial mem-

brane pellet were stored at – 20 ºC until required.

For isolation of nuclear membranes, L6 myotubes were 

grown on 10 cm dishes as described above and, after treat-

ments, washed three times in PBS before being harvested 

and spun down in a microfuge (100 g for 5 min). The cell 

pellet was resuspended in lysis buffer and held on ice for 

20 min with intermittent mixing prior to being centrifuged 

at 10,000 g for 5 min. The resulting supernatant represents 

a cytosolic fraction. The pelleted nuclei were washed three 

times in lysis buffer before being resuspended in nuclear 

extraction buffer (20 mM HEPES PH 7.5, 400 mM NaCl, 

1 mM EDTA, 1 mM DTT, 1 mM PMSF with protease inhib-

itor cocktail) and re-spun at 10,000g for 15 min at 4 °C. The 

resulting nuclear pellet was resuspended in fresh extraction 

buffer and stored at – 20 °C until required.

SDS-PAGE and immunoblotting

Cell lysates, cytosolic, nuclear, or mitochondrial-enriched 

fractions (20 μg protein) from L6 myotubes and human 

LHCN-M2 myotubes were subjected to SDS/PAGE on 10% 

resolving gels and transferred onto nitrocellulose membranes 

(Millipore, Harts, UK), as described previously [27]. Mem-

branes were probed with the following primary antibod-

ies for immunoblot analysis: actin (#A5060) and tubulin 

(#T6074) were obtained from Sigma: ANT-1 (#ab180715) 

and PGC1α (#ab54481) were from Abcam; IkBα (#SC-

371), SDHA (#SC98253), and GAPDH (#SC32233) were 

purchased from Santa Cruz; p65 (#8242), Akt (#9272), 

p-AktSer473 (#9271S), TOM20 (# 42406S), HA (#2367S), 

COX4 (#4580S), and GPX1 (# 3286S) and SOD2 (#D9V9C) 

were all purchased from Cell Signalling Technology; DLP1/

Drp1 (#611112) and OPA1 (#612607) were from BD Bio-

sciences; and UCP3 (#GTX112699) from Genetex. Pri-

mary antibody detection was performed using appropriate 

horse-radish peroxidase (HRP) conjugated secondary mouse 

(#7076S) or rabbit (#7074S) antibodies were purchased from 

Cell Signalling Technology and visualised using enhanced 

chemiluminescence (Pierce-Perbio Biotech, Tattenhall, UK) 

on Kodak X-OMAT film (Eastman-Kodak, Rochester, UK). 

The immunoreactive protein bands were quantified using 

ImageJ software.

Glucose uptake

L6 myotubes were incubated with glucose, palmitate and 

BI605906 for times and at concentrations indicated in the 

figure legends prior to assaying uptake of 10 μM 2-deoxy-

D-[3H]-glucose as described previously [27]. Non-specific 

binding was determined by quantifying cell-associated radi-

oactivity in the presence of 10 μM cytochalasin B. Cells 

were washed and subsequently lysed in 50 mM NaOH and 

radioactivity quantified by scintillation counting. Protein 

concentration in cell lysates was determined using the Brad-

ford reagent [32].

ROS quanti�cation

For analysis of superoxide, L6 myotubes were subject to 

experimental treatments as indicated in the figure legends 

prior to being treated with 5 μM Mitosox at 37°C in a 5% 

 CO2 incubator for 30 min. Mitosox is a fluorogenic dye that 

is specifically targeted to mitochondria in live cells, and 

whose oxidation by superoxide produces red fluorescence 

that was quantified using a Clario Star plate reader with 

absorption/emission maxima: 510/585 nm. In some experi-

ments, L6 myotubes were also treated with Mitotempo (a 

mitochondrial targeted anti-oxidant) prior to analysis of 

superoxide.

For determination of hydrogen peroxide  (H2O2) under 

live cell conditions, L6 myotubes were incubated with 5 μM 

MitoPYI (a mitochondrial targeted  H2O2 probe) and 1 μM 

deep red cell tracker at 37 °C in a 5%  CO2 incubator for 

45 min. Myotubes were subsequently imaged using a Zeiss 

confocal microscope with excitation/emission maxima for 

MitoPYI set to 488/530 nm and that for the cell tracker at 

633/647 nm. Captured images were analysed to quantify the 

fluorescent signal generated by MitoPYI from at least 8–10 

different visual fields (40–50 myotubes) per condition per 

experiment using ImageJ software.

Analysis of cellular respiration and mitochondrial 
energetics

For analysis of cellular respiration and mitochondrial ener-

getics in L6 and LHCN-M2 myotubes, we used a Seahorse 

XF24 analyser. L6 myotubes were cultured on Seahorse cul-

ture plates in serum-containing media supplemented with 

5 mM D-glucose and/or palmitate at concentrations indicated 

in the figure legends for 16 h. In some experiments, the cul-

ture media were also supplemented with 5 mM 2-deoxyglu-

cose (2-DG), BI605906 (IKKβ inhibitor) or 2 mM carnitine 

as indicated prior to analysis of basal respiration, ATP-

linked respiration, H+ (proton) leak, maximal respiratory 

capacity and non-mitochondrial respiration using modula-

tors of cellular respiration (i.e., oligomycin, FCCP (carbonyl 

cyanide p-trifluoromethoxyphenylhydrazone), rotenone, and 

antimycin as previously described [33]. The various mito-

chondrial parameters were normalised to protein content/

well within the Seahorse plate. For Seahorse XF analyser 
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studies, data points per experimental condition were col-

lected from a minimum of three replicates with each experi-

ment being conducted at least three times.

Mitochondria morphology and live cell 
mitochondrial imaging

For analyses of mitochondrial morphology, we stained L6 

myotubes with Mitospy Green FM (BioLegend, UK); a 

green-fluorescent stain that localizes to mitochondria. L6 

myotubes were grown on 15  mm2 glass coverslips and fol-

lowing the experimental treatments specified in the figure 

legends were washed with fresh media and subsequently 

incubated in medium containing 300 nM Mitospy for 30 min 

at 37°C in a 95%  O2/5%  CO2 environment. After this incuba-

tion period, myotubes were washed with PBS prior to being 

fixed with 2% (w/v) paraformaldehyde and mounted in pro-

longed diamond antifade before being visualised using a 

Zeiss confocal microscope. Live cell imaging was also used 

in some of our studies. For these, L6 or LHCN-M2 myotubes 

were grown and differentiated in eight well chamber slide 

plates (Ibidia, UK) and having been treated (as indicated 

in the figure legends) were washed with fresh phenol red-

free media prior to incubation with Mitospy. Mitochondrial 

morphology was then visualised in real time using Zeiss 

confocal microscope 37 °C in a 5%  CO2 chamber with exci-

tation/emission set at 480 nm and 520 nm, respectively. For 

real-time recording of mitochondrial length, we used the 

ZEISS ZEN microscope software or Image J. Within each 

experimental condition, at least 50 myotubes were randomly 

selected from between 10 and 12 visual fields. Mitochon-

drial morphology within myotubes was categorised as either 

spheroid/fragmented in which mitochondria were equal to 

or less than 1 μm in length or tubular/elongated (including 

being part of a network), where mitochondrial length was 

greater than 1 μm. The number of mitochondria in each cat-

egory within the fields being visualised was then determined 

and expressed as a percentage.

