
P
roject Halo is a long-range research effort sponsored by

Vulcan Inc., pursuing the vision of the “Digital Aristotle”

— an application containing large volumes of scientific

knowledge and capable of applying sophisticated problem-solv-

ing methods to answer novel questions. As this capability devel-

ops, the project focuses on two primary applications: a tutor

capable of instructing and assessing students and a research

assistant with the broad, interdisciplinary skills needed to help

scientists in their work. Clearly, this goal is an ambitious, long-

term vision, with Digital Aristotle serving as a distant target for

steering the project’s near-term research and development. 

Making the full range of scientific knowledge accessible and

intelligible to a user might involve anything from the simple

retrieval of facts to answering a complex set of interdependent

questions and providing user-appropriate justifications for those

answers. Retrieval of simple facts might be achieved by infor-

mation-extraction systems searching and extracting informa-

tion from a large corpus of text. But, to go beyond this, to sys-

tems that are capable of generating answers and explanations

that are not explicitly written in the texts, requires the comput-

er to acquire, represent, and reason with knowledge of the

domain (that is, to have genuine, internal “understanding” of

the domain). 
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■ In the winter 2004 issue of AI Magazine, we

reported Vulcan Inc.’s �rst step toward creating

a question-answering system called Digital

Aristotle. The goal of that �rst step was to

assess the state of the art in applied knowledge

representation and reasoning (KRR) by asking

AI experts to represent 70 pages from the

advanced placement (AP) chemistry syllabus

and to deliver knowledge-based systems capa-

ble of answering questions from that syllabus.

This article reports the next step toward realiz-

ing a Digital Aristotle: we present the design

and evaluation results for a system called

AURA, which enables domain experts in

physics, chemistry, and biology to author a

knowledge base and that then allows a different

set of users to ask novel questions against that

knowledge base. These results represent a sub-

stantial advance over what we reported in

2004, both in the breadth of covered subjects

and in the provision of sophisticated technolo-

gies in knowledge representation and reasoning,

natural language processing, and question

answering to domain experts and novice users.



Reaching this ambitious goal requires research

breakthroughs in knowledge representation and

reasoning, knowledge acquisition, natural lan-

guage understanding, question answering, and

explanation generation. Vulcan decided to

approach this ambitious effort by first developing

a system capable of representing and reasoning

about introductory, college-level science text-

books, specifically, a system to answer questions

on advanced placement (AP) exams.1

Question answering has long challenged the AI

field, and several researchers have proposed ques-

tion answering against college-level textbooks as a

grand challenge for AI (Feigenbaum 2003, Reddy

2003). Project Halo, described in this article, pro-

vides an essential component to meet that chal-

lenge — a tool for representing and using textbook

knowledge for answering questions by reasoning.

As an initial, exploratory step toward this vision,

Vulcan initiated the Halo Pilot in 2002 — a six-

month effort to investigate the feasibility of creat-

ing a scientific knowledge base capable of answer-

ing novel questions from an AP (first-year,

college-level) chemistry test. Three teams — SRI

International, Cycorp, and Ontoprise — developed

knowledge bases for a limited section of an AP

chemistry syllabus. The knowledge bases could

correctly answer between 30 and 50 percent of the

associated questions from the AP test (Friedland et

al. 2004a, 2004b).

While encouraging, these results had limita-

tions. Only a small subset of knowledge, from one

domain, was tested — leaving the question of how

well the techniques would generalize to other

material and other domains. Knowledge represen-

tation experts, rather than domain experts, had

encoded the knowledge bases, making large-scale

implementation impractical. Also, all test ques-

tions were translated manually from natural lan-

guage into formal logic (also by knowledge repre-

sentation experts), not addressing the problem of

question formulation by typical users.

In 2004, Vulcan initiated Halo Phase II with the

goal of developing tools to enable subject matter

experts (SMEs) (such as chemists, biologists, and

physicists) to formulate the knowledge and tools to

enable less-experienced domain users, such as

undergraduates in these disciplines, to formulate

questions to query that knowledge. Again, multiple

teams were awarded contracts to design and proto-

type knowledge-formulation and question-formula-

tion tools suited for domain experts. The system

that emerged as the best of these attempts, and the

one described in the rest of this article, is the Auto-

mated User-Centered Reasoning and Acquisition

System (AURA), which was developed by SRI Inter-

national, the University of Texas at Austin, and the

Boeing Company, with Professor Bonnie John from

Carnegie Mellon University serving as consultant.

In Halo Phase II, the goal was developing a soft-

ware system that enabled domain experts to con-

struct declarative knowledge bases in three

domains (physics, chemistry, and biology) that

could answer AP-like questions posed in natural

language. The AURA team analyzed the knowledge

representation and question-answering require-

ments; crafted a user-centered design; implement-

ed an initial system prototype; conducted an inter-

mediate evaluation in 2006; developed a refined

version of the AURA system; and conducted a final

evaluation of the system in 2008 and 2009. This

article summarizes that system and its evaluation.

AURA System Development

The concept of operation for AURA is as follows: a

knowledge-formulation (KF) SME, with at least a

graduate degree in the discipline of interest, under-

goes 20 hours of training to enter knowledge into

AURA; a different person, a question-formulation

(QF) SME, with at least a high-school-level educa-

tion, undergoes 4 hours of training and asks ques-

tions of the system. Knowledge entry is inherently

a skill-intensive task and, therefore, requires more

advanced training in the subject as well as training

in using the system. The questioner is a potential

user of the system, and we required less training for

this position because we wanted as low a barrier as

possible to system use.

We chose the domains of college-level physics,

chemistry, and biology because they are funda-

mental hard sciences, and because they also stress

different kinds of representations. The AP test was

established as the evaluation criterion to assess

progress. Textbooks were selected that covered the

AP syllabus for physics (Giancoli 2004), chemistry

(Brown et al. 2003), and biology (Campbell and

Reece 2001). A subset of each AP syllabus was

selected that covered roughly 60 pages of text and

15–20 percent of the AP topics for each domain.

The AURA team was challenged to design and

develop a system that could fulfill the concept of

operations for the selected AP material.

Overall Design 
and Requirements Analyses 

The initial design requirements were determined

by conducting a series of three analyses (Chaudhri

et al. 2007, Chaudhri et al. 2010): (1) a domain

analysis of textbooks and AP exams in the three

domains; (2) a user-needs analysis of the domain

expert’s requirements for formulating knowledge;

and (3) an analysis of a user’s question-formulation

requirements.

The domain analysis identified the four most-

frequent types of knowledge representation need-

ed in these three domains. These four types of

knowledge contribute to answering approximately
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50 percent of the AP questions (in order of impor-

tance): conceptual knowledge, equations, dia-

grams, and tables. (1) Conceptual knowledge rep-

resents classes, subclasses, slots, slot constraints,

and general rules about class instances. (2) A

majority of questions in physics and some ques-

tions in chemistry involve mathematical equa-

tions. (3) All three domains make extensive use of

diagrams. (4) Tables are often used to show rela-

tionships not repeated elsewhere in text.

A knowledge-formulation system was designed

to accommodate these four knowledge types, but

the module for diagram knowledge has not yet

been implemented. Subsequent analyses were con-

ducted to catalog the additional KRR challenges in

each domain that will be discussed later.

The user-needs analyses showed three main

areas of concern for knowledge formulation by

domain experts who are not trained in KRR: (1)

knowing where to begin is often challenging for

domain experts (the blank slate problem); (2)

knowledge formulation consists of a complete life

cycle that includes initial formulation, testing,

revision, further testing, and question answering;

and (3) the system should place a high value on

usability to minimize required training.

The users asking questions are different from the

users who enter knowledge, and the training

requirements must be kept minimal because we

cannot assume that the questioner will have an

intimate familiarity with the knowledge base or

the knowledge-formulation tools. Because the

questioner must specify a wide variety of ques-

tions, including problem-setup scenarios in some

questions, we could not use a rigid interface;

instead, we adopted an approach based on natural

language input.

