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Abstract
Global climate is changing as a result of anthropogenic warming, leading to higher daily excursions
of temperature in cities. Such elevated temperatures have great implications on human thermal
comfort and heat stress, which should be closely monitored. Current methods for heat exposure
assessments (surveys, microclimate measurements, and laboratory experiments), however, present
several limitations: measurements are scattered in time and space and data gathered on outdoor
thermal stress and comfort often does not include physiological and behavioral parameters. To
address these shortcomings, Project Coolbit aims to introduce a human-centric approach to
thermal comfort assessments. In this study, we propose and evaluate the use of wrist-mounted
wearable devices to monitor environmental and physiological responses that span a wide range of
spatial and temporal distributions. We introduce an integrated wearable weather station that
records (a) microclimate parameters (such as air temperature and humidity), (b) physiological
parameters (heart rate, skin temperature and humidity), and (c) subjective feedback. The
feasibility of this methodology to assess thermal comfort and heat stress is then evaluated using
two sets of experiments: controlled-environment physiological data collection, and outdoor
environmental data collection. We find that using the data obtained through the wrist-mounted
wearables, core temperature can be predicted non-invasively with 95 percent of target attainment
within ±0.27 ◦C. Additionally, a direct connection between the air temperature at the wrist (Ta,w)
and the perceived activity level (PAV) of individuals was drawn. We observe that with increased
Ta,w, the desire for physical activity is significantly reduced, reaching ‘Transition only’ PAV level at
36 ◦C. These assessments reveal that the wearable methodology provides a comprehensive and
accurate representation of human heat exposure, which can be extended in real-time to cover a
large spatial distribution in a given city and quantify the impact of heat exposure on human life.
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1. Introduction

Heat exposure directly impacts our wellbeing, pro-
ductivity, and cognitive performance [1, 2] and
presents an increasing concern to human health in
the face of global climate change [3, 4]. Urban areas
are particularly vulnerable to the impacts of heat,
as they concentrate large numbers of vulnerable
people (such as young children, elderly, and those
with existing physical and mental health conditions
[5]) in settings where ambient temperatures are often
higher than suburban and rural areas (Urban Heat
Island effect [6]). The combined effect is detrimental
to the health of urban residents. Heat mortality is
referred to as ‘private and silent deaths’ and even in
developed countries such as Australia and the United
States, heatwaves are reported to kill more than any
other natural disaster [5, 7, 8]. Therefore, it is para-
mount that we deeply understand and closely mon-
itor not only the climatic factors but also the per-
sonalized responses of the population to assess the
impact of urban heat exposure on human health and
wellbeing.

Currently, measurements for thermal comfort
and heat stress are done through two main meth-
ods: (1) measurements of microclimate and physiolo-
gical parameters, commonly in fixed locations or
laboratory settings, and (2) surveys of human sen-
sation in response to thermal environments [9–14].
Although the information gathered contributes signi-
ficantly to our knowledge of thermal comfort, several
limitations persist:

1. Measurements are scattered in time and space.
The spatial and temporal distributions of
thermal environment and comfort in the city
are not readily available through the exper-
iments and have been mainly achieved by
numerical modeling [15–19].

2. Data gathered on thermal comfort often do
not include the ‘human factor,’ i.e. physiolo-
gical and behavioral parameters correspond-
ing to the thermal comfort of individuals, des-
pite the fact that the response and vulnerability
to thermal environments vary greatly between
individuals [20–22].

3. Data gathered on heat stress often do not
represent realistic conditions in urban envir-
onments and are not obtained in real-time.
For instance, the majority of temperature-
mortality/-morbidity relations are drawn based
on temperatures recorded at fixed monitoring
stations [23], which may not resemble what
people experience as they go about their lives in
the city.

Project Coolbit is motivated by the challenges and
limitations of existing methods. Innovative methods

of obtaining data are needed to (a) span larger spa-
tial and temporal distributions in cities, (b) obtain
real-time, unsupervised, and non-intrusive data on
thermal comfort and heat stress in the built envir-
onment, and (c) provide human-centric assessments,
such that we extend previous approaches to thermal
comfort and heat stress.

These objectives can be achieved through crowd-
sourced monitoring as opposed to centralized exper-
imentations. Crowdsourcing or ubiquitous sensing
(i.e. obtaining data by using a distributed num-
ber of sensors) has recently become feasible due to
the rapidly growing number of affordable internet-
enabled sensing devices [24]. Among these, wearable
technologies represent a range of opportunities for
comfort and health assessments. These devices enable
us to generate a significant amount of data about
people’s immediate environments, add behavioral
and physiological components [25, 26], and approach
thermal comfort and heat stress as ‘human-centric’ as
opposed to ‘one-size-fits-all’. Additionally, wearables
travel with the individuals in realistic exposure scen-
arios and, therefore, data collected by wearables com-
bined with GPS data can provide a spatiotemporal
distribution of environmental parameters and indi-
vidual’s exposure. However, to date, there is no wear-
able sensing (neither commercial nor in academic
use) available nor tested that can combine all the
parameters relevant to thermal comfort and heat
stress. Accordingly, we propose and test a methodo-
logy based on wearable devices here, which can ulti-
mately enable a comprehensive yet unsupervised and
non-invasive assessment of thermal comfort and heat
stress in the built environment.