Analysis of mitophagy

Mitophagy was quantified using the mitophagy QC approach 

[34], which involves stable expression of a tandem mCherry-

GFP tag attached to the outer mitochondrial membrane 

localization signal of Fis1 (residues 101–152) [34]. The 

retrovirus harbouring this construct was introduced into 

L6 myotubes using the approach detailed previously [35]. 

The L6-GFP–mCherry cells were grown and differenti-

ated on 15 mm2 cover slips and subjected to the treatments 

detailed in the figure legends prior to being washed and 

fixed with 3.7% cell culture grade paraformaldehyde and 

mounted in prolonged diamond antifade. Cells were visu-

alised using Zeiss 710 confocal microscope. Myotubes 

expressing the mCherry-GFP construct fluoresce red and 

green (yellow when confocal images are merged). However, 

upon increased mitophagy, mitochondria are delivered to 

lysosomes, where the low pH quenches the GFP signal but 

not mCherry. Consequently, some of the mitochondria form 

punctate structures and fluoresce red only and the degree of 

mitophagy calculated by quantitating their increase using 

the volocity software.

Statistical analysis

Statistical analysis was performed using the GraphPad 

Prism version 7 software using one-way analysis of variance 

(ANOVA) and Tukey post hoc test for multiple comparisons. 

Values were considered significant at P < 0.05.

Results

E�ects of palmitate oversupply on proin�ammatory 
signalling, ROS generation and mitochondrial 
function in myotubes

In an attempt to establish the relationship between changes 

in proinflammatory NFkB signalling, ROS generation, and 

mitochondrial biology, we initially investigated the effects 

of modulating palmitate (PA) provision on these param-

eters. L6 myotubes were incubated in α-MEM containing 

a physiological (5 mM) D-glucose (GLC) concentration 

in the absence and the presence of increasing concentra-

tions of palmitate (PA; 0.1–0.5 mM) for 16 h. At the end of 

this period, the abundance of IkBα and expression of IL-6 

mRNA were monitored as readouts of NFkB signalling. 

Figure 1a, b shows that myotubes exposed to increasing PA 

concentrations exhibit a dose-dependent reduction in cel-

lular IkBα abundance that was associated with a concomi-

tant increase in IL-6 gene expression. Since the threshold 

concentration at which PA induced a significant change in 

IkBα and IL-6 gene expression was 0.4 mM, all subsequent 

experiments involving nutrient overloading of myotubes 

were conducted in the presence of 5 mM GLC and 0.4 mM 

PA unless otherwise indicated. It is important to stress that 

combined provision of GLC and PA at these concentrations 

did not invoke any notable death or loss of terminally dif-

ferentiated myotubes on culture plates.

A characteristic feature associated with mitochondrial 

fuel overload is increased cellular ROS [e.g., superoxide 

(O2
–.) and hydrogen peroxide  (H2O2)], whose generation 

can promote oxidative damage and metabolic dysfunc-

tion. Whilst incubation of myotubes with 5 mM GLC or 

0.4 mM PA alone had no significant effect on ROS produc-

tion in myotubes, the combined presence of both nutrients 

induced a significant increase in O2
–. and  H2O2 (Fig. 1c, d). 
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The notion that this increase in ROS is driven by nutri-

ent overload is strengthened by our demonstration that 

increases in O2
–. and  H2O2 are regulated in a PA and GLC 

concentration-dependent manner (Supplementary Fig. S1 

and S2) and that increases in ROS can be restrained in 

myotubes exposed to 2-deoxyglucose (2DG); a glycolytic 

inhibitor that severely restricts GLC use as a metabolic 

fuel (Fig. 1c, d; Supplementary Fig. S1 and S2). Fur-

thermore, we contest that the increase in ROS, we see in 

response to GLC/PA overloading is principally mitochon-

drial generated given that treating myotubes with either 

Mitotempo or MitoQ, two mitochondrial targeted anti-

oxidants, which, respectively, scavenge O2
–. and quench 

 H2O2, effectively suppress increases in both ROS initiated 

by fuel oversupply (Supplementary Fig. S1D and S2D).

For analysis of real-time mitochondrial respiration in 

myotubes, we utilised a Seahorse extracellular flux ana-

lyser that measures oxygen consumption rates (OCR) 

before and after addition of compounds that target Com-

plexes I and III of the respiratory chain, the ATP syn-

thase or which function to uncouple mitochondrial oxi-

dative phosphorylation (OXPHOS) to allow analysis of 

numerous mitochondrial parameters. Figure 1e–h shows 

that compared to myotubes incubated with either 5 mM 

GLC or 0.4 mM PA alone, those exposed to both carbon 

fuels simultaneously had a lower OCR and also exhibited 

Fig. 1  Cellular fuel overloading induces NFkB inflammatory signal-

ling, ROS (superoxide and  H2O2) production and mitochondrial dys-

function. L6 myotubes were incubated with glucose (GLC, 5  mM) 

in the absence and presence of palmitate (PA) at doses indicated for 

16 h prior to analysis of (a) cellular IkBα abundance by immunoblot-

ting and b IL6 and β-actin mRNA abundance by qPCR. For analysis 

of superoxide (c) and  H2O2 (d) L6 myotubes were treated as in (a) 