We analyzed the English text of AP questions in

all three domains (Clark et al. 2007). The language

of science questions involves a variety of linguistic

phenomena. We identified 29 phenomena and

their frequency of occurrence (Clark et al. 2007).

For example, approximately 40 percent of ques-

tions used direct anaphora, 50 percent used indi-

rect anaphora, and 60 percent used prepositional

phrases. This data served as the basis for the ques-

tion-formulation language design of AURA. 

For the current phase of development, we con-

sciously chose to not leverage any methods for

automatic reading of the textbook for the follow-

ing reasons: First, we expected the system chal-

lenges to be significant without introducing a lan-

guage-understanding component. Second, for the

detailed knowledge representation and reasoning

needed to answer AP questions in all three

domains, we did not expect any automatic tech-

nique to approach the needed representation

fidelity. Finally, for knowledge that involves com-

putations and diagrams as in physics and chem-

istry, we did not expect fully automatic methods

to be very effective. The AURA architecture does

include provisions to import information from

external sources, such as semantic web sources or

well-developed ontologies, that might have been

created automatically (Chaudhri et al. 2008).

AURA System Architecture

The AURA system has three broad classes of func-

tionality: knowledge formulation; question for-

mulation; and question answering. In addition,

there is a training program for both KF and QF,

which was developed over several years of experi-

ence training domain experts for both roles. In fig-

ure 1, we show the overall system architecture. Fig-

ure 2 illustrates a domain expert working with

AURA.

Knowledge Representation 
and Reasoning

AURA uses the Knowledge Machine (KM) as its

core knowledge representation and reasoning

engine, a powerful, mature, frame-based knowl-

edge representation system.2 Though KM is com-

parable to many state-of-the-art representation

and reasoning systems, there are two features that

are distinctive and have played a special role in

AURA: prototypes and unification mapping (or

UMAP).

A prototype represents the properties of all

members of a concept using a notional example of

that concept. The syntax of a prototype is a graph

data structure, depicting the properties of that

notional example as a set of interconnected nodes

and relations (see later figures for examples). The

use of a graph-based representation is highly sig-

nificant as it means that the internal form and its

presentation to the user are the same, allowing the

user to view and modify the repesentation directly

through graph manipulation, rather than editing

logical axioms that would encode the same knowl-

edge. The semantics of a prototype have a formal

axiomatic specification, asserting that all individu-

als of that concept have the properties of the

notional example..

Syntactically during reasoning, to infer proper-

ties of an individual, KM merges, or “unifies,” all

the prototype graphs of the concepts that the indi-

vidual belongs to with that individual, thus con-

structing a graph-based representation of an indi-

vidual with all the properties of its concepts’

prototypes. Semantically, this operation of unify-

ing two individuals, called UMAP, is simply to

equate them plus recursively conditionally unify-

ing the value(s) of their properties. Two property

values are unified if either deductively they must

be the same (for example, due to cardinality con-

straints), or heuristically they appear to be the

same (for example, are of the same type). The lat-



ter use of equality heuristics distinguishes UMap

from equality, and allows KM to draw plausible

inferences in an underspecified knowledge base,

filling in details that an SME might leave out.

Although in principle UMAP can make mistakes

(as it is unsound), in practice this is rare and sig-

nificantly outweighed by its advantages in repli-

cating the kind of equalities that a person would

naturally assume. We give an example of the use of

UMAP in the next section.

Both prototypes and UMAP were first used in the

context of a system called SHAKEN, which was

developed as part of the U.S. Defense Advanced

Research Project Agency’s Rapid Knowledge For-

mation program (Clark et al. 2001). The positive

result from this prior work was the basis for includ-

ing them as a central design feature in the AURA

system.

Knowledge Formulation

Our approach to knowledge formulation includes

three salient features: (1) the use of a document as

a starting point and context for all knowledge

entry; (2) a prebuilt library of components that

provides the starting point for any KF process; and

(3) the choice of user-interface abstractions that are

driven by a usability analysis and the native repre-

sentations of knowledge within a textbook. We dis-

cuss each of these aspects of KF in greater detail. 

We embed an electronic copy of each of the
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Figure 1. AURA System Architecture.



three textbooks into the user interface of AURA to
serve two purposes: First, it helps specify the con-
text and the scope of the knowledge to be entered.
Second, a semantic search facility based on Word-
Net (Felbaum 1998) mappings from words in the
document to concepts in the knowledge base
serves as the basis of making suggestions for con-
cepts relevant for encoding that word. 

The SMEs build their knowledge bases by
reusing representations in a domain-independent
knowledge base called the Component Library or
CLIB (Barker, Porter, and Clark 2001). The Compo-
nent Library is built by knowledge engineers (KEs)
and contains domain-independent classes such as
Attach, Penetrate, Physical Object; predefined sets
of relations such as agent, object, location; and
property values to help represent units and scales
such as size or color. These classes and relations
and their associated axioms provide a starting
point to the SMEs in the KF process. A selection of
top-level classes in CLIB is shown in figure 3.

To capture the most frequently occurring knowl-
edge types identified earlier, we settled on the fol-
lowing user-interface elements: directed graphs for
structured objects (concept maps) and logical rules
and equations for mathematical expressions. To
enhance the usability of the system, we imple-
mented interfaces for chemical reactions and tab-
ular data. We expected that this capability would
enable users to encode knowledge sufficient to
answer approximately 50 percent of the AP ques-
tions in all three domains. A detailed account of

these choices and the underlying theory is avail-
able elsewhere (Chaudhri et al. 2007).

As an example, in figure 4, we show a (simpli-
fied) representation of the concept of a eukaryotic
cell. The node labeled as Eukaryotic-Cell is the root
of the graph and is a prototypical individual of that
class. The gray nodes represent nonroot individu-
als in the graph; the unboxed words such as has-
part are relations between individuals and are
shown as the labels on the edges. Logically, the
graph denotes a collection of rules that assert that
for every instance of Eukaryotic-Cell, there exist
instances of each node type shown in this graph,
and that they are related to each other using the
relations in the graph. Examples of specific logical
forms generated are included in a later section of
the article. 

From a logical point of view this rule could be
broken into multiple rules, for example, each rule
stating the existence of a part, and another rule
stating their relationships. The prototypes com-
bine multiple rules into a single rule to provide a
coarser granularity of knowledge acquisition.
Abstraction offered by prototypes, and the fact that
a prototype mirrors the structure of a concept map
as seen by a user, contributed to enabling the
domain experts to author knowledge.

As an example of a process in biology, in figure
5, we show a (simplified) concept map for mitosis.
This concept map shows the different steps in
mitosis (prophase, metaphase, and so on), their rel-
ative ordering, and that its object is a diploid cell
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Figure 2. A Domain Expert Working with AURA.
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and its result is two diploid cells. The numbers

shown next to a lock symbol in the relations, such

as result, represent the cardinality constraints. For

example, the result of mitosis is exactly two diploid

cells. The current AURA system supports such

declarative descriptions and reasoning about

processes, but does not currently support running

process simulations.

The SMEs create the concept maps using four

primary graph-manipulation operations: (1)

adding a new individual to a graph; (2) specializing

an individual to be an instance of a more specific

class; (3) connecting two individuals using a set of

predefined relations; and (4) equating two individ-

uals. Equating two individuals uses the UMAP. As

an illustration of UMAP, in figure 6, we show the

concept of H2O (or water) from chemistry. The top

part of this graph encodes that every individual

instance of H2O has-part an OH– ion and H+ ion,

and further an H+ ion has-atom H. The lower part

of the graph shows another H2O individual that is

added to this graph. If the user equates the two

H2O individuals in this graph, the UMAP opera-

tion will recursively equate the H+, OH– that are

related by has-part and H that is related by the has-

atom relation. This inference is heuristic and plau-

sible. For this inference to follow deductively, the

SME would need to encode cardinality constraints

on has-part and has-atom relations. UMAP can

draw equality inferences even when the knowl-

edge base is underspecified in that the cardinality

constraints are not specified. In some cases, all the

cardinality constraints are not known; in other cas-

es, adding cardinality constraints may be incorrect.