The current generation of wearables monitors
such physiological parameters as heart rate, which
helps understand various aspects of human well-
being and health including sleep quality. However,
to assess thermal stress and comfort, the measure-
ments should be extended. Human skin is the medi-
ator between the environment and human body and,
therefore, skin temperature and conductance play a
major role in thermoregulatory processes involved
in thermal comfort and heat stress [27, 28]. Sim
et al [28] showed that wrist skin temperatures can be
used to predict whole-body thermal sensation. Addi-
tionally, several studies have used heart rate data to
indicate thermal stress in the built environment. A
study by Buller et al [29] introduced a non-invasive
and continuous method of estimating the human
core temperature, the main factor in determining
heat stress, from sequential heart rate observations.
They showed that out of 52 000 observations, 95%
of all core temperature estimates fell within±0.63 ◦C
of measurements. This, in addition to the advance-
ment of ubiquitous sensing in the built environment,
has opened new doors to use wearables for thermal
exposure assessments. Nonetheless, this is an emer-
ging field and there are only a handful of studies
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Figure 1. Schematic of an Integrated Wearable Weather Station for personalized assessment of urban heat exposure. In this
format, three components of heat exposure are captured: (1) environmental parameters (such as air temperature, humidity, or
radiation) are recorded on the outside of the strap (right image), (2) physiological response to heat exposure (including skin
temperature and humidity) is captured based on sensors placed on the inner strap (left image), and (3) the smartwatch app is
used to monitor activity level, location, and individuals’ momentary assessment of heat exposure (center). All emojis designed by
OpenMoji – the open-source emoji and icon project. License: CC BY-SA 4.0

that investigate wearable solutions [16, 25, 26, 30].
Among these, Nakayoshi et al [25] represents a com-
prehensive measurement of thermal comfort, monit-
oring four relevant environmental parameters in the
proximity of the human body as well as physiolo-
gical responses (heart rate and skin temperature) and
subjective feedback, and found a correlation between
skin temperature and thermal comfort index in a
semi-controlled testing environment. The wearable
system involved five sensing units worn by the par-
ticipants on multiple locations: hat, belt, hand, and
forehead skin, and carried in a small sash. Although
comprehensive for research purposes, this method-
ology cannot be employed in unsupervised settings
and is considered impractical for implementation in
real-life applications. Wrist-mounted wearables can
address such concerns regarding scalability in real-
istic applications, particularly as smartwatches have
recently dominated thewearable techworldwide [31].
However, the challenges of using wearables as sensing
methodologies are still numerous and, to date, reli-
ability of wrist-mounted wearable data collection
under dynamic use are not fully assessed. There is an
urgent need to quantitatively assess the performance
of wearables for heat exposure monitoring, which
motivates the present study. Here, we propose an
Integrated Wearable Weather Station for unsuper-
vised assessment of urban heat impact on individu-
als (section 2.1), and further discuss experiments that
rigorously assess the feasibility of this methodology
for various heat exposure evaluations in the built
environment (section 2.2). In sections 3.1 and 3.2,
we evaluate the prediction of body core temperature
(as the main predictor of heat stress) and thermal
comfort sensation using collected data and lastly, we
discuss the implication of these findings as well as
future research that can extend this methodology for

real-time and unsupervised evaluation of urban heat
impacts on human life in section 4.

2. Methodology

2.1. Integrated wearable weather station:
human-centric assessment of thermal comfort and
heat stress
Innovative methods of obtaining data are needed to
assess dynamic exposure to thermal environments in
cities in a human-centric way. However, the assess-
ment of thermal exposure is notoriously complex as
it requires consideration of three critical components:
(a) environmental factors, (b) physiological ther-
moregulation mechanisms of the human body, and
(c) subjective psychological perceptions and behavi-
oral patterns as well as cultural and climatic back-
grounds of individuals. Accordingly, the integration
of all these components into one sensing unit hasn’t
been accomplished so far.