with PA (0.4 mM) for 16 h in absence or presence GLC (5 mM) and/

or 2-deoxyglucose (2DG, 5  mM) as indicated followed by quantifi-

cation of ROS using 5 μM of either Mitosox or MitoPYI as detailed 

in methods. For analysis of real-time cellular respiration in L6 myo-

tubes we used a Seahorse XF24 analyser. L6 myotubes were incu-

bated for 16 h with either GLC (5 mM) or PA (0.4 mM) alone, PA 

(0.4 mM)/GLC (5 mM) together or with a mixture of PA (0.4 mM)/

GLC (5 mM)/2DG (5 mM). Oligomycin (1 μM), FCCP (1 μM) and 

a rotenone (1 μM)/antimycin-A (2 μM) mix were added at times indi-

cated by dotted lines on the Seahorse trace. The trace shown in (e) 

is a representative readout of oxygen consumption rate (OCR) from 

a single experiment with measurements (mean ± SD) of triplicate 

values. Analysis of absolute basal mitochondrial OCR normalised to 

protein/well (f), coupling efficiency of oxidative phosphorylation (g, 

determined as the oligomycin sensitivity fraction of the basal respira-

tory rate) and (h) the respiratory capacity ratio (calculated as a factor 

of the FCCP-stimulated respiration/oligomycin resistance). The data 

shown in (f–h) is the combined analyses of three separate experi-

ments. All data are presented as mean ± SEM. Asterisks indicate a 

significant change (P < 0.05) to the GLC alone condition or between 

the indicated bars
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a significant reduction in basal respiration, OXPHOS cou-

pling, and respiratory capacity. Strikingly, these respira-

tory changes are averted in myotubes incubated in media 

containing GLC and PA, but to which 2DG was also added 

to inhibit glucose use as a metabolic substrate. To further 

demonstrate that this amelioration most likely reflects a 

lowering of mitochondrial substrate load rather than a 

reduction in substrate competition, we assessed the impact 

of increasing the PA concentration in the absence of any 

GLC. Figure 2a shows that whilst the OCR was compara-

ble when myotubes were incubated with either 5 mM GLC 

or 0.4 mM PA alone and co-provision of GLC and PA at 

these concentrations induced a significant decline in basal 

respiration, this reduction could also be recapitulated in 

myotubes incubated with PA alone, but when presented at 

a higher concentration (0.7 mM) to increase mitochondrial 

substrate load. It is also important to stress that incubation 

of myotubes with PA was conducted in serum-containing 

media in which carnitine was present at physiological 

concentrations. Consequently, we believe it unlikely that 

carnitine would be limiting for mitochondrial uptake and 

oxidation of PA at the concentrations used in our studies. 

In line with this view, exogenous supplementation of car-

nitine (2 mM) to culture media did not enhance or ame-

liorate the reduction in mitochondrial respiratory capacity 

that we see in PA/GLC treated myotubes (Fig. 2b).

E�ects of mitochondrial fuel overload and glycolytic 
inhibition on mitochondrial morphology

The data presented in Fig. 1e–h imply that chronic over-

supply of metabolic fuel (GLC + PA) to myotubes impairs 

mitochondrial respiration and that this can be mitigated 

when use of GLC as a metabolic fuel was restricted using 

2DG as a glycolytic inhibitor. To test whether the reduced 

respiratory function assayed under fuel-overload conditions 

was associated with changes in mitochondrial morphology, 

we subsequently performed live cell imaging to visualise 

mitochondria using Mitotracker Green. The dye is excluded 

from nuclei, but accumulates within mitochondria and con-

sequently helps depict the syncytial nature of differentiated 

L6 myotubes used in our study. Strikingly, in myotubes 

that had been incubated with GLC or PA alone, the green-

fluorescent mitochondrial dye highlights that ~ 80% of the 

mitochondrial population is part of an organised elongated/

tubular network, which becomes structurally fragmented 

and spheroid in nature when myotubes are subjected to 

a sustained period of fuel overloading with GLC and PA 

(Fig. 3a, b). In line with the finding that glycolytic inhibition 

with 2DG helps preserve mitochondrial respiratory function 

(Fig. 1e–h), the morphological change in the mitochondrial 

network caused by substrate overloading was mitigated by 

2DG (Fig. 3).

Fig. 2  Effect of glucose/palmi-

tate overloading and carnitine 

supplementation on mitochon-

drial function in L6 myotubes. 

L6 myotubes were incubated 

with glucose (GLC, 5 mM), 

palmitate (PA, 0.4 mM or 

0.7 mM) or with GLC (5 mM) 

and PA (0.4 mM) together for 

16 h as shown in (a) or in some 

experiments (b) when treated 

with GLC and PA together 

such treatments were done in 

the presence of either carnitine 

(2 mM) or 2-deoxyglucose 

(2DG, 5 mM) prior to analysis 

of real-time cellular respiration 

using a Seahorse XF24 analyser. 

All data are presented as mean 

± SEM. Asterisks indicate a 

significant change (P < 0.05) 

between the indicated bars. NS 

signifies no significant change
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Is proin�ammatory NFkB signalling a driver of ROS 
generation in response to nutrient overloading?

To explore whether the increase in NFkB signalling seen 

in myotubes subjected to nutrient overload is a contribut-

ing factor to mitochondrial ROS production and respiratory 

dysfunction, we applied two distinct but complimentary 

strategies. The first utilised BI605906, a potent pharmaco-

logical inhibitor that shows high selectivity for IKKβ  (IC50 

= 380 nM) when tested against over 100 kinases in a panel 

screen [36], whereas the second involved adenoviral medi-

ated expression of a mutant form of IκBα (S32A/S36A) that 

functions as a super-repressor of NFκB activity [25]. Muta-

tion of Ser32 and Ser36 to alanine renders IκBα resistant to 

IKK phosphorylation, thereby protecting it from proteasomal 

degradation and retaining its capacity to hold NFκB in an 

inhibited state. To test the effectiveness of each strategy, we 

initially assayed the ability of BI605906 and the IκBαS32A/

S36A mutant to suppress NFkB activation in response to 

nutrient overload in L6 myotubes. The data in Fig. 4a, b 

show that the reduction in IkBα instigated by a 16 h period 

of nutrient (GLC + PA) overloading in myotubes was halted 

by BI605906 or by cellular expression of the IkBα mutant. 

Moreover, consistent with this observation, both BI605906 

and IκBαS32A/S36A expression attenuated nuclear localisation 

of the p65 subunit of NFkB and reduced transcription of the 

IL-6 gene (an NFkB target gene) that is otherwise seen in 

GLC+PA-overloaded myotubes (Fig. 4c, d).

