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Abstract

Managerial °exibility has value in the context of uncertain R&D projects, as

management can repeatedly gather information about uncertain project and market

characteristics and, based on this information, change its course of action. This

value is now well-accepted and referred to as \real option value". We introduce,

in addition to the familiar real option of abandonment, the option of corrective

action that management can take during the project. The intuition from options

pricing theory is that higher uncertainty in project payo®s increases the real option

value of managerial decision °exibility. However, R&D managers face uncertainty

not only in payo®s, but also from many other sources. We identify ¯ve example

types of R&D uncertainty, in market payo®s, project budgets, product performance,

market requirements, and project schedules. How do they in°uence the value from

managerial °exibility? We ¯nd that if uncertainty is resolved or costs/revenues occur

after all decisions have been made, more variability may \smear out" contingencies

and thus reduce the value of °exibility. In addition, variability may reduce the

probability of °exibility ever being exercised, which also reduces its value. This

result runs counter to established option pricing theory intuition and contributes to

a better risk management in R&D projects. Our model builds intuition for R&D

managers as to when it is and when it is not worthwhile to delay commitments, for

example, by postponing a design freeze, thus maintaining °exibility in R&D projects.
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1 Introduction and Literature Overview

Most investment decisions (and R&D projects in particular) are characterized by irre-

versibility and uncertainty about their future rewards: once money is spent, it can not

be recovered if the payo®s hoped for do not materialize. However, a ¯rm usually has

some leeway in the timing of the investment: it has the right but not the obligation to

buy an asset (e.g., access to a pro¯table market in the case of an R&D project) at some

future time of its choosing, and thus, it is holding an option, analogous to a ¯nancial call

option (Dixit and Pindyck 1994). As new information arrives and uncertainty about the

investment's rewards is gradually resolved, management often has the °exibility to alter

the initial operating strategy adopted for the investment. As with options on ¯nancial

securities, this °exibility to adapt in response to new information enhances the invest-

ment opportunity's value by improving its upside potential while limiting downside losses

relative to the initial expectations (Trigeorgis 1997). Using the analogy with options on

¯nancial assets, such investment °exibility is often called a \real option." A real option

may signi¯cantly enhance the value of an investment (e.g., Kogut and Kulatilaka 1994).

This °exible decision structure of options is valid in an R&D context: after an initial

investment, management can gather more information about project progress and market

characteristics and, based on this information, change its course of action (e.g., Dixit

and Pindyck 1994, Lint and Pennings 1997). The real option value of this managerial

°exibility enhances the R&D project value; a pure net present value analysis understates

the value. Five basic sources of °exibility have been identi¯ed (e.g., Trigeorgis 1997): A

defer option refers to the possibility of waiting until more information has become available.

An abandonment option o®ers the possibility to make the investment in stages, deciding

at each stage, based on the newest information, whether to proceed further or whether to

stop (this is applied by venture capitalists). An expansion or contraction option represents

the possibility to adjust the scale of the investment (e.g., a production facility) depending

1



on whether market conditions turn out favorably or not. Finally, a switching option allows

changing the mode of operation of an asset, depending on factor prices (e.g., switching

the energy source of a power plant, or switching raw material suppliers).

One key insight generated by the real options approach to investment is that higher uncer-

tainty in the payo®s of the investment increases the value of managerial °exibility, or the

value of the real option (Dixit and Pindyck 1994, p. 11; this was also shown by Roberts

and Weitzman (1981) in a sequential decision model without referring to real options at

all). The intuition is clear { with higher payo® uncertainty, °exibility has a higher po-

tential of enhancing the upside while limiting the downside. An important managerial

implication of this insight is that the more uncertain the project payo® is, the more e®orts

should be made to delay commitments and maintain the °exibility to change the course

of action. This intuition is appealing. Yet, there is hardly any evidence of real options

pricing of R&D projects in practice (see Smith and McCardle 1998; this is con¯rmed in our

conversations with R&D managers) despite reports that Merck uses the method (Sender

1994). Moreover, there is recent evidence that more uncertainty may reduce the option

value if an alternative \safe" project is available (Kandel and Pearson 1998).

We view this evidence as a gap between the ¯nancial payo® variability, as addressed by

the real options pricing literature, and operational uncertainty faced at the level of R&D

management. For example, R&D project managers encounter uncertainty about budgets,

schedules, product performance, or market requirements, in addition to ¯nancial payo®s.

The relationship between such operational uncertainty and the value of managerial °exi-

bility (option value of the project) is not clear. For example, should the manager respond

to increased uncertainty about product performance in the same way as to uncertainty

about project payo®s, by delaying commitments?