The ability of UMAP to work with such underspec-

ification in the knowledge base substantially con-

tributed to the usability of the concept map-edit-

ing interface of AURA.

As a final example of a concept formulated using

AURA, in figure 7, we show a concept map for Free

Fall. The concept map encodes different properties

of Free Fall and the mathematical equations that

relate them. The property values are shown in

green ovals, and the mathematical equations are

shown in green squares. AURA supports a “what

you see is what you get” editor for entering equa-

tions, and the equations can be related to proper-

ties that are represented in the knowledge base.

We have designed a training course for SMEs

that prepares them to enter knowledge into AURA.

The current KF training is approximately 20 hours.

The training introduces the SMEs to the mechan-

ics of using the system and to basic knowledge

engineering principles. In the knowledge engi-

neering section of the training, the SMEs learn

about different classes and relations in CLIB, and

how to use them. The training program includes

several hands-on exercises in which SMEs encode

knowledge and are given feedback on their specific

choices. The core of the training program is com-

mon across all three domains. There are, however,

several domain-specific modules. For example,

physics SMEs must learn to properly use vector

math, which does not arise in the other two

domains. For chemistry, the SMEs must learn

about entering chemical compounds and reac-

tions, and about chemistry-specific, system-avail-

able knowledge. For biology SMEs, there is an

added emphasis on learning about describing

processes.

Question Formulation

Recall that the users asking questions are different

from the users who enter knowledge, and that the

training requirements must be kept low. Further,

we cannot assume that the questioner will have an

intimate familiarity with the knowledge base or

the knowledge-formulation tools. Our question-

formulation design aims to account for these

requirements. 

While there has been considerable recent

progress in question answering against a text cor-

pus (for example, Voorhees and Buckland 2008),

our context is somewhat different, namely posing
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attempting full natural language processing on

questions, which is outside the reach of the current

technology. In AURA, we have aimed for a “sweet

spot” between these two extremes by using a con-

trolled computer-processable language (a simpli-

fied version of English) called CPL for posing ques-

tions, with feedback mechanisms to help in the

questions to a formal knowledge base, where a

complete, logical representation of the question is

needed for the reasoner to compute an answer. In

this context, the designer is typically caught

between using “fill-in-the-blank” question tem-

plates (Clark et al. 2003), which severely restricts

the scope of questions that can be posed, or
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question-formulation process. Our hypothesis is

that a controlled language such as CPL is both eas-

ily usable by people and reliably understandable

by machines and that, with a small amount of

training and good run-time feedback mechanisms,

users can express their questions easily and effec-

tively in that form.

A basic CPL sentence has the form

subject + verb + complements + adjuncts

where complements are obligatory elements

required to complete the sentence, and adjuncts are

optional modifiers. Users follow a set of guidelines

while writing CPL. Some guidelines are stylistic rec-

ommendations to reduce ambiguity (for example,

keep sentences short, use just one clause per sen-

tence), while others are firm constraints on vocabu-

lary and grammar (for example, words of uncer-

tainty [for example, “probably,” “mostly,” are not

allowed, not because they cannot be parsed but

because their representation is outside the scope of

the final logical language]). Examples of typical AP
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questions from the three domains, and a typical

reformulation of them within CPL, are shown in

figure 8. As shown, questions (especially in physics)

may be multiple sentences divided into a “setup”

describing a scenario and a “query” against that sce-

nario. Multiple-choice questions are reexpressed in

CPL as separate, full-sentence questions. 

To pose a question, the user first enters a CPL

form of it in the interface. If a CPL guideline is vio-

lated, AURA responds with a notification of the

problem, and advice about how to rephrase the

question. If this happens, then the user rephrases

the question, aided by a searchable database of

example questions and their CPL equivalents, and

a list of the vocabulary that CPL understands, and

the process repeats. Alternatively, if the question is

valid CPL, then AURA displays its interpretation in

graphical form for the user to validate. An example

of this graphical form is shown in figure 9, depict-

ing how AURA interpreted the first example in fig-

ure 8 in terms of individuals, relationships, and the

focus of query (denoted by a question mark). If the

Example 1 (Physics)

Original Question:
A car accelerates from 12 m/s to 25 m/s in 6.0 s. How far did it travel in this time?

Reformulation in CPL:
A car is driving.
The initial speed of the car is 12 m/s.
The �nal speed of the car is 25 m/s.
The duration of the drive is 6.0 s.
What is the distance of the drive?

Example 2 (Chemistry

Original Question:
What two molecules must always be present in the products of a combustion reaction of a  
hydrocarbon compound?

Reformulation in CPL:
What are the products of a hydrocarbon combustion reaction?

Example 3 (Biology 

Original Question:
Crossing over occurs during which of the following phases in meiosis? a. prophase I; b. ...[etc]… ?

Reformulation in CPL:
Does crossing over occur during prophase I?

Figure 8. Example Questions Reformulated in CPL.



interpretation appears incorrect then the user

would again rephrase the CPL to correct the prob-

lem. The graphical interface also allows a user to

perform a limited number of edits, for example,

changing the relation or asserting that the two

nodes are equal. Otherwise, the user instructs

AURA to answer the question invoking the query

answering described in the next section.

Note that using a controlled language involves a

trade-off between machine understandability and

fidelity, that is, the process of making the question

machine understandable may involve simplifying

or expanding the original question’s semantics. For

many questions (for example, “Does a eukaryotic

cell have a nucleus?”) there is no loss of fidelity, but

for more complex questions a more significant

rewording may be needed. Example 2 in figure 8

illustrates this, where “What two molecules must

always be present in the products...?” is reexpressed

as “What are the products...?” In such cases there is

some cognitive burden on the user to use his or her

linguistic and general knowledge to simplify

“wordy” English and know what simplifications are

reasonable, combined with the user’s knowledge of

the kind of statements AURA understands,

acquired from training and experience using the

system. A controlled language represents a prag-

matic middle ground, trying to balance the

machine-understandability/fidelity trade-off. We

evaluate the effectiveness of this later in this article.

Let us now consider how this design meets the

requirements of the questioner. The CPL formula-

tions expected of questioners are in terms of Eng-

lish words and, thus, do not require intimate

knowledge of the knowledge base’s vocabulary. To

read the interpretation graph, the questioners

must understand the meaning of the concepts and

relations. Through AURA, the questioners can
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access the documentation of the classes and rela-

tions, and a vocabulary list of all classes and rela-

tions known to the system. The task of under-

standing the terms of the knowledge base by

inspection is significantly easier than using those

terms for creating new concepts as the SMEs are

required to do. CPL also allows questioners to con-

struct problem scenarios with respect to which a

question is asked.

Question Answering

Once a question has been formulated to a user’s

satisfaction, AURA attempts to answer it. Concep-

tually, the question-answering module of AURA

has four functional components: reasoning con-

trol, a reasoning engine, specialized reasoning

modules, and explanation generation. 

The reasoning control relates the individuals in

the question interpretation to the concepts in the

knowledge base, identifies the question type, and

invokes the necessary reasoning. In some cases,

relating an individual to a class in a knowledge

base is straightforward, especially as AURA allows

SMEs to associate words with the concepts that

they create. In other cases, AURA must resort to

specialized reasoning based on search and seman-

tic matching (Clark et al. 2007, Chaw et al. 2009 ). 

A question type denotes a style of formulation

and reasoning used for answering a question.

Currently supported question types are: comput-

ing a slot value, checking if an assertion is true or

false, identifying superclasses, comparing indi-

viduals, describing a class, computing the rela-

tionship between two individuals, and giving an

example of a class.