Unprecedented potentials are now emerging
through the rise of Internet-of-Things sensing and
wearable technologies for fitness, performance,
and health tracking. Various wearable sensors have
enabled continuous and real-time monitoring of
physiological parameters over the last few years, with
limited attention given to thermal exposure assess-
ments [32–34]. Smart devices further provide inter-
faces for continuous interaction with users and data
collection regarding behavioral patterns of human
activities. Tapping on these emerging potentials, we
propose wrist-mounted smart wearable devices as a
novel approach to obtaining dynamic (spatially and
temporally variable) data on thermal exposure. Integ-
rated Wearable Weather Stations (figure 1) proposed
here aim to record (1) microclimate parameters (such
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as air temperature and humidity) in the immedi-
ate environment of individuals, (2) physiological
responses to heat (including heart rate, skin temper-
ature and humidity), and (3) human activity and sub-
jective feedback with regards to the thermal environ-
ment. Combined, this methodology aims to provide
a comprehensive, integrated, and personalized assess-
ment that improves our understanding of personal
thermal comfort and heat stress in cities.

As the first example of a wearable weather sta-
tion for heat exposure assessments, we employed
Fitbit smartwatches [35] worn on the wrist that
are equipped with the PurePulse (photoplethysmo-
graphy) technology for heart rate monitoring
[36, 37]. The Fitbit smartwatches are then equipped
with two coin-sized iButton environmental sensors
(i.e. wireless data logger in the form of a 1.3 cm
radius stainless steel button [38]), which are placed
at the inner and outer face of the watch strap to
collect temperature and humidity of air and skin.
The iButton Hygrochron temperature/humidity data
loggers (DS1923) are attached to the Fitbit devices
with a 3D printed harness (figure 2) and measure the
air/skin temperature and humidity ranging between
−20 to 85 ◦C and 0% to 100% with ±0.5 ◦C and
±0.6% accuracy, respectively. The use of the smart-
watch app for obtaining subjective feedback was
also assessed in a separate study (preliminary work
presented by Jayathissa et al [39]). The feasibility of
such integrated sensing for inferring the personalized
heat exposure in the built environment is assessed in
section 2.2.

2.2. Experimental campaigns: assessing the
robustness of data collection using wrist-mounted
devices
Detailedmeasurements are carried out and compared
with conventional sensing methods to investigate the
accuracy of physiological and environmental data col-
lected by wearables. We conducted two sets of exper-
iments: (1) controlled-environment experiments in
a climate chamber, and (2) semi-controlled experi-
ments in a range of indoor-outdoor built environ-
ments. In the first experiment, the environmental
conditions were kept unchanged while the metabolic
rate was varied based on activity level, while the
second experiment focused on the changes in the
heat exposure and thermal comfort based on micro-
climate characteristics. The detailed setup and spe-
cification of each experiment are discussed here. Eth-
ics approval for conducting human subject research
was received from NUS Institutional Review Boards
(Reference code N-18-071).

2.2.1. Controlled-environment test in the climate
chamber
We conducted controlled-environment experiments
in a climate chamber (figure 3) at the Department

of Physiology of the National University of Singa-
pore. These experiments aim to collect physiological
responses to heat (such as heart rate and skin tem-
perature and humidity at the wrist) and further eval-
uate the relationship between wearable data and the
body core temperature as the main indicator for heat
strain [29].

For the assessment of body core temperature, par-
ticipants were asked to ingest VitalSense telemetric
capsules [40] 8–10 h prior to the trial. For continu-
ous monitoring of skin temperature (Tsk), four iBut-
tons were placed at four right-hand sides of each par-
ticipant’s body (chest, upper arm, thigh, and calf)
which, in addition to the iButton attached to the Fit-
bit strap, provide the distribution andmean skin tem-
perature of participants throughout the experiment
[41]. Heart rate is continuously monitored by the
watch, as well as the chest strap heart rate monit-
oring device. Fifteen participants (seven female and
eight male) were recruited between the age of 18–45.
To have a representative group, the participants were
evenly distributed among three categories: (1) Singa-
porean (or those from a similar tropical climate), (2)
acclimatized expatriates (>3 years stay), and non-
acclimatized expatriates (0–6 months stay). During
the experimental trial, participants went through a
low to moderate exercise on a treadmill (figure 3) in
a moderate environment resembling outdoor condi-
tions in Singapore (Ta = 27 ◦C–29 ◦C, RH = 70%–
80%). The experiment consisted of three stages and
the exercise intensity was specified using rating of
perceived exertion (RPE, Borg [42]). Borg’s RPE
scale ranges from 6 to 20, resembling ‘very light’ to
‘extremely hard’ and is subjective. In our experiment,
the three stages of activity (each 15min) correspon-
ded to RPE of 8–9, 10–11 and 12–13 to induce ‘fairly
light,’ ‘moderate,’ and ‘somewhat hard’ efforts in indi-
viduals, respectively. Accordingly, although generally
healthy adults were targeted, there was no required
threshold level of fitness. The run/walk exercise on the
treadmill in this experiment resulted in a change in
the metabolic rate and therefore body core temperat-
ure, which is needed for assessment of this methodo-
logy in a range of daily human activities.