Analysis of ROS production in L6 myotubes revealed 

that in the absence of PA provision, BI605906 per se has 

no detectable effect upon cellular O2
–. or  H2O2, but signifi-

cantly reduces the increase in both species when myotubes 

were subjected to chronic nutrient oversupply (Fig.  5a, 

b). Similarly, repressing NFkB activation by expression 

of IκBαS32A/S36A blocked the increase in ROS triggered 

by nutrient overload (Fig. 5c, d). It is noteworthy that this 

Fig. 3  Effect of glucose/palmitate overloading on mitochondrial 

morphology in L6 myotubes. L6 myotubes were incubated for 16 h 

with either GLC (5  mM) or PA (0.4  mM) alone, PA (0.4  mM)/

GLC (5  mM) together or with a mixture of PA (0.4  mM)/GLC 

(5 mM)/2DG (5 mM) prior to staining with Mitotracker green (Mito-

spy) and confocal microscopy. a Confocal images depict mitochon-

drial morphology in L6 myotubes (the scale bar represents 5  μm). 

Nuclei (N) are labelled and white boxed areas are magnified to show 

differences in morphology. The arrow heads depict fragmented mito-

chondria. b Mitochondrial length was quantified using the imaging 

software and presented as elongated/tubular if greater than 1 μm and 

fragmented if < 1 μm in length. Data are presented as mean + SEM 

from a minimum of three separate experiments. Asterisks indicate a 

significant change (P < 0.05) between the black filled bars, whereas 

the hash (#) indicates a significant difference (P < 0.05) between the 

grey filled bars
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nutrient-induced increase in ROS is accompanied by an 

attendant increase in the expression of anti-oxidant enzymes 

[superoxide dismutase 2 (SOD2), catalase and glutathione 

peroxidase (GPX1)], which most likely forms part of a cel-

lular defence mechanism designed to help limit oxidative 

damage/stress under these circumstances (Supplementary 

Fig. S2E). Intriguingly, however, whilst the elevated ROS 

generation induced by cellular over-nutrition was restrained 

by BI605906 (Fig. 5a, b), the inhibitor did not to suppress 

the increased expression of SOD2, catalase or GPX1 (Sup-

plementary Fig. S2E), suggesting that expression of these 

enzymes was likely to be regulated by mechanisms that are 

distinct to those involved in promoting generation of  O2
– and 

 H2O2.

Is increased NFkB signalling a causal factor 
for mitochondrial dysfunction in myotubes 
during nutrient overload?

Impaired mitochondrial bioenergetics can result in the exces-

sive generation of ROS during the process of OXPHOS. 

Since inhibition of NFkB signalling suppresses the increase 

in cellular ROS associated with nutrient overload, we sub-

sequently tested whether this might be linked to improved 

mitochondrial function. The data in Fig. 6 show the effects of 

inhibiting NFkB signalling in L6 myotubes (using BI605906 

and by cellular expression of the IκBαS32A/S36A super-repres-

sor) upon mitochondrial function. In line with the findings 

presented in Fig. 1e–h, sustained (16 h) exposure of myo-

tubes to nutrient excess (GLC and PA) induced a significant 

decline in the basal and maximal respiratory rate, which was 

associated with a reduction in ATP-linked respiration and 

a modest decline in mitochondrial proton leak (Fig. 6a–j). 

Strikingly, these nutrient-induced disturbances in mito-

chondrial respiration were ameliorated if activation of the 

IKKβ-NFkB signalling axis by nutrient excess was repressed 

by BI605906 in a dose-dependent manner (Fig. 6a–e and 

Supplementary Fig. S3) or expression of the IκBαS32A/S36A 

mutant (Fig. 6f–j). Notably, the improved respiratory drive 

that we see under these circumstances is associated with a 

significant increase in mitochondrial proton leak (Fig. 6e, j) 

potentially signifying increased mitochondrial uncoupling 

that would also help offset ROS generation.

E�ects of repressing NFkB signalling 
on mitochondrial morphology and expression 
of proteins important for mitochondrial function

To assess whether the improved respiratory capacity that was 

seen upon inhibiting NFkB signalling in nutrient-overloaded 

Fig. 4  Effects of suppressing NFkB on inflammatory signal-

ling induced by nutrient overload in L6 myotubes. a L6 myotubes 

were incubated for 16  h with either GLC (5  mM) or PA (0.4  mM) 

alone, PA (0.4 mM)/GLC (5 mM) together or with a mixture of PA 

(0.4 mM)/GLC (5 mM)/2DG (5 mM) in the absence or presence of 

BI605906 (10  μM), an IKKβ inhibitor prior to analysis of cellular 

IkBα abundance by immunoblotting. b L6 myoblasts were infected 

with an adenoviral vector expressing HA-tagged non-phosphorylata-

ble IkBα (S32A/S36A) or one expressing an empty vector (EV). Cells 

were allowed to differentiate prior to treatment of cells with GLC, 

PA and 2DG and analysis of IkBα abundance as described in (a). L6 

myotubes were treated with GLC (5 mM), PA (0.4 mM), BI605906 

(10 μM) and adenoviral vectors as indicated prior to (c) subcellular 

fractionation and analyses of cytosolic and nuclear NFkB p65 abun-

dance by immunoblotting or d analysis of IL-6 gene expression. All 

data are presented as mean ± SEM from a minimum of three sepa-

rate experiments. Asterisks indicate a significant change (P < 0.05) 

between the indicated bars
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myotubes was associated with changes in mitochondrial mor-

phology or mitochondrial mass we subsequently performed 

live cell imaging of mitochondria stained with Mitotracker 

Green and also assessed cellular mitochondrial DNA con-

tent. Figure 7a shows that repressing NFkB signalling with 

BI605906 helps attenuate the fragmentation of the elongated/

tubular mitochondrial network that is otherwise seen when 

myotubes are chronically exposed to nutrient excess. qPCR 

analysis was used to determine mitochondrial DNA copy 

number by quantifying the relative abundance of the mito-

chondrial encoded NADH dehydrogenase 4 (ND4) gene to 

that of COX4 (a nuclear-encoded gene). Figure 7b, c shows 

that irrespective of whether myotubes were subject to nutri-

ent overload or not, or whether they were treated with 2DG 

or BI605906, we observed no significant differences in mito-

chondrial DNA or citrate synthase activity (a representative 

nuclear-encoded mitochondrial enzyme) in response to the 

various experimental manipulations. Both these measures are 

considered a proxy of mitochondrial mass.