AURA uses the Knowledge Machine as its core

reasoning engine. AURA has a special-purpose rea-

soning module for solving algebraic equations that

12 meter-per-second

25 meter-per-second

distance

�nal-speed

initial-speed

object

Length

Car

?

Car

Move
Move

Figure 9. Graphical Feedback during Question Formulation.



is used extensively both in physics and chemistry.
It has a graph-search utility to support the question
type that computes relationships between two
individuals. There is a chemistry-specific module
aimed at recognizing chemical compounds and
reactions, and a physics-specific module to support
vector arithmetic.

Finally, AURA supports an incremental explana-
tion system that produces explanations in (rudi-
mentary) English. Some of the terms in the expla-
nation are hyperlinked, and the user can drill
down to obtain more information. As an example,
in figure 10, we show the answer to the question
shown as example 1 in figure 10. 

AURA first presents an answer to the question (s
= 111 m) followed by the explanation. In the expla-
nation, AURA shows the equation and specific
variables used to solve the equation. In more com-
plex questions that use more than one equation,
the explanation includes the specific order in
which the equations are applied.

In figure 11, we show an example answer to a
chemistry question that was shown earlier as
example 2. The answer shows that the reactants of

a combustion reaction include a chemical and oxy-
gen gas. As a final example (figure 12), we show the
answer to the example 3 considered earlier. The
answer for this question shows that, indeed, cross-
ing over happens during prophase I. The phrases
such as “the crossing-over of the DNA” are gener-
ated using the rudimentary English-generation
facility in the system.

AURA in Action

In this section, we give a tour of AURA by starting
from a sample paragraph of text and showing how
it is encoded by a KF SME, followed by how ques-
tions are posed, and finally showing a sample
answer produced by the system. 

Knowledge Formulation

Consider the following paragraph from the biolo-
gy textbook:

All cells have several basic features in common:

They are all bounded by a membrane, called a plas-

ma membrane. Within the membrane is a semiflu-

id substance, cytosol, in which organelles are
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Answer

s = 111 m

motion-with-constant-acceleration: A move of an object such that the
acceleration of the object is constant throughout the move.

Given:

 •  v1 = 25 m/s [the speed of the �nal-velocity]
 •  v2 = 12 m/s [the speed of the initial-velocity]
 •  v3 = 12 m/s [the speed of the initial-velocity]
 •  v4 = 25 m/s  [the speed of the �nal-velocity]
 •  t = 6.0 s [the duration of the motion-with-constant-acceleration]

•  u = 12 m/s [the speed of the initial-velocity]
•  v4 = u + a * t [the speed of the �nal-velocity]

Solving for s … s = u * t + ((1/2) * a) * t2

a = (v4 – u) / t [solving (v4 = u + a * t) for a]
… a = 2.2 m/s^2 … s = 111 m
Therefore, the distance of the motion-with-constant-acceleration (s) = 111 m

Explanation

Figure 10. Answer to an Example Physics Question.



found. All cells contain chromosomes, carrying

genes in the form of DNA. And all cells have ribo-

somes, tiny organelles that make proteins accord-

ing to instructions from the genes.

A KF SME begins by highlighting the paragraph

of text and then underlining the words that are

central to capturing the knowledge in the para-

graph. Based on this input, AURA performs a

semantic search against its knowledge base and

suggests a few starting points to begin the knowl-

edge encoding progress. The semantic search is one

of the solutions in AURA to address the blank slate

problem, that is, giving a KF SME a place to begin

instead of expecting a start from scratch.

As an example, in figure 13, we show the results

returned by semantic search for the underlined

words in the previous paragraph. The word cell

matches against the concept Cell already existing

in the knowledge base. The concept Cell is part of

the pump-primed knowledge in the knowledge

base. The pump-primed knowledge in a knowledge

base is the domain-specific knowledge that is pre-

built into the knowledge base before the KF SME

begins the knowledge entry process. We incorpo-

rate some basic biology knowledge in the system to

bootstrap the knowledge entry for the KFEs. For the

word contain, a direct match is the concept Con-

tainer, and several semantic matches such as Add,

Event, Restrain, and so on (shown in the pull-down

menu). As part of the search result, one of the

options is to create a new concept if none of the

matches is satisfactory. The semantic matches are

retrieved based on the links between the concepts

in the knowledge base and the words in Wordnet. 

Even though the concept Cell exists in the

knowledge base, there are no properties or rules

defined for it. To define the properties of a cell as

introduced in the paragraph, the KF SME will also

need to create a concept to represent “plasma

membrane,” “cytosol,” “organelle,” “chromo-

some,” and so on. For the purpose of this tour, we

assume that a KF SME will take a diversion from

the knowledge entry of this paragraph, and create

all the concepts necessary to represent this para-

graph, and then resume the knowledge entry for

Cell that we describe next. 

Articles

44 AI MAGAZINE

Answer

water and carbon dioxide

hydrocarbon-combustion-reaction: When hydrocarbons are combusted in 
the air, they react with O2 to form CO2 and H2O. The number of molecules
of O2 required in the reaction and the number of molecules of H2O and CO2
formed depend on the composition of the hydrocarbon, which acts as the fuel
in the reaction.

Explanation

Figure 11. Answer to an Example Chemistry Question.

Answer

�nd more answers

It is true that the crossing-over of the dna is a subevent of the prophase-i

Yes.

Figure 12. Example Answer to Biology Questions.



The KF SME enters the knowledge in the Cell, by
connecting the concepts that have already been
created and using a set of predefined relations. As
a specific example, in figure 14, we show that the
KF SME is connecting the concept of Cell to the
concept of Ribosome. 

While making this connection, the system pres-
ents to the KF SME a collection of legal relations
that are selected based on the domain and range
constraints of those relations. The set of relations
is designed by knowledge engineers and a KF SME
is not allowed to change them. If the need for a
new relation arises, a KF SME can make a request to
the KEs, who can carefully design and choose a
new relation to be added to the component library.

With the successive use of basic graph editing
operations, a KF SME can create a complete con-
cept map for the knowledge about a Cell in the
above paragraph as shown in figure 15.

AURA translates the graph shown in figure 15
into the internal logical representation of KM
called prototypes that is logically equivalent to the
rule shown in figure 16. This rule should be read as
an if-then rule, that is, the formula immediately
following the implication symbol => is the
antecedent followed by the consequent:

The graph shown in figure 15 captures only
those properties of a Cell that are necessary prop-
erties and this is reflected in the corresponding log-
ical axioms as shown in figure 16. The graphical
interface in AURA also enables the capture of suffi-
cient properties. To illustrate the capture of suffi-
cient properties, we consider the following sen-
tence that appears in the next paragraph:

In contrast, the eukaryotic cell (Greek eu, true, and

karyon) has a true nucleus, bounded by a membra-

nous nuclear envelope.

To encode this sentence, the KFE will follow a
process similar to what has been already illustrated
and create a graph shown in figure 17.

Since a Eukaryotic-Cell is a subclass of Cell, it
inherits Ribosome and Chromosome as its parts.
(Other inherited information has been hidden for
brevity.) The KFE will add a Nucleus as an addi-
tional part (over and above what was inherited),
and indicate that if a Cell has a Nucleus as its part,
it is sufficient for it to be a Eukaryotic Cell. This is
highlighted in red, and it also appears at the top of
the graph. The highlighted part of the graph is
translated into the rule depicted in figure 18.

In addition to the examples considered so far,
AURA is capable of capturing knowledge about
mathematical equations and tables. These knowl-
edge capture interfaces have been discussed in pre-
viously published papers (Clark et. al. 2001,
Chaudhri et. al. 2004).

Question Formulation

Let us now consider how the user poses questions

for the knowledge that has already been formulat-

ed. We will illustrate this by taking a specific AP-

style question.