2.2.2. Semi-controlled environment test in the built
environment
We further conducted environmental monit-
oring campaigns to evaluate and compare the
wrist-mounted sensor data with microclimate
measurements at fixed locations and calibrate the
subjective individual thermal sensation with object-
ive environmental measurements. Semi-controlled
environment tests were performedwhere participants
walked through a predefined path (covering different
built environment characteristics—figure 4), while
passing through a network of sensors and answering
thermal comfort surveys (figure 5).
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Figure 2. Fitbit Ionic and sensor attachments deployed here for monitoring of (a) temperature and humidity of air in the
proximity of human body, (b) heart rate, skin temperature, and humidity at wrist, and (c) activity level and momentary
feedback. Two iButton sensors [38] are placed on the watch strap using a 3D printed harness. The Fitbit acitivity trackers used
have a 3-axis accelerometer to track the wearer’s motion patterns (e.g. those that indicate walking, swimming or cycling) to
approximate the number of steps taken, calories burned, floor climbed, and length of time performing exercises. The PurePulse
(photoplethysmography) technology for heart rate monitoring [36, 37] uses LED lights installed at the back of the instrument to
detect blood volume changes that are due to capillary expansion and contractions, and has been shown to tracks heart rate well
when compared to three-lead electrocardiography [37]. The design and use of the smartwatch app will be further discussed in
future studies.

Fifteen sessions were organized over six days
in October–November (inter-monsoon period), dis-
tributed over different hours of the day with approx-
imately 40% conducted at noon and 20% each in
the morning, afternoon, and evening. Sixty-two par-
ticipants (with 48.2% female representation) were
recruited for this studywith age distribution of 19–48.
Before the experiment, participants arrived at an
indoor site and answered a questionnaire with regards
to their personal profile (such as age, gender, and
income level) as well as general preference toward
the thermal environment. The project team then
noted the participants’ height, weight, and clothing
level for the calculation of thermal comfort indices.
Through this process, we also ensured that all par-
ticipants have been in the same indoor environment
for at least 30min and have reached a physiologically
stable condition before the start of the experiments.
The profile of the participant group covered a body
height range of 1.5–1.95 m (mean 1.71 m), weight of
42–102 kg (mean 72 kg), BMI of 18–32 (mean 23),
and clothing insulation (iclo) of 0.34–0.44 (mean
0.36). Participants were then directed outdoors and
asked to walk on a predefined path for approxim-
ately 40–50min while wearing the modified wear-
able devices (figure 2). The path was chosen to cover
a range of different built environment characterist-
ics, including an indoor environment, a semi-covered
outdoor environment, covered outdoor locations

(distinguished by a presence or lack thereof of a ceil-
ing fan), and fully exposed locationswith different sky
view factors. Along this path, participants passed two
sets of fixed environmental sensors: (1) temperature
and relative humidity sensors (Hobo MX2302 data
logger) and (2) WBGT Heat Stress tracker (Kestrel
5400) to collect a comprehensive set of environmental
data. The participants were then asked to answer the
questionnaire at five pre-selected locations (i.e. survey
stations equipped with environmental sensors). The
survey asks participants to rank their thermal com-
fort satisfaction, sensation, and preference during the
experiment using ASHRAE’s 7-point sensation and
satisfaction scales as well as 3-point scale preference
votes for variousmicroclimate parameters (temperat-
ure, humidity, wind speed, and radiation). Addition-
ally, we continuously monitored participants’ heart
rate, skin temperature, skin humidity, air temper-
ature and humidity at wrist, location, and walking
speed during this experiment.

3. Results

3.1. Physiological data collection and prediction of
body core temperature
Here, we evaluate the physiological data collection
using wearable sensors and their correlation with
heat strain (indicated by body core temperature).
First, we compared the skin temperature obtained at
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Figure 3. Controlled-environment experiment at NUS
Department of Physiology. A participant is walking on a
treadmill while wearing the wrist-mounted sensor
arrangement (figure 2), chest-wrapped heart rate
monitoring (Polar A300), and iButton sensors for recording
skin temperature at various body parts. The environmental
parameters in the climate chamber as well as ratings of
thermal sensation (ASHRAE’s 7-point scale) and RPE are
continuously monitored throughout the experiment. Data
from the ingested telemetric capsules were collected by the
wireless data-recording devices and the body core
temperature is monitored closely such that the experiment
is ceased if the threshold of 40 ◦C is reached.