Whilst mitochondrial mass in L6 myotubes was unaltered 

following a 16 h period of nutrient overload, the reduced 

respiratory rate seen under these circumstances was associ-

ated with a significant reduction in the abundance of proteins 

with key roles in mitochondrial bioenergetics. These include 

uncoupling protein 3 (UCP3), mitochondrial ADP–ATP trans-

locase (ANT1) and succinate dehydrogenase (SDHA) as well 

as PGC1α, which has a major role in regulating mitochondrial 

biogenesis and function (Fig. 7d). Our analysis reveals that the 

decline in these proteins may have been driven by a decrease 

in gene expression based on the reduced mRNA abundance 

that, respectively, encode the four proteins (Fig. 7e). Whilst 

we saw no change in the protein abundance of Cox 4.1 (a 

subunit of Cytochrome C-oxidase that functions within the 

mitochondrial respiratory chain) in myotubes exposed to both 

GLC and 0.4 mM PA, we have shown previously that its cel-

lular abundance declines dramatically when the presence of 

PA in GLC-containing media is raised above 0.4 mM [17, 

31]. This latter finding may potentially signify that the expres-

sion and stability of Cox4.1 may have a slightly higher toler-

ance for nutrient stress than some of the other mitochondrial 

proteins that we have investigated. Significantly, however, the 

loss seen in UCP3, ANT1, SDHA, and PGC1α protein in fuel-

overloaded myotubes was ameliorated by not only pharma-

cological repression of the IKKβ-NFkB signalling axis with 

BI605906, but also by restraining GLC metabolism using 2DG 

(Fig. 7d, e).

It is plausible that the increased respiratory drive seen 

in myotubes that have been subject to fuel overloading, but 

in which activation of the NFkB pathway has been blunted 

(Fig. 6) is a benefit derived from suppressing mitochondrial 

ROS production (Fig. 5). However, our analysis indicates 

that whilst exposing myotubes to two distinct mitochondrial 

targeted anti-oxidants (Mitotempo and Mito Q) limits frag-

mentation of the mitochondrial network induced by nutri-

ent oversupply, neither compound could rescue the loss in 

UCP3, ANT1, or PGC1α expression or prevent the decline 

in mitochondrial respiratory capacity (Supplementary Fig. 

S4). However, we did see some recovery in the expression 

of SDHA. We are mindful that ROS production can also 

occur at extra-mitochondrial sites such as via NADPH oxi-

dase (NOXII) in the cytosol, but targeting NOXII with a 

cell permeable inhibitor, VAS2870, also proved ineffective 

in countering the decline in respiratory capacity caused by 

nutrient excess (Supplementary Fig. S4).

E�ects of mitochondrial substrate overload 
on mitophagy

Since chronic oversupply of metabolic fuel promotes 

mitochondrial dysfunction, we postulated that under such 

Fig. 5  Effects of NFkB antagonism on ROS production. a, b L6 

myotubes were incubated for 16  h with either GLC (5  mM) or PA 

(0.4 mM) alone, PA (0.4 mM)/GLC (5 mM) together in the absence 

or presence of BI605906 (10 μM) or subject to these treatments hav-

ing been infected with an adenoviral vector expressing HA-tagged 

non-phosphorylatable IkBα (S32A/S36A) or one expressing an empty 

vector (EV) c, d prior to analysis of superoxide and hydrogen perox-

ide. All data are presented as mean ± SEM from four separate experi-

ments. Asterisks indicate a significant change (P < 0.05) between the 

indicated bars
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circumstances, there might be an increase in mitophagy to 

help clear damaged/dysfunctional mitochondria. To test 

this hypothesis, we initially monitored expression of pro-

teins implicated in the control of mitochondrial dynamics 

in a mitochondrial-enriched membrane fraction isolated 

from myotubes that had been subject to fuel overloading 

in the absence and presence of BI605906. Figure 8a shows 

that sustained exposure of myotubes to 5 mM GLC and 

0.4 mM PA induced a very modest increase in the mito-

chondrial abundance of Drp1, a GTPase that facilitates 

mitochondrial fission. This increase in mitochondrial-

associated Drp1 may have resulted from its recruitment 

from a cytoplasmic pool, which showed a corresponding 

decline in its abundance. By contrast, we noted a loss in 

mitochondrial mitofusin 2 (MFN2), a GTPase resident on 

the outer mitochondrial membrane involved in mitochon-

drial clustering and fusion (Fig. 8a). The relative changes 

in mitochondrial Drp1 and MFN2 is consistent with a 

shift in mitochondrial dynamics that favours increased 

fission and would be in line with our morphological anal-

ysis (Fig. 7a). In contrast, the observed changes in mito-

chondrial-associated Drp1 and MFN2 abundance were 

repressed in fuel-loaded myotubes that had been treated 

with BI605906 and would fit with the reduced mitochon-

drial fragmentation that we see (Fig. 7a). No notable dif-

ferences were observed for mitofusin 1 (MFN1) or optic 

Fig. 6  Effect of suppressing NFkB activation in response to cellu-

lar fuel overloading on mitochondrial respiration. a–e L6 myotubes 

were incubated for 16  h with either GLC (5  mM) or PA (0.4  mM) 

alone, PA (0.4 mM)/GLC (5 mM) together in the absence or presence 

of BI605906 (10 μM) or f–j subject to these treatments having been 

infected with an adenoviral vector expressing HA-tagged non-phos-

phorylatable IkBα (S32A/S36A) or one expressing an empty vector 

(EV) prior to analysis of real-time cellular respiration in L6 myotubes 

using a Seahorse XF24 analyser. Oligomycin (1 μM), FCCP (1 μM) 

and a rotenone (1 μM)/antimycin-A (2 μM) mix were added at times 

indicated by dotted lines. a, f show representative readouts of oxy-

gen consumption rate (OCR) from a single experiment with meas-

urements (mean ± SD) of triplicate values. b, g Depict basal mito-

chondrial oxygen consumption rate (OCR), c, h maximal respiration 

(OCR after FCCP stimulation), d, i ATP-linked respiration (oligomy-

cin-sensitive OCR) and e–j proton leak (oligomycin resistance rate). 

Data are presented as mean ± SEM from five independent experi-

ments. Asterisks indicate a significant change (P < 0.05) between the 

indicated bars
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atrophy-1 protein (OPA-1) in the mitochondrial and cyto-

solic fractions that we examined (Fig. 8a).