Studying a picture of a cell with an electron micro-

scope, you find that the cell has a cell wall, a nucle-

us, and a large central vacuole. You conclude that

the cell is probably a(n) 

(a) Eukaryotic cell 

(b) Plant cell 

(c) Prokaryotic cell 

(d) Bacterial cell

For answering this question, the important infor-

mation is that the cell has a cell wall, a nucleus,

and a large central vacuole. The fact that these

parts were observed through an electron micro-

scope is irrelevant. During the four hours of train-

ing, we teach the question formulation engineers

to factor out such extraneous detail from their

queries. We also do not explicitly address the mul-

tiple-choice aspect of a question and instead
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Figure 13. Semantic Search Facility Suggests 
Starting Points for Knowledge Formulation.



expect the user to formulate this question as four
separate questions. Using the controlled English
facility of the system, this question will be formu-
lated as four separate questions as follows:

A cell has a cell wall, a nucleus, and a large central

vacuole.

Is it true that the cell is a Eukaryotic Cell?

Is it true that the cell is a Plant Cell?

Is it true that the cell is a Prokaryotic Cell?

Is it true that the cell is a Bacterial Cell?

The first sentence stating the facts about the cell
is common to all four formulations. Using these
formulations, the question-understanding module
produces a logical interpretation of the query. For
example, the logical presentation for the first part
is as follows:

Query premise:

(_Cell9426 instance-of Cell) 

(_Cell-Wall9431 instance-of Cell-Wall) 

(_Nucleus9429 instance-of Nucleus) 

(_Vacuole9430 instance-of Vacuole) 

(_Cell9426 has-part _Cell-Wall9431) 

(_Cell9426 has-part _Nucleus9429)

(_Cell9426 has-part _Vacuole9430) 

Query pattern: 

(_Cell9427 instance-of Eukaryotic-Cell)

The query premise asserts a hypothetical individ-
ual that is introduced in the query and the facts
known about it. The query pattern states a logical
formula that is to be proven.

The English statement of the query was phrased
as “a Cell has a Cell wall, Nucleus….,” but it is
mapped to the has-part relation in the logical rep-
resentation of the query. This computation is done
by the semantic role-labeling module of the system
that has access to a large database of paraphrases
that it uses to map English phrases to the logical
constructs known to the knowledge base. The Eng-
lish statement of the query also contained the
word central but it appears nowhere in the logical
formulation of the query. The query-understand-
ing module has rules about producing an under-
specified version of the query that drops certain
modifiers for which the knowledge base has no
knowledge.

A query formulated in logic in the vocabulary of
the knowledge base is sent to the inference engine
for query answering.
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Figure 14. KFEs Connect Nodes on a Graph Using a Set of Prede�ned Relations.



Question Answering

The reasoning control takes the logical specifica-

tion of the query from the question-understanding

module and identifies the correct question-answer-

ing method to apply, which for this question is a

question of the form “Is it true that….” AURA will

attempt to answer the query by first classifying the

individual _Cell9427 in the knowledge base using

a description logic inference (Baader et al. 2003).

As we saw in the knowledge formulation section, a

KFE had authored a rule asserting that if a Cell has

a Nucleus, it must be classified as a Eukaryotic Cell,

and thus, this question will be answered as Yes. 

AURA Evaluation

We conducted a full user evaluation to find out

how well AURA enables graduate students in the
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Chromosome
is-inside

is-inside

has-part

agent

has-part

material

physical-state

DNA

Gene

is-inside

size

Plasma-Membrane

Organelle

EDITsemi-�uid

Ribosome

EDITtiny w.r.t. Tangible-Entity

Protein-Synthesis

Cytosol

Cell

Figure 15. A Representation of Cell Based on a Paragraph of Text.

(forall ?c
(=> (instance-of ?c Cell)

(exists ?r ?ch ?g ?d ?p ?pm ?cy ?o
(and

(instance-of ?r Ribosome)
(instance-of ?ch Chromosome)
(instance-of ?g Gene)
(instance-of ?d DNA)
(instance-of ?p Protein-Synthesis)
(instance-of ?pm Plasma-Membrane)
(instance-of ?cy Cytosol)
(instance-of ?o Organelle)
(has-part ?c ?ch) (has-part ?ch ?g)
(has-part ?c ?r) (material?ch ?d)
(size ?r (scalar-value tinyTangible-Entity)) 
(agent ?p ?r) 
(is-inside ?c ?pm) (is-inside ?cy ?pm)
(is-inside ?o ?cy) (physical-state ?cy semi-�uid))

Figure 16. If-Then Rule.



three domains (physics, chemistry, and biology) to
construct knowledge bases that are able to answer
AP-like questions posed by undergraduates. 

To ensure that the assessment was independent
and unbiased, Vulcan contracted BBN Technolo-
gies to design and run the evaluation. BBN teamed
up with Larry Hunter at the Medical School of the
University of Colorado at Denver. The evaluation
was designed to answer three main questions: (1)
How well does AURA support knowledge formula-
tion by domain experts? (2) How well does AURA
support question formulation by domain experts?
(3) How good are AURA’s question-answering and
explanation generation?

Experimental Design

To address the experimental questions, three sets

of experimental conditions were evaluated: expert
versus nonexpert KF experience, expert versus
nonexpert QF experience, and question familiarity
and difficulty.

For expert versus nonexpert KF experience, the
expert condition was represented by domain experts
with significant training and previous experience
using AURA, working in close collaboration with
the members of the AURA team, over many
months. The nonexpert condition was represented by
individuals qualified in their domain at a graduate
school level, with limited training (20 hours) and
no previous experience using AURA, working inde-
pendently for a limited amount of time (approxi-
mately 120 hours) over a four-week period.

For expert versus nonexpert QF experience, the
expert condition was represented by the same SMEs
as in the expert KF condition, and the nonexpert
condition was represented by individuals qualified
in their domain at an undergraduate level, with
limited training (4 hours) and no previous experi-
ence using AURA.

For question familiarity and difficulty, a set of
reference questions was developed in each domain
by SRI. These questions were known to AURA
development team and available at KF time. These
questions were used by SMEs to test their knowl-
edge as it was entered. A set of novel questions was
developed by BBN specifically for the evaluation.
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Figure 17. Capturing Suf�cient Properties.

Figure 18. Rule for Figure 17.

Triggers      A Cell will be classi�ed as an Eukaryotic-Cell if it meets the following criteria:

Eukaryotic-Cell has-part NucleusT

has partEukaryotic cell

Nuclear-Envelope

Nucleus

T

Chromosome

Ribosome

X

is-inside

(<=> 
(and 

(instance-of ?c Cell)
(exists ?n 

(and (instance-of ?n Nucleus) 
(has-part ?n ?c))))  

(instance-of ?c Eukaryotic-Cell))   



These were not known to the AURA development

team and were not available at KF time. They were

used only during the QF evaluations of the newly

developed knowledge bases. Finally, a subset of

selected novel questions was chosen from the set of

all novel questions as an experimental control vari-

able. The choice was made in a way that AURA was

able to answer a large fraction of these questions

but not all of them. This was done to avoid floor

and ceiling effects while comparing results.

Experimental Procedure

There were 10 main steps in the test procedure.

First, in step 1, the AURA team selected the text-

book sections and AP syllabus for each domain.

Second, in step 2, expert SMEs of the AURA team

authored knowledge bases for the selected text-

book sections and AP syllabus, testing the knowl-

edge against the reference questions. These SMEs

worked closely with the development team. In step

3, experienced AP teachers recruited by BBN gen-

erated the set of novel questions in each domain to

cover the topics in the selected syllabus. In step 4,

expert SMEs at SRI formulated and asked the set of

novel questions of their expert knowledge bases.

For step 5, BBN and SRI chose 50 selected novel

questions in each domain that best matched

AURA’s implemented reasoning capabilities. In

step 6, SRI trained the nonexpert SMEs recruited by

University of Colorado Denver in the use of AURA

for knowledge formulation in a 20-hour training

course. In step 7 the nonexpert SMEs at University

of Colorado Denver authored knowledge over a

four-week period (using approximately 120 hours

of KF time). In step 8, SRI trained the nonexpert

questioners in the use of AURA for question for-

mulation in a 4-hour training course. In step 9, for

each expert-formulated and nonexpert-formulated

knowledge base, one or more questioners from the

same domain asked selected novel questions.