the wrist with temperature distribution at different
body locations as well as air temperature (figure 6).
Chest and thigh exhibit the highest skin temperat-
ure (∼31 ◦C–37 ◦C), but also resemble body areas
that were mostly covered by participants. Skin tem-
perature at the wrist (Ts,w) shows the lowest median
and minimum value compared to other body parts,
while being consistently higher than the air temper-
ature at wrist in the studied conditions. We observe
that although the variability in ambient air temperat-
ure (Ta) is very small (∼28 ◦C–30 ◦C), air temperat-
ure at the wrist (Ta,w) varies significantly during the
experiment (∼26 ◦C–34 ◦C). This variation is due to
the sensor being placed at the proximity of the human
body that acts as a heat source. This indicates that air
temperature at the wrist, alone, cannot determine the
ambient air temperature in the built environment as it
exhibits the combined effect of environmental condi-
tions (Ta) and physiological responses (Ts). However,
it is worth noting that it may be feasible to predict
ambient air temperature using air and skin tem-
perature at the wrist considering the heat exchange
between human skin surface and thermal environ-
ment [43, 44]. Additionally, we compared wrist skin

temperature with mean skin temperature [41] for
each participant (figure 6—right) and found a linear
relationship for all participants. The majority of par-
ticipants, however, showed lower wrist temperature
compared to mean skin temperature, as temperatures
at body extremities are usually lower. Nonetheless,
we observed that wrist (skin and air) temperatures
(Ta,w and Ts,w) better describe the thermal comfort
sensation of individuals (section 3.2) and therefore
these parameters are used for further analyses. Fur-
ther monitoring relative humidity at the wrist (RHw),
we observe that for some participants, RHw reaches
saturation during the experiments (in both controlled
and semi-controlled settings). Although this value
may be higher than RH reported in other body parts
due to the rubber wristband, we note that the onset of
sweating in different individuals (a critical determin-
ant for the physiological strain and acclimatization) is
captured using the wearables which can be the subject
for future research on personalized heat exposure.

We further compared the wrist-mounted heart
rate data with highly accurate measurements
obtained from chest strap sensors (figure 7—left)
as well as body core temperature obtained from tele-
metric capsules (figure 7—right). The comparison
is in agreement with previous studies that deemed
Fitbit satisfactory for heart rate monitoring [36].
We observed that 83% of heart rate data falls within
the desired ±5 bpm accuracy level, with signific-
antly smaller error observed for HR > 120 that is
particularly of interest for heat strain assessments.
Additionally, it is found that a significant majority
of the error is attributed to two participants. After
evaluating temperature measurements at the wrist
for these participants (not shown), we find that this
error has been introduced due to the way the smart-
watches were worn during the experiment. This is
particularly important for future deployments and
motivates means to ensure that wearables are worn
correctly. An example of such interventions can be
a smartwatch function that monitors the wearable
pressure on the wrist and triggers an alarm on the
smartwatch in response.

Lastly, we focused on non-invasive prediction of
body core temperature (Tc) using physiological and
environmental data by the wrist-mounted sensors.
We observed that core temperature is positively cor-
related with heart rate data (figure 7), which is in
close agreement with the reported role of metabolic
rate on heat strain [46]. However, given (i) potential
errors in heart rate monitoring using Fitbit watches
(figure 7—left) and (ii) moderate performance in Tc

predictionwhen only heart rate data are used [47, 48],
we revisited the core temperature predictions using
sequential air and skin temperature at wrist (Ta,w and
Ts,w). A Kalman filter (also known as linear quad-
ratic estimation [49]) was employed to estimate core
temperature (Tc) using the variables obtained from
wearable sensors. The KF model (further explained
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Figure 4.Map and photos of sensor network in the semi-controlled experiment. Left: map of the studied area at NUS UTown
Campus with location of sensors and survey stations identified. Right: different characteristics of built environment selected for
the experiment. Five survey stations were selected among an indoor (air-conditioned) environment, a semi-covered outdoor
environment, covered outdoor locations (distinguished by a presence or lack thereof of ceiling fan), and fully exposed locations
with different sky view factors.

Figure 5. From left: sensor calibration in indoor laboratory; Hobo MX2302 temperature and humidity logger installed on site with
a radiation shield; Kestrel 5400 Heat Stress Tracker at survey stations; and participants answering survey questions while wearing
modified wearable devices. We ensured that the participants have been in Singapore for the week preceding the experiment (i.e.
no overseas travels to hotter or colder climates that can affect their thermal sensation) and are well-rested to undertake a walk on
flat terrain (40–50min duration). Fixed environmental sensors are placed at the height of wearables at wrist (1.1–1.2 m).

in appendix A) is used extensively for Tc estimation
using non-invasive measurements, mainly heart rate
[47, 50–52].

Figure 8 shows the schematic of physiological
measurements for the core temperature prediction,
as well as the comparison between estimated and
observed Tc data. Compared to using HR as the only
indicator (R2 = 0.52, not shown), core temperature
estimation is significantly improved when sequential
skin and air temperature observations at wrist are
used as input parameters (R2 = 0.81). Figure 9 shows
the distribution of error and level of agreement with
observations for predicted Tc. We find that 95% of