To assess whether increased fragmentation/fission in 

response to nutrient excess also increases mitophagy, we 

utilised myotubes stably expressing a tandem mCherry-

GFP tag attached to the outer mitochondrial membrane 

localization signal of Fis1 (residues 101–152) [34]. Fig-

ure 8b, c shows representative field images that high-

light (red) the presence of mitophagic objects in myo-

tubes incubated with GLC or PA alone, which most 

likely reflects basal mitophagy (see arrow heads within 

the magnified regions from the box inserts). Whilst this 

approach does not quantitatively assess mitophagic flux, 

it indicates that the combined provision of GLC and PA 

induces a significant increase in mitophagic particles 

(Fig. 8d, f) whose appearance is restrained upon cotreat-

ment of myotubes with BI605906 (Fig. 8e, f).

E�ects of suppressing NFkB signalling 
in substrate-loaded myotubes on insulin sensitivity

A number of previous studies have shown that sustained 

exposure of muscle cells to nutrient (glucose and fatty acid) 

excess impairs insulin action and have linked this to dis-

turbances in mitochondrial function. To assess whether 

preserving the respiratory capacity and integrity of the 

mitochondrial network in nutrient overloaded myotubes by 

inhibition of NFkB signalling improves insulin action, we 

assessed insulin-stimulated Akt phosphorylation and glucose 

uptake as readouts. Figure 9a shows that insulin induces a 

robust increase in  AktSer473 phosphorylation/activation that is 

blunted significantly (by ~ 58%) in myotubes that have been 

subject to GLC/PA oversupply (Fig. 9b). Associated with 

this loss in Akt-directed insulin, signalling was a substantial 

loss in insulin-stimulated glucose uptake (Fig. 9c). However, 

Fig. 7  Effect of suppressing NFkB activation in response to cellular 

fuel overloading on mitochondrial morphology, mitochondrial pro-

teins and gene expression. L6 myotubes were incubated with GLC 

(5 mM), PA (0.4 mM), 2DG (5 mM) and BI605906 (10 μM) for 16 h 

in the combinations indicated in the various experimental data panels 

prior to a analysis and quantification of mitochondrial morphology 

using Mitotracker green (Mitospy) by confocal microscopy (the scale 

bar represents 5 μm), b mitochondrial DNA copy number by qPCR, 

c citrate synthase (CS) activity and (d, e), analysis of mitochondria 

protein and mRNA abundance (UCP3, ANT1, PGC1α, SDHA, and 

COX4.1) which was normalised to GAPDH. All graphical bar data 

are presented as mean ± SEM from four separate experiments. Aster-

isks indicate a significant change (P < 0.05) to the GLC alone condi-

tion
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cotreatment of fuel-loaded myotubes with BI605906 or 

expression of the IκBαS32A/S36A super-repressor (Fig. 9d) 

not only mitigates the reduction in insulin-stimulated Akt 

phosphorylation (Fig. 9a, b, d, e), but also partially rescues 

the loss in hormone-stimulated glucose uptake (Fig. 9c, f).

Discussion

We have previously shown that heightened NFkB signalling 

associated with sustained nutrient oversupply, as occurs dur-

ing obesity, plays an important role in lipid-induced insulin 

resistance and metabolic dysfunction in skeletal muscle both 

in vitro and in vivo [17]. Precisely how an increase in NFkB 

signalling mechanistically links to changes in muscle insulin 

action is poorly understood, but we postulate that distur-

bances in mitochondrial homeostasis, driven by an increase 

in proinflammatory signalling, may potentially represent an 

important component within this link. This proposition is 

based on the view that whilst mitochondria play a crucial 

role in balancing energy supply with demand under nor-

mal circumstances, they become functionally compromised 

when supply of metabolic fuel chronically exceeds cellu-

lar energy demand. Our results indicate that the sustained 

oversupply of both GLC and PA imposes a major substrate 

burden on mitochondria in L6 myotubes and that this pro-

motes (1) a reduction in mitochondrial respiratory capacity, 

(2) reduced expression of key mitochondrial proteins, (3) 

increased generation of ROS and (4) increased mitochon-

drial fragmentation and mitophagy. It is also important to 

highlight that these observations are not just restricted to 

L6 myotubes, but can also be demonstrated in LHCN-M2 

myotubes; a myogenic cell line obtained from skeletal mus-

cle of a healthy male human subject (Supplementary Fig. 

S5). These nutrient-induced changes collectively signal a 

marked loss in mitochondrial integrity/function that impact 

negatively upon myocellular energy metabolism and, by 

extension, upon processes involved in fuel utilisation, such 

as glucose uptake and its regulation by insulin. Strikingly, 

our data indicate that pharmacological or genetic inhibi-

tion of the IKK–NFkB axis not only obviates detrimental 

changes in mitochondrial morphology and function, but also 

helps ameliorate disturbances in insulin signalling and insu-

lin-dependent glucose uptake. Furthermore, allied to these 

observations, it is worth stressing that withholding either 

GLC or PA from the media or inhibiting GLC use as a meta-

bolic fuel in the presence of PA not only averts activation of 

the NFkB pathway but antagonises mitochondrial fragmen-

tation and the loss in respiratory function (Figs. 1b, 3a, 4a). 

These findings imply that whilst myotubes can efficiently 

Fig. 8  Effects of cellular fuel overloading on mitophagy and upon 

proteins linked to mitochondrial dynamics. Wild type L6 myotubes or 

those stably expressing a retroviral vector encoding a GFP–mCherry–

Fis1 mitophagy reporter were incubated with GLC (5  mM), PA 

(0.4 mM) and BI605906 (10 μM) for 16 h as indicated prior to: a sub-

cellular fractionation and isolation of a cytosolic and mitochondrial-

enriched membrane fraction for immunoblotting with antibodies to 

proteins shown. b–e Fixing and confocal imaging to visualise and f 

quantifying (using the Volocity software) mitophagy in L6 myotubes. 

Data (mean ± SEM) in (f) are from five separate experiments. Aster-

isks indicate a significant change (P < 0.05) between the indicated 

bars. Boxed sections in panels b, c, d and e have been expanded to 

highlight mitophagic particles, some of which are depicted by the 

white arrow heads
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metabolise GLC (5 mM) or PA (0.4 mM) when presented 

independently at the concentrations indicated, their com-

bined carbon load appears to overwhelm the respiratory 

capacity of myotubes, especially if it is not matched by any 

increase in energy demand. Under these circumstances, the 

over provision of fatty acids leads to their incomplete oxi-

dation and accumulation as short chain acyl-carnitines  and 

their greater partitioning into lipotoxic fatty acid derivatives 

(e.g., DAG and ceramide) that have been implicated in the 

development of muscle insulin resistance [6, 11, 37–39]. 