Finally, in step 10, BBN scored the results by sub-

mitting the question formulation and answering

transcripts to two independent AP teachers for

grading. The graders were different from the AP

teachers who were used in step 3 to design the

questions.

Science Textbooks and Syllabus

Three textbooks were used. For biology, we used
the sixth edition of Biology (Campbell and Reece
2001). For chemistry, we used the ninth edition of
Chemistry: The Central Science (Brown et al. 2002).
For physics, we used the sixth edition of Physics:
Principles with Applications (Giancoli 2004). The
AURA syllabus was selected to represent a set of key
concepts within the AP curriculum in each
domain. The syllabus was necessarily limited so
that it would present a manageable amount of
knowledge to be encoded yet included enough
material to support a significant number and vari-
ety of questions. The main topics and approximate
page counts are shown in table 1.

There were significant differences in the infor-
mation content of the selected pages and how well
they covered the full AP syllabus in each domain.
In biology, the selected 44 pages covered 23 per-
cent of the full syllabus, in chemistry, 67 pages
covered 11 percent of the full syllabus, and in
physics, 78 pages covered 15 percent of the full syl-
labus.

Test Subjects

The expert SMEs consisted of three domain
experts, one in each domain, each with at least a
graduate degree in the respective discipline. These
SMEs had worked with the AURA team throughout
the development process and, though still prima-
rily domain experts, had become very familiar with
AURA and its knowledge engineering process. 

The nonexpert SMEs consisted of nine students,
three in each domain, recruited from the Denver
area, through the University of Colorado at Den-
ver, where the nonexpert KF experiment was con-
ducted. Subjects were recruited and screened with
an abbreviated AP-level exam to ensure domain
knowledge. The participants were mostly graduate
students or graduates, with one advanced under-
graduate. They were all computer literate, with a
range of previous computer experience, but none
had studied artificial intelligence, knowledge rep-
resentation, or used AURA before.

The nonexpert questioners consisted of 19 (6 in
biology and 5 each in chemistry and physics)
undergraduates or very recent graduates, who were
recruited in the Boston area, through BBN, where
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Main topics Pages

Biology Cell structure, function, and 
division; DNA replication; protein 
synthesis

44

Chemistry Stoichiometry; chemical equilibria; 
aqueous reactions; acids and bases

67

Physics Kinematics; Newtonian dynamics 78

Table 1. AURA Syllabus.



the nonexpert QF experiment was conducted. Par-
ticipants were considered qualified in their domain
if they (1) had passed a first-year university course
that covered the AP curriculum with an A or B
grade or (2) had passed the AP exam with a score
of 4 or 5 during the previous three years. None had
prior experience with AURA.

It should be noted that the questioners were
aware of the correct answers to the questions, and
thus could recognize when the system had pro-
duced the correct answer, a somewhat unnatural
situation compared with use “in the wild.” The
results thus represent an upper bound on the per-
formance that one might expect with a more nat-
ural class of users, who are less knowledgeable
about the domain and the questions. 

Data Results and Analysis

First, we look at the question-answering perform-
ance of the knowledge bases authored by the expert
SMEs (see figure 19). In biology and physics, the
expert knowledge bases correctly answered more
than 70 percent of the reference and selected ques-
tions and more than 40 percent of all novel ques-
tions. The expert chemistry knowledge base did not
perform as well, especially for novel questions with
a score of 18 percent for all novel questions and 44
percent for selected novel questions. Because the
selected set was artificially constructed for experi-
mental control, the score on the selected questions
should not be interpreted as an indication of the
overall performance of the system. The score on the

selected questions is shown in figure 19 as this
number is used in later graphs for comparative
analysis across different experimental situations.
There were two reasons for the low scores in chem-
istry: The expert SME overtuned the knowledge
base to the set of reference questions and did not
provide good coverage of the syllabus for novel
questions. Plus, the current version of AURA does
not support a facility to author procedural knowl-
edge, which was required for some questions.

Second, we look at how the nonexpert SMEs did
in comparison to the experts. The experimental
design produced a 2x2 comparison of expert versus
nonexpert performance for both KF and QF. To
understand the 2x2 aspect of the experiment
design, we can interpret the four points shown in
figure 20 as follows: the upper-left point represents
the question-answering correctness score when the
knowledge was formulated by an expert SME, but
the questions were asked by a nonexpert question-
er; the lower-left point represents the situation
when the knowledge was formulated by a nonex-
pert SME, and the questions were also asked by a
nonexpert questioner. The other two points can be
analogously interpreted. To see the effect of ques-
tion-formulation expertise, the graph should be
read left to right; to see the effect of knowledge for-
mulation expertise, the graph should be read top
to bottom.

Thus, for biology (figure 20), we can see the
effect of knowledge-formulation expertise by
observing that the knowledge bases authored by
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Figure 19. Expert SME Performance.
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expert SMEs always had better scores than the

knowledge bases authored by nonexpert SMEs. We

can see the effect of the question-formulation

expertise by reading the graph left to right and

noticing that question-formulation expertise had

no effect for knowledge bases that were authored

by expert SMEs. But for knowledge bases authored

by nonexpert SMEs, the nonexpert questioners

outperformed the expert questioners. This is an

anomaly, where it appeared that the nonexpert

questioners outperformed the expert SMEs by 20

percent. Further analysis revealed that much of

this difference resulted from the nonexpert SMEs

being less rigorous in how they formulated ques-

tions. Some SMEs were taking short cuts in ques-

tion formulation that would avoid the complexi-

ties of the full question. These simplified questions

would produce a correct answer, but without

requiring the system to compute all of the infer-

ences implied by the question. We discount these

differences as poor experimental control.

In chemistry (figure 21), there were no signifi-

cant differences among the four conditions. Expert

versus nonexpert KF was equivalent as was expert

versus nonexpert QF. 

In physics (figure 22), experts outperformed

nonexperts in both KF and QF. Physics is the only

domain where the experts outperformed nonex-

perts at QF. Physics questions were generally more

complex to formulate because the formulations

included several statements to describe the prob-

lem setup as well as language simplifications. The

questions that involved specifying vector quanti-

ties were especially challenging for the nonexpert

questioners to formulate. An obvious next ques-

tion is to explain the reason for the differences

between expert and nonexpert conditions for each

of the three domains.

For chemistry, our analysis of the results sug-

gested that the results were confounded by a floor

effect. Recall from figure 19 that the expert-

authored knowledge bases scored only 18 percent

on the novel questions. This significantly limited

the kinds of questions that could be put in the

selected set of questions considered in the experi-

ment reported in figure 21. The newly trained

SMEs were able to perform as well as the expert

SMEs, because the score of the expert SMEs was too

low to start with.

The results for physics were easier to explain

because there are known limitations of the system

that make it harder for the SMEs to formulate

knowledge about forces, and limitations in the

inference technique to answer questions that may

lead to a very large search space. 

For biology, the situation was the most complex.

Our initial hypothesis for this difference was that

it was due to difference in the knowledge entry

time given to the expert SMEs and nonexpert

SMEs. The expert SMEs for biology had worked on
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Figure 20. Experts Versus Nonexperts in Biology.
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Figure 21. Experts Versus Nonexperts in Chemistry.
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their knowledge base for about 600 hours whereas

nonexpert SMEs in the evaluation were limited to

only 120 hours. Based on this limitation, we

designed a follow-up experiment only for biology

to assess the effect of the knowledge entry time on

the question-answering performance.