the predicted core temperature falls within 0.27 ◦C of
the measured data, which is among the best perform-
ances observed in the literature [47, 48, 52]. Themean
bias and mean absolute error (MAE) are 0.008 ◦C
and 0.1 ◦C, respectively, with a maximum error of no
more than 0.44 ◦C. For male participants, we observe
that a prediction tends to underestimate Tc, which is
due to lower core temperature during the experiment
as the training data. Lastly, we observe that minimum
of 12–13 participants are needed to train the predic-
tion algorithm with percentage of target attainment
rate of higher than 80% (when target set as 0.3 ◦C)
and MAE lower than 0.25 ◦C. Overall, this analysis
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Figure 6. Left: Boxplots of observed skin temperature (1min average) at five body areas (chest, thigh, calf, arm, and wrist)
compared with air temperature measurements (near-wrist and ambient). Right: Distribution of skin temperature at wrist
compared to mean body skin temperature for each individuals [41, 45]. Each ID represents a unique participant in the
controlled-environment experiment and the 1:1 relationship is represented by a dashed line.

Figure 7. Left: Comparison of heart rate data (1min average) obtained from Fitbit wearables (figure 2) with high-accuracy chest
strap sensors (Polar A300). The 1:1 relationship is represented by a dashed line. Right: Distribution of observed core temperature
as a function of heart rate. Each ID represents a unique participant in the controlled-environment experiment.

demonstrates the ability of wrist-mounted sensing for
non-invasive prediction of core temperature and fur-
ther inferring heat strain [47] and can be extended to
include a larger sample size and testing with different
population groups.

3.2. Prediction and impacts of thermal sensation
vote
Comparing participants’ thermal sensation with local
microclimate parameters (such as WBGT obtained
from fixed monitoring stations) yielded similar res-
ults to findings of Yang et al [53] and Heng and
Chow [54], indicating a linear relationship between
thermal comfort indices and aggregated thermal sen-
sation vote (TSV). Here, we extend the analysis to
compare thermal sensation and satisfaction votes,

TSV and TCV respectively, with data obtained from
wearable devices such as skin and air temperat-
ure at the wrist (figure 10). We observe that TSV
(figure 10—right, ranging from ‘Very Cold’ to ‘Very
Hot’) exhibits a positive correlation with the air and
skin temperature at wrist and a stronger correlation
compared to ambient air temperature. For thermal
comfort vote (TCV) (figure 10—left, ranging from
‘Extremely Satisfied’ to ‘Extremely Dissatisfied’), the
median and distribution of air temperature measured
at the wrist exhibit the most significant correlation
with thermal satisfaction, which indicates the ability
of Ta,w for predicting comfort. Additionally, figure 10
shows that as TSV moves towards hotter sensations or
TCV moves to higher dissatisfaction, the difference
between temperatures at the wrist and ambient air
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Figure 8. Left: schematic of various physiological and environmental parameters used to predict body core temperature, including
heart rate, wrist skin temperature (Ta,w) and wrist air temperature (Ts,w). Skin humidity (RHw) was also considered in the
prediction algorithm but did not increase the accuracy of results. Right: prediction of body core temperature (30 s average) for
different genders (red: male, black: female) using a Kalman filter compared with measurements in the climate chamber.

Figure 9. Distribution of error for predicted core temperature using a Kalman filter and sequential observed data for heart rate,
air temperature, and skin temperature at wrist. Left: Bland–Altman plot of agreement between observed and predicted core
temperature. 95% confidence interval is met at the target temperature error of 0.27 ◦C. The dashed yellow line represents the bias
of prediction. Right: Normalized histogram of percentage error for all training data shown based on different gender.

temperature decreases. This difference dominates
the rate of sensible heat transfer from the skin,
which is critically important for human comfort and
satisfaction [55].

Next, to analyze and predict the respondents’
thermal sensation and comfort, we binned the data
based on wrist air temperature (Ta,w) into 0.5 ◦C
intervals [14] and calculated the mean TSV and
TCV in each bin (figure 11). We observe that the
correlation between heart rate and TSV is weak,
but skin temperature and particularly air tem-
perature at the wrist are linearly correlated with
thermal sensation. Combining measured relative
humidity with air temperature obtained at the wrist
[56] improved the accuracy of thermal comfort

prediction (yielding R2 = 0.74—not shown) and
TSV is predicted with MAE = 0.3 for this data-
set. However, although such prediction provides
a valuable assessment of collective comfort sensa-
tion and can help to assess the impact of urban
characteristics on collective dwellers’ comfort, the
predictive ability of such regression models for
individualized response remains at ∼35%–40%,
in line with a range of thermal comfort indices
assessed in previous studies [57]. This further motiv-
ates the development of personal comfort models
[58] based on long-term data collection and con-
sideration of behavioral and subjective factors,
which is a focus in future developments of Project
Coolbit.
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Figure 10. Boxplots of wrist skin temperature (red), wrist air temperature (green) and ambient air temperature (grey) categorized
by Thermal Comfort Vote and Thermal Sensation Vote of participants. The boxplots are overlaid with scattered data points in
each vote category. Data points represent 726 responses collected from 62 participants over 15 sessions.