The production of ceramide and certain DAG species may, 

in turn, feedback to further suppress the activity of respira-

tory chain complexes [40, 41], which, associated with the 

reduced expression of succinate dehydrogenase (complex II) 

that is induced in response to chronic fuel excess, is likely 

to impair electron transfer within the respiratory chain. This 

proposition is supported by our finding that uncoupled res-

piration in the presence of FCCP was markedly lower in 

myotubes incubated with GLC/PA than those treated with 

either nutrient alone (Fig. 1e) It is, therefore, plausible that 

the observed perturbations in mitochondrial homeostasis 

seen in this study may, in part, be a consequence of cellu-

lar lipotoxicity initiated by the accumulation of molecules 

such as DAG and ceramide that would be associated with 

sustained oversupply of fatty acids.

Numerous studies have shown that saturated fatty acids, 

such as PA, have the capacity to induce IKK–NFkB signal-

ling and can do so via a number of mechanisms including, 

for example, activation of toll-like receptors [42], MAP 

kinases (JNK and ERK) [25], excessive ROS generation [43] 

as well as by enhanced secretion of inflammatory cytokines 

(e.g., TNFα, IL-1β, and IL-6) that act via their respective 

cell surface receptors [44]. Whilst evidence exists associat-

ing these inflammatory cytokines with impaired mitochon-

drial function in some cell types [45, 46], studies linking 

classical NFkB signalling to mitochondrial dysfunction in 

Fig. 9  Effects of suppressing NFkB signalling in response to cellular 

fuel overloading on insulin-stimulated PKB phosphorylation and glu-

cose uptake in L6 myotubes a–c L6 myotubes were incubated for 16 h 

with GLC (5 mM) or PA (0.4 mM) alone or with PA (0.4 mM)/GLC 

(5  mM) together in the absence or presence of BI605906 (10  μM). 

Alternatively, d–f muscle cells were subject to incubation with GLC 

and PA as indicated having been infected with an adenoviral vector 

expressing HA-tagged non-phosphorylatable IkBα (S32A/S36A) or 

one expressing an empty vector (EV) prior to acute stimulation with 

insulin (20  nM) for 15  min (Akt signalling experiments) or insulin 

(100  nM) for 20  min for glucose uptake studies. Following insulin 

stimulation, cells were either lysed for immunoblotting using antibod-

ies to proteins indicated (a, d) or used for assay of glucose uptake. 

The data are mean ± SEM. from 5 separate experiments. Asterisks 

indicate a significant change (P < 0.05) between the indicated bars
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muscle cells in response to fuel over loading are extremely 

sparse. However, one potential mechanism by which NFkB 

may modulate myocellular energy metabolism is via its well-

established role as a regulator of gene expression [47]. Nota-

ble NFkB gene targets include those encoding mitochondrial 

proteins or transcription factors that regulate expression 

of key mitochondrial genes. For example, recent work in 

human glioblastoma cells has highlighted that activated 

NFkB can bind to two response elements within the gene 

promoter of the ADP/ATP translocase, ANT-1, resulting in 

its reduced expression and concomitant decline in mitochon-

drial ATP production [48]. NFkB activation also represses 

the activity of PGC1α [49], which functions as a critical 

regulator of not only mitochondrial biogenesis/respiration 

but expression of nuclear respiratory factors (NRFs) that, 

in turn, modulate expression of mitochondrial proteins such 

as UCP3 and SDHA [50–52]. An increase in mitochondrial 

biogenesis/content may serve as an initial response to nutri-

ent excess, but such compensation typically fails in the face 

of sustained nutrient oversupply. This compensation pro-

cess appears to be very short lived in our in vitro myotube 

cultures as whilst we observe an initial increase in the gene 

expression of PGC1α, SDHA, ANT-1, and UCP3 (during 

the first 4 h of nutrient oversupply), we find that this rapidly 

declines over the succeeding 20 h myotube incubation period 

with GLC and PA (Supplementary Fig. S7). This decline 

correlates with an associated increase in NFkB activation as 

judged by the loss in IkBα and increased expression of IL-6 

that is observed from 4 h onwards in myotubes (Supplemen-

tary Fig. S7). The notion that these events are likely to be 

linked is supported by our finding that the targeted inhibition 

of the IKK–NFkB axis helps mitigate the loss of these mito-

chondrial proteins and the associated decline in respiratory 

function. Assessing whether the changes in PGC1α, SDHA, 

ANT-1 and UCP3 that we see in myotubes in response to 

fuel overloading are primarily a consequence of a reduction 

in gene expression or also involve post-transcriptional modu-

lation of processes such as protein synthesis and degradation 

represent important investigative goals of future work.

Another critical regulator of mitochondrial metabolism 

and cellular responsiveness to insulin is ROS [53]. Mito-

chondria are major sources of ROS and generated as a con-

sequence of electron “slippage” within the electron transport 

chain (ETC) to oxygen during OXPHOS [54]. ROS gener-

ated by the ETC are considered important for preserving 

the normal biological functionality of the respiratory chain. 

However, under certain circumstances, including mitochon-

drial substrate overload, sustained and elevated generation 

of ROS supersedes the capacity of anti-oxidant defence 

mechanisms leading to increased oxidative stress. Com-

ponents of the respiratory chain are highly susceptible to 

oxidative damage and this not only reduces the fidelity and 

operational efficiency of the ETC, but also results in further 

augmentation in ROS generation that effectively establishes 

a viscous cycle driving greater mitochondrial dysfunction 

[55]. Our findings reveal that heightened ROS production 

is indeed a feature of mitochondrial substrate overload 

(Fig. 5) and that this occurs despite an attendant increase in 

the expression of SOD2, GPX1 and catalase (Supplementary 

Fig. S2) that most likely represent a cellular stress response 

designed to limit oxidative stress. Intriguingly, whilst expos-

ing GLC/PA-overloaded myotubes to mitochondrial targeted 

anti-oxidants such as Mitotempo restrains superoxide accu-

mulation (Supplementary Fig. S1) and confers protection 

against mitochondrial fragmentation (Supplementary Fig. 