In the follow-up experiment, one expert SME

was asked to create the same biology knowledge

base, but was limited to 120 hours for knowledge

entry time. One of the better performing nonex-

pert SMEs was given an additional 180 hours, thus

giving them a total of 300 hours, to continue

authoring and refining their knowledge base. We

show the result in figure 23. When the expert was

limited to 120 hours of KF time and the nonexpert

was allowed 300 hours, the two knowledge bases

exhibited similar performance with 60 percent cor-

rect answers. The additional 180 hours of KF time

improved the nonexpert’s score form 21 percent to

60 percent. The subject reported that the extra

time gave her a much better understanding of

AURA, the knowledge entry process, and her

knowledge base. 

This result shows a steep improvement in the

performance of a knowledge base authored by a

newly trained SME as the knowledge entry time

increased from 120 hours to 300 hours. The corre-

sponding rate of improvement for an expert SME

as they are given more knowledge entry time is

much smaller. This is quite likely because the

expert SME has already reached a high level of per-

formance, and the marginal value of additional

knowledge entry time toward question-answering

performance diminishes. The most important con-

clusion that followed from this follow-up study

was that given additional experience with the sys-

tem, a knowledge base authored by a newly trained

SME significantly improves in question-answering

performance, and starts to approach the perform-

ance of an expert SME. This was an excellent result

in support of AURA’s ability to enable a newly

trained SME to author competent knowledge

bases.

Let us now return to the questions that this eval-

uation set out to answer. First, we consider the

question: “How well does AURA support KF by

domain experts?” The evaluation results show that

for biology, a newly trained SME can construct

knowledge bases that, given sufficient knowledge

entry time, approach in performance to the per-

formance of the knowledge bases constructed by

expert SMEs. For physics, the knowledge bases con-

structed by expert SMEs outperform the knowledge

bases constructed by newly trained SMEs. For

chemistry, while the results show that the per-

formance of the knowledge bases authored by

newly trained SMEs was very close to that of the

knowledge bases authored by expert SMEs, we

believe this result to be confounded by the floor

effects in the experimental data.
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Second, we consider the question: “How well

does AURA support QF by domain experts?” The

results show that most nonexpert questioners in

the domains of biology and chemistry were able to

perform question formulation as effectively as

experts SMEs after only four hours of training. The

nonexpert users in physics had some difficulty in

posing the questions.

Third, we address the question: “How good is

AURA’s question-answering performance?” The

results show that AURA was able to answer signifi-

cant numbers of AP-level difficulty questions in

the domains of biology and physics, reaching or

nearly reaching performance needed for a passing

score on the AP test. We conclude that, with some

caveats, the goal of comfortable use of AURA with

minimal training has been met for question for-

mulation, and for knowledge formulation it is well

advanced.

Multiuser Knowledge Entry 
Using a Team of SMEs

A major lesson from the evaluation results report-

ed above was that the capabilities of AURA in

enabling knowledge formulation and question for-

mulation for biology were well advanced while

some challenges remain in other domains. Based

on that assessment, a natural scaling question was

to undertake some preliminary work to support

the construction of a knowledge base from a full

biology textbook. 

The experiment results reported earlier involved

only one user working in isolation in constructing

a knowledge base. Such a constraint was an artifact

of a controlled experiment and is no longer practi-

cal when a knowledge base is developed by a team

of domain experts. So, as a step toward scaling to a

knowledge base for a full biology textbook, we

devised a pilot experiment to answer the following

questions: “Can we replicate the training and

knowledge entry process by teaching it to profes-

sionals external to the AURA development team?”;

and “Can a team of experts collaborate to create a

shared knowledge base of a scope similar to what

was created in the controlled experiment?”

To address these questions, SRI teamed with an

organization based in India to organize a Multi-

User Knowledge Entry Experiment (MUKE). Two

knowledge engineering professionals from the

MUKE team came to SRI and underwent a “train-

ers training.” The trainers training included the

training designed for SMEs as well as in-depth

exposure to AURA. These knowledge engineering

professionals returned to their parent organiza-

tions and delivered the AURA training to a team of

three biologists.

The current AURA system has no software sup-

port for multiuser knowledge entry. We designed a

collaboration process external to AURA that the

team of biologists could use for knowledge entry.

The process defined specific roles for the members

of the team as contributors and integrators. The

contributors developed representations for the

portion of a syllabus, and an integrator combined

the contributions into an integrated whole. The

combined knowledge entry time of the three-

member biologist team was comparable to the sum

total of the knowledge entry time of the three biol-

ogists who had participated in the controlled

experiment reported earlier. The team collabora-

tively constructed the knowledge base for the same

syllabus, and using the same set of test questions.

The three-person SME teams were explicitly direct-

ed to work together to discuss, partition, and col-

laborate in performing the knowledge entry tasks. 

The knowledge base produced by the team was

tested on the identical set of novel questions that

was used in the controlled study. The results are

shown in figure 24. 

Let us now discuss how these results answer the

questions that we set out to answer. We first

address: “Can we replicate the training and knowl-

edge entry process by teaching it to professionals

external to the AURA development team?” Given

that the knowledge engineering professionals of an

organization external to AURA development team

could learn the AURA training and deliver it to the

biologists who constructed knowledge bases that

performed very closely to those constructed by

SRI’s expert SMEs suggests that we could success-

fully replicate the knowledge engineering process.

Initially, the AURA development team needed to

provide constant support to the knowledge engi-

neers from the MUKE team, but such need signifi-

cantly dropped during the exercise.

Second, we address the question: “Can a team of

experts collaborate to create a shared knowledge

base of scope similar to what was created in the

controlled experiment?” Here again, we believe

that the MUKE team succeeded as the correctness

scores on their knowledge bases were comparable

to the scores on the ones authored by the expert

SMEs at SRI.

Finally, because the score on the all novel ques-

tions on the knowledge base produced by the

MUKE team (75 percent) is much higher than the

corresponding score on the knowledge base pro-

duced by the expert SMEs (47 percent), one can

naturally ask, “Did MUKE team outperform the

expert SMEs at SRI?” Overall the answer would

have to be a qualified “yes.” It is difficult to com-

pare knowledge entry rates of individual SMEs,

because of differences in the knowledge entry

process, resources, and conditions for the knowl-

edge bases authored by the SRI expert SMEs and

those by the MUKE team. Yet, it is clear that the

overall performance of the MUKE team was supe-

rior. 
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Discussion

The results demonstrate significant progress since

the Halo Pilot in 2004. We now have SME-

authored knowledge bases achieving question-

answering scores of 70 percent in many condi-

tions. Nonexpert SMEs, with light training in

AURA, can create knowledge bases that achieve

scores of 60 percent when given a similar amount

of knowledge entry time as the expert SMEs. Even

nonexpert SMEs with light training and limited

entry time achieve scores in the 40–50 percent

range, equivalent to the scores achieved in the

Halo Pilot by AI experts. The multiuser knowledge

entry results were very encouraging — demon-

strating that a dedicated KF team of domain

experts can author a biology knowledge base that

achieved a score of 75 percent, even for novel ques-

tions. 

However, the results also demonstrate remain-

ing challenges. In general, question-answering per-

formance drops when the knowledge bases are pre-

sented with novel questions that the knowledge

formulator did not specifically prepare the knowl-

edge base to answer. Sometimes, this drop is dra-

matic, even for the expert SMEs. The knowledge

capture and reasoning capabilities are still incom-

plete because none of the SMEs, not even the

expert SMEs, could create knowledge bases that

performed above the 80 percent level, even for the

reference questions that were known in advance. 

Moreover, the danger of overoptimizing a sys-
tem to perform well on a specific test problem
always exists — in ways that do not generalize to
real-world problems. Because we rigorously
focused the Halo work on this particular AP ques-
tion-answering task, there is certainly that danger
here. AP exams generally test only a special band of
conceptual knowledge. They try to avoid simple
memorization questions about instance data. They
also avoid questions that require overly complex
reasoning or calculation that would be difficult
both to complete during a time-based test and to
grade. 