Figure 11. Distribution of thermal sensation vote as a function of wearable data (binned based on wrist air temperature). Pearson
regression coefficient and errorbars (indicating the standard deviation of TSV for the binned data) are also presented for each
variable. The temperature-humidity index is adopted from Steadman [59] to combine air temperature and relative humidity
monitored at the wrist.

To extend our assessment regarding the rela-
tionship between thermal sensation and satisfaction
and the consequent impact on human life, we show
the correlations between TCV, TSV, and perceived
activity vote (PAV) obtained in our experiments
(figure 12). PAV is introduced here to assess the
impact of the thermal environment on human activ-
ity and lifestyle, which is a critical factor indirectly

contributing to heat-related health outcomes. For
example, an uncomfortable thermal environment
can result in less desire to perform physical activ-
ity, which further contributes to health challenges
such as obesity, mental health, and high blood cho-
lesterol and pressure level. Identifying such links
between the thermal environment and activity level
is, therefore, considered as one of the motivations and
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Figure 12. Bar charts of thermal comfort votes (TCVs) as varied by thermal sensation vote (TSV) and perceived activity vote
(PAV). Results are obtained based on 720 responses of 62 participants in indoor/outdoor environments with a range of activities
and built environment characteristics. For PAV, participants are asked to rank the level of activity that they perceive suitable based
on the thermal environment. For example, ‘Extended/intense’ activity vote indicates that participants are comfortable to perform
intense activities or stay for an extended period in this thermal environment while ‘No activity’ indicates that participants find
this thermal condition extremely uncomfortable or unhealthy for any activity.

Figure 13. Distribution of perceived activity vote as a function of air temperature at wrist obtained from wearable sensors.

advantages of using activity-tracker wearables in this
study. Assessing the PAV enables us to not only ana-
lyze and predict thermal comfort but also quantify
the implications on health and wellbeing in the built
environment.

In figure 12 (left), we observe that for the cli-
mate of Singapore, TSV corresponding to ‘cool’,
‘Slightly Cool’, ‘Neutral’ and ‘Slightly Warm’ can
lead to satisfaction of the thermal environment.
This is in line with previous studies that demon-
strated that (a) ‘Neutral temperature’ does not
necessarily indicate thermal comfort and satisfac-
tion [14] and (b) Singapore residents tend to have a
higher tolerance to colder indoor conditions, espe-
cially considering the high humidity level outdoors.

More importantly, by comparing the PAV with TSV
(figure 12—right), we find that the desire to do an
activity is significantly affected by the thermal envir-
onment. Participants may be willing to do an exten-
ded activity in cold thermal sensations but a warm
condition directly translated to shortened or lack
of activity in our experiments. Moreover, using the
binned data (figure 13), we can draw a direct con-
nection between the air temperature at the wrist and
perceived activity level: with increased Ta,w, the desire
for physical activity is significantly reduced, reaching
‘Transition only’ PAV level at 36 ◦C. This is the first
quantification of thermal comfort impact on human
activity and demonstrates the ability of this method-
ology to not only predict the overall thermal comfort,
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but further contribute to quantification of the indir-
ect impact on health through the loss of activity and
change in lifestyle.

4. Conclusions and future work

Heat exposure has a wide range of adverse effects on
the human body and is considered a public health
hazard [5, 60]. Additionally, thermal discomfort in
urban spaces has been associated with loss in pro-
ductivity, cognitive performance, and wellbeing of
individuals [1]. However, despite decades of clima-
tological, epidemiological, and physiological research
on this topic, little is known about actual thermal con-
ditions people experience as they go about their daily
lives [61]. The personalized and real-time assessment
of urban heat exposure, which further provides com-
prehensive assessments of impacts on human life, is
yet to be achieved.

Such knowledge gaps and methodological limita-
tions motivated the present study. Here, we proposed
wearable sensing for human-centric heat exposure
assessments, such that we connect humans with
their immediate environment. We introduced an
integrated personalized methodology, i.e. wearable
weather stations, that in one wrist-mounted sensing
unit can record environmental parameters, physiolo-
gical responses, and human activities and feedback.
We then addressed the feasibility of this methodo-
logy using two sets of experiments: (1) controlled-
environment experiments in a climate chamber
focused on physiological responses and (2) semi-
controlled experiments in the built environment
focused on thermal comfort. The objectives were to
answer two questions: (1) can this wearable sensing
predict heat strain? and (2) what information regard-
ing thermal sensation can be derived using personalized
monitoring?