S4), treatment of myotubes with either Mitotempo or MitoQ 

could not rescue the decline in mitochondrial respiratory 

capacity induced by fuel overloading. This observation is 

most likely explained by the fact that neither anti-oxidant 

was able to mitigate activation of the IKK–NFkB pathway 

that we believe initiates the loss of key mitochondrial pro-

teins, such as SDHA, UCP3, and ANT-1 in fuel-overloaded 

myotubes (Supplementary Fig. S4). SDHA is a critical 

component within both the TCA cycle and ETC, and conse-

quently, its loss will impact negatively upon both mitochon-

drial processes. Whilst the precise functional role of UCP3 

remains uncertain, its expression in cultured myotubes and 

rodent skeletal muscle has been linked to modulation of 

fatty acid oxidation [56–58], mitochondrial integrity, and to 

management of ROS/oxidative stress [59–62]. Likewise, in 

addition to catalysing the exchange of cytoplasmic ADP for 

mitochondrial ATP, ANT-1 can mediate fatty acid-induced 

uncoupling via its ability to transfer fatty acid anions across 

the inner mitochondrial membrane [63]. Consequently, mild 

uncoupling mediated by both UCP3 and ANT-1 may be ben-

eficial in protecting mitochondria against the reducing pres-

sure created by transient increases in fuel supply and, by 

doing so, restraining the excessive generation/accumulation 

of ROS that may otherwise promote oxidative damage and 

impair skeletal muscle insulin sensitivity. The fact that sup-

pressing NFkB activation in fuel-overloaded myotubes with 

BI605906 or 2DG antagonises loss of UCP3 and ANT-1 and 

that, under these circumstances, we not only see a meas-

urable increase in mitochondrial proton leak, but observe 

improved insulin sensitivity in L6 myotubes (Fig. 9) and 

in muscle of obese Zucker rats [17] is fully congruent with 

this view. Furthermore, it is noteworthy that the notion that 

mitochondrial expression/activity of ANT-1 may influence 

insulin sensitivity of muscle cells is supported by studies 

in cultured C2C12 myotubes, in which partial silencing of 

ANT-1 results in reduced cellular sensitivity to fatty acid-

induced uncoupling and a significant reduction in insulin-

stimulated glucose uptake [63].

In skeletal muscle, reduced mitochondrial respiration 

has also been linked to aberrant control of mitochondrial 

dynamics [64–67]. Increased exposure of myotubes to PA 



4902 R. B. Nisr et al.

1 3

and fatty acid derivatives such as ceramide promote a low 

mitochondrial fusion to fission ratio resulting in fragmented, 

discontinuous mitochondria that not only exhibit dimin-

ished capacity for respiration and ATP synthesis, but also 

is thought to be causally linked to impaired insulin sensitiv-

ity and metabolic function [66–68]. Consistent with these 

observations, GLC/PA overloading of L6 myotubes in our 

studies induced a profound morphological change in mito-

chondria from an elongated/tubular network to one that is 

highly fragmented, indicative of a dynamic shift towards 

greater fission. The increase in Drp1 (a profission protein) 

and reduction in MFN2 (a profusion protein) that we see 

within a mitochondrial-enriched membrane fraction is 

fully consistent with this view. Strikingly, pharmacological 

inhibition of the IKK–NFkB axis in GLC/PA-overloaded 

myotubes not only suppresses the relative changes in Drp1 

and MFN2, but reduces fragmentation of the mitochondrial 

network, in which, significantly, we find was also associ-

ated with amelioration in cellular respiratory capacity and 

insulin action. Since Mitotempo is able to partially restore 

the tubular mitochondrial network, but not the loss in res-

piratory capacity in fuel-overloaded myotubes (Supplemen-

tary Fig. S4), we postulate that increased fission is likely 

to be secondary to the increased production of ROS that 

stems from mitochondrial dysfunction induced by activa-

tion of the NFkB pathway. It is also noteworthy that whilst 

our studies indicate that the activation of canonical NFkB 

signalling initiated in response to fuel overloading pro-

motes mitochondrial fragmentation, this process can also 

be influenced by non-canonical NFkB signalling, which is 

independent of IKKβ and IKKγ (NEMO) but dependent on 

IKKα dimers. Although we saw no differences in OPA-1 

expression in our mitochondrial-enriched membrane frac-

tions from fuel-overloaded L6 myotubes, MEF cells lacking 

IKKα (but not IKKβ) exhibit reduced cellular expression of 

OPA-1 and display enhanced mitochondrial fission [69]. It 

is also noteworthy that the activation of the classical NFkB 

pathway in C2C12 myotubes can result in suppressed IKKα 

expression and that this has implications for expression of 

OXPHOS genes [70]. Regardless of the stimulus promot-

ing a shift towards greater fission, whilst some of the frag-

mented mitochondria may retain their functional capacity, 

the structural integrity of others is likely to be compromised 

(as reflected by an overall reduction in cellular respiratory 

capacity) and, if not recoverable, will be targeted for clear-

ance by mitophagy. Consistent with this view, we observed a 

significant increase in the number of mitophagic particles in 

myotubes subjected to GLC/PA loading, and in line with the 

protective effects, we suggest that the inhibition of canonical 

NFkB signalling confers upon mitochondrial integrity and 

function; this increase in mitophagy was blunted in myo-

tubes that had been cotreated with BI606906. It is worth 

stating that the observed increase in mitophagy and the 

associated loss of key mitochondrial proteins (SDHA, ANT-

1, and UCP3) that we see in fuel-overloadeded myotubes 

occur despite their being no significant change in mitochon-

drial DNA or citrate synthase activity. One potential expla-

nation for this apparent paradox is that whilst our mitophagy 

reporter assay is highly sensitive and the loss in mitochon-

drial proteins may be accounted for by a reduction in the 

transcription and/or translation of their respective genes and 

products, analysis of mitochondrial DNA may also capture 

that present within mitochondria during the early stages of 

the mitophagic process. If so, this would lessen any potential 

differences in mitochondrial DNA between the treatments 

that we have performed.

In conclusion, our findings indicate that muscle cells sub-

jected to sustained oversupply of metabolic fuel exhibit an 

increase in proinflammatory NFkB signalling that is mech-

anistically linked to diminished mitochondrial function as 

evidenced by our ability to antagonise the marked decline in 

respiratory capacity, expression of key mitochondrial maker 

proteins and the increased fission and mitophagy by phar-

macological or genetic repression of the IKK–NFkB axis. 

Whilst very recent work has shown that sustained inhibi-

tion of NFkB can adversely affect muscle development and 

mitochondrial function during early life its repression has 

no detrimental effect in adult muscle [71]. Consequently, 

our observations would imply that therapeutic strategies 

that help restrain NFkB activation as seen during circum-

stances of energy excess, such as obesity and age-onset Type 

II diabetes, may help counter disturbances in mitochondrial 

homeostasis and impart beneficial effects upon skeletal mus-

cle insulin sensitivity.
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