We also simplified many aspects of a standard
AP exam to facilitate administering the test to a
computer program. Because AURA could not
process diagrams, all knowledge found in dia-
grams, either in the textbook or in test questions,
had to be explicitly encoded into the system.
Because AURA could not handle full natural lan-
guage, all test questions were reformulated by the
SMEs into simpler statements using AURA’s Con-
trolled Processing Language. This usually required
multiple attempts with some amount of question
interpretation by the user. AURA could also not
process multiple-choice questions as a single
chunk and therefore required the user to break the
question into separate subquestions for each mul-
tiple-choice option. 

Despite these caveats, our overall assessment is
that AURA has achieved a well-engineered process
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lish for question formulation is in nat-

ural language interfaces to databases

that have more limited schema and do

not support queries that might involve

complex setup (Popescu, Etzioni, and

Kautz 2003). The knowledge represen-

tation and reasoning used in AURA is

comparable to a system that supports

both description logic inference and

horn rules and can be represented

using an expressive representation lan-

guage such as SILK (Grosof, Dean, and

Kifer 2009). 

Future Plans

Vulcan Inc. plans to continue pursuing

the vision of the Digital Aristotle by:

(1) scaling-up AURA’s current capabili-

ties to handle a full textbook in biolo-

gy, while simultaneously (2) conduct-

ing advanced research on the

remaining KRR challenges. 

Given the encouraging results for

encoding basic conceptual knowledge

into AURA, we plan to employ a multi-

user collaborative KF team to encode

all of the knowledge possible for an

introductory biology textbook and

then to see how well that knowledge

base performs on a full AP biology

exam. To this end, we plan to improve

AURA’s software infrastructure to sup-

port a knowledge-formulation team

and to redesign the question-formula-

tion and question-answering capabili-

ty. The result will be a knowledge base

and improved question-answering sys-

tem for the complete biology textbook.

This will produce the first prototype

of what we are calling a HaloBook — a

new kind of electronic textbook that

contains an underlying knowledge

base capable of answering the reader’s

questions and providing tailored

instruction. We have explored the con-

cept with researchers in education and

interactive tutoring and feel this may

produce a rich set of possibilities for

creating a new educational technology.

In parallel, Project Halo will contin-

ue to develop semantic extensions to

Semantic MediaWiki (SMW)+, which

provides a community-based environ-

ment for authoring ontologies and cre-

ating semantically enhanced wikis

(Pfisterer, Jameson, and Barbu 2009).

SMW+ has been widely used and is

being applied to project management,

for SMEs to encode basic conceptual

knowledge, especially if the SMEs have

sufficient experience with AURA and

work as a member of a dedicated KF

team. Based on our initial multiuser

experiment, scaling up this process to a

large KF team that can encode the con-

ceptual knowledge for a complete, col-

lege-level textbook appears possible. 

AURA has also achieved a question-

formulation capability that enables

users to easily and effectively ask ques-

tions of the system. CPL works well.

Users find it easy to learn. Nonexperts

are generally as effective as experts at

formulating and asking questions of

the system. Yet, room for improvement

exists here as well. Finding the right

reformulation often requires several

iterations, and finding the precise

terms to match the correct knowledge

base concept is sometimes awkward.

Nevertheless, the overall question-for-

mulation process worked well enough.

At the same time, knowledge repre-

sentation and reasoning challenges

require further research before we can

break through the 80 percent barrier and

can represent all knowledge in a full

textbook. As mentioned earlier, we have

performed analyses of the KRR require-

ments of AP exams for our scientific

domains and have identified several

areas where we need improvement.

Actions and processes: especially in

biology, much of the knowledge

involves complex processes. Currently

AURA uses a STRIPs-style representation

of the events and subevents, which

works well for many AP questions, but

we expect will not be rich enough to

master more advanced material.

Computational knowledge: in many

situations, such as balancing chemical

reactions, the knowledge needed

involves computational procedures

that do not lend themselves to a declar-

ative representation.

Qualitative reasoning: all three

domains require qualitative reasoning,

which we have yet to add to the system.

Naïve physics and core commonsense

reasoning: we currently rely on the user

to add commonsense context as he for-

mulates questions, but question-

answering performance could be great-

ly improved, especially in physics,

where nonexperts had the most diffi-

culty in question formulation.

Diagram understanding and spatial
reasoning: much of the textbook knowl-
edge and many of the test questions, in
all three domains, use diagrams to por-
tray implicit spatial knowledge. Knowl-
edge formulation could be streamlined
if the system could ingest and under-
stand diagrams with implicit spatial
knowledge. 

Abduction, abstraction, analogy, and
uncertainty: these well-known KRR chal-
lenges are present here as well. We avoid
some of these complexities by focusing
on well-established, clearly defined sci-
entific knowledge, but even then, these
challenges arise.

Web-scale collaborative authoring: so
far AURA has been developed as an
authoring tool for individual authors
or small authoring teams but not for
web-scale collaborative authoring.

Comparison to 
Related Work

Several researchers have investigated
the problem of representing textbook
knowledge and answering questions
about that knowledge. The earliest
work on this topic was on answering
Algebra questions (Bobrow 1964), and
a recent work is on answering Physics
questions (Klenk and Forbus 2009). A
survey of similar systems was recently
reported by Mukherjee and Garain
(2008).

The knowledge bases built using
AURA up to now are substantially
smaller than in the Cyc knowledge
base (Lenat 1995). It is still, however,
useful to compare our approach with
Cyc. Cyc’s goal has been to capture
human common sense while our focus
has been focused on knowledge that is
explicitly written down in textbooks
and that can be empirically tested for
completeness and coverage.

We can also draw parallels between
various component technologies used
in AURA and related work. For knowl-
edge formulation, a closely related sys-
tem was Visual Language (VL) (Gaines
1991). The primary difference between
approach used in AURA and VL is that
AURA works from the description of an
example instance of a class while VL
worked by directly editing the classes
and their descriptions. The work most
closely related to use of controlled Eng-
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enterprise information, the manage-
ment of large terminology sets, and the
semantic enhancement of Wikipedia.
We have created an interface between
SMW+ and AURA that enables users to
import community-authored ontolo-
gies from SMW+ into AURA. Vulcan
will continue to explore applications of
SMW+, especially in the semantic
enhancement of Wikipedia and the
creation scientific datasets on the web.

Also in parallel, Vulcan will continue
to explore solutions to the hard KRR
challenges we listed. In 2007, Vulcan
began a new effort, Halo Advanced
Research (HalAR), to address the diffi-
cult knowledge representation and rea-
soning (KR) challenges that prevent
the realization of Digital Aristotle. This
effort has produced a new semantic
rule language and reasoning system,
Semantic Inferencing on Large Knowl-
edge (SILK), which includes major
advances, including for default and
higher-order reasoning (Grosof, Dean,
and Kifer 2009; Wan et al. 2009). In the
next year, we will refine the SILK sys-
tem, exploring richer models of process
based on SILK, developing an author-
ing environment to enable SMEs to use
its more powerful KRR features, and
eventually integrating the best features
of AURA, SMW+, and SILK into the
next generation Halo system. 

In summary, Vulcan continues to
make steady progress toward its long-
term goal of producing a Digital Aris-
totle. Central to achieving this goal is
Vulcan’s plan of development, which
revolves around the encoding of well-
defined bodies of knowledge such that
the success of the encoding can be
measured using an objective and easily
understood test. Vulcan’s development
plan is driving the formulation and
solution of fundamentally difficult
problems in knowledge representation
and reasoning; knowledge acquisition;
question answering; and web-scale
authorship and reasoning. As the tech-
nology develops and matures further,
Vulcan will explore opportunities for
using this technology to solve impor-
tant problem for education, biodiscov-
ery, and business enterprise.

Note
1. For details on the AP exam, see www.col-

lege board.com/student/testing/ap/about.

html.
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2. See KM — The Knowledge Machine 2.0:

Users Manual (userweb.cs.utexas.edu/users/

mfkb/km/userman.pdf).
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