We demonstrated that body core temperature
(Tc) can be predicted non-invasively with high accur-
acy: using data from 15 participants, Tc was predicted
using heart rate, skin temperature, and air temper-
ature at wrist (obtained from wearable devices) and
95% of predicted results fell within 0.27 ◦C of meas-
urements obtained from telemetric capsules. This is
among the best performances seen in the literature
and presents the most viable option as smartwatches
are easily worn and carried on the wrist at all times.
However, it should be noted that due to the limited
number of participants in this study (15 in total),
it was not statistically meaningful to train the data
using a segment of the sample size for testing and
more importantly, a relatively homogeneous parti-
cipant profile is considered here. Accordingly, it is
critical that measurements and testings are extended
to increase the number of participants with diverse
profiles (such as age, gender, BMI, acclimatization
status, fitness, and health conditions). We further
plan to extend the measurements to higher Tc and

HR ranges in collaboration with the NUS Depart-
ment of Physiology and by studying healthy adults
that can complete maximum physical activity tests in
experimental settings.

Using environmental and physiological data
obtained from the watch, we were also able to predict
the overall sensation of participant groups. How-
ever, when regression models are applied to indi-
vidualized responses, only ∼35%–40% of responses
are accurately predicted which is similar to previ-
ous thermal comfort models [57]. This is due to the
subjective nature of thermal comfort that includes
individual preferences based on behavioral, cultural,
and climatic backgrounds. To account for these,
we aim to extend the data collection period and
employ machine learning techniques that incorpor-
ate individualized behavioral patterns to train per-
sonal comfort models [58]. More importantly, we
demonstrated that this methodology can quantify
the indirect impact of heat on health through the
change in physical activity level and lifestyle. To the
best of our knowledge, this is the first study that
quantified the impact of urban heat on activity level,
which opens new doors for heat-health assessments.
We plan to extend this study to quantify the impacts
of more realistic thermal environments on perceived
and actual activity levels of individuals.

This study represents the first methodology to
monitor personal heat exposure in a non-intrusive yet
quantitative way, which enables us to better determ-
ine the links between climatic variables and human
health and wellbeing, design effective mitigation
and adaptation strategies, and prepare emergency
responses to extreme conditions. Such knowledge
can ultimately transform the way we understand and
design for optimized exposure. However, we note the
deployment of wearable sensors is done for a lim-
ited number of participants so far. To fully realize the
impact of this methodology, the sensor array needs to
be further developed and extended in real-time and
realistic conditions in the built environment, which
presents a challenge regarding sensor cost and effect-
ive communication of data. Additionally, to translate
this understanding to establishing climate-resilient
cities, large scale deployments are needed to cover
large spatial and temporal distributions in cities.

Appendix A. Fundamentals of Kalman
filter used for core temperature prediction

The Kalman filter is known for its capability of estim-
ating unknown variables from indirectmeasurements
that contain statistical noise and other inaccuracies.
The KF model is comprised of a state-transition and
an observation model, and the noise allied to each
model. All the KF parameters were learned from
the dataset gained in this study via linear regression.
The state-transition model illustrates how the hidden
variable TC,t transferred from the previous time point
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status TC,t − 1, which can be defined as:

TC,t = A×TC,t−1 +A0 +wt (A1)

wt ∼ N(0,Qt) (A2)

Where A and A0 are the weights learned by the
linear regression of TC,t against TC,t − 1 with the 15 s
time step. w is the transition model noise with a zero
mean normal Gaussian distribution with covariance
Q. In this case, Q is the standard deviation of minute
difference of Tc.

The observation model was defined as a linear
model of observed variables against the hidden vari-
able TC,t . Here we used heart rate (HRt), skin tem-
perature at wrist (Tsw,t), and air temperature at wrist
(Taw,t) as inputs. The observationmodels of these two
models can be represented as follows:







HRt

Tsw,t

Taw,t







= H×TC,t +H0 + vt (A3)

vt ∼ N(0,Rt) (A4)

Where H and H0 are the weight matrix learned by
linear regression of Tc against HR , Tsw, and Taw. v is
the observationmodel noise with a zeromean normal
Gaussian distribution with covariance R. R is the cov-
ariance matrix of 15 s difference of HR, Tsw, and Taw.

In our analysis, at each new 15 s time step (t), the
KF provided a new estimate of TC,t and its error vari-
ance PC,t based on the observed HRt , Tsw,t and Taw,t

by iteratively calculating equations (A1)–(A6). First,
a preliminary estimated TC,t was computed using
equations (A1)–(A2). The associated error variance
was calculated as

Pt
T = A× Pt−1 ×AT +Qt (A5)

where the initial Pt was set as 0 and the superscript
T means the transposed matrix. The Kalman gain K t

was then estimated by

Pt = Pt
THT(HPt

THT +Rt)
−1

. (A6)

The final estimate of TC,t was calculated with
the preliminary estimate (TC,t − 1), the error between
the observed variables (HRt , Tsw,t , and Taw,t) and the
estimated ones using the TC,t − 1:

TC,t = TT
C,t +Kt(







HRt

Tsw,t

Taw,t







− (H×TT
C,t)+H0).

(A7)

Finally, the current core temperature estimate error
variance is computed as

Pt = (1−KtH)Pt
T
. (A8)
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