The ¯rst contribution of this article lies in connecting these operational sources of uncer-

tainty to the real option value of managerial °exibility. In a simple model, we demonstrate
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that operational uncertainty (in particular, uncertainty in product performance, market

requirements and schedule adherence) may reduce the real option value. We interpret this

counter-intuitive result in terms of when the underlying uncertainty is resolved: if opera-

tional uncertainty is resolved before decisions are made and costs or revenues are incurred,

°exibility can be applied in order to protect the project against a downside. In this case,

more uncertainty enhances the option value of managerial °exibility. However, if opera-

tional uncertainty is resolved after decisions are made, or if it reduces the probability that

°exibility is useful, more variability reduces the ability to respond and, thus, diminishes

the option value of °exibility.

As a second contribution, we extend the usual taxonomy of types of real options (delay,

abandon, contract, expand, switch) by \improvement." Mid-course actions during R&D

projects to improve the performance of the product (or to correct its targeting to market

needs) are commonly used. The availability of such improvement actions represent an

additional source of option value.

The literature on real options is quite extensive { readers are referred to textbooks such

as Dixit and Pindyck (1994) or Trigeorgis (1997) for overviews. Most applications of real

options have been in the area of commodities (such as oil exploration) because ¯nancial

markets are well developed in this environment and allow to replicate risks by traded

assets. Recently, research has been carried out on the application of real options pricing

to R&D projects (e.g., Brennan and Schwartz 1985, Faulkner 1996, McDonald and Siegel

1985, Mitchell and Hamilton 1988, Teisberg 1994).

2 Five Types of Operational Uncertainty

Figure 1 shows a simple conceptual picture of the drivers of project value: an R&D project

is characterized by its lead time, its cost over time, and the resulting product performance.
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The market is characterized by its payo® from the project (caused by market size and

attractiveness) and by its performance requirements, indicating how the payo® increases

with product performance. Project and market characteristics together determine the

project value. Formally, we can express this as follows: A project's value V is a function

of ¯ve \value drivers" which will be further de¯ned in Section 3:

V = f(performance, cost, time, market requirement, market payo®): (1)

Real options theory has shown that uncertainty in the market payo® enhances the project

value V if management has the °exibility to respond to contingencies. It creates option

value in the presence of uncertainty because it can eliminate the payo® downside while

retaining the bene¯ts of the upside. This is known to R&D managers (although rarely

formally valued): when the market potential of a project is unknown, managers strive to

delay decisions in order to be able to react to new market information, and they know

that this °exibility has value (e.g., delaying the speci¯cation freeze or the commitment to

an engineering change, Bhattacharya et al. 1999 or Terwiesch et al. 1999).

The question we examine in this article is whether this insight holds as well for uncertainty

in the other value drivers in Equation (1). Each of the ¯ve drivers is typically characterized

by uncertainty, which is graphically represented in Figure 1. Uncertainty corresponds to

stochastic variability of parameter distributions, and in the remainder of this article, we

use uncertainty and (stochastic) variability interchangeably.

1. Market Payo® Variability. The market payo® (e.g., price and sales forecast) depends

on uncontrollable factors such as competitor moves, demographic changes, substitute

products, etc. It has, therefore, a signi¯cant random (unforeseeable) component.

2. Budget Variability. This refers to the fact that the running development costs of

the project are not entirely foreseeable. Budget overruns are common, and less

frequently, under-budget completion also occurs.
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Figure 1: Five Types of Operational Variability

3. Performance Variability. This corresponds to uncertainty in the performance of

the product being developed. Initially targeted performance can often not be fully

achieved, as tradeo®s must be resolved among multiple technical criteria, which

together determine performance in the customer's eye. The greater the technical

novelty of a product, the higher is this uncertainty (Roussel et al. 1991).

4. Market Requirement Variability. This corresponds to uncertainty about the perfor-

mance level required by the market. Performance targets for a product are often

only imperfectly known (especially for conceptually new products, see Chandy and

Tellis 1998 or O'Connor 1998).

5. Schedule Variability. Project may ¯nish unpredictably ahead of or behind schedule.

In the latter case, reduced market payo®s (in terms of market share or prices) may

result, as empirical work shows (Datar et al. 1997).

5



The in°uence of variability in these operational drivers, in addition to variability in market

payo®s, on the value of managerial °exibility has not been examined. It is important to

understand the impact of operational drivers because often, di®erent functional managers

in an organization are responsible for the di®erent drivers. For example, a project manager

may control project cost and time, and product performance, a marketing manager may

be in charge of understanding and in°uencing performance requirements, and a ¯nance

manager may be responsible for the budget approval. It is important for them to under-

stand in which cases managerial °exibility creates value. Only then is it worth postponing

commitments to maintain °exibility. After setting up our basic model in Section 3, we

show in subsections 4.1 and 4.2 that increased variability in market payo®s, as well as in

budgets, may indeed enhance the option value of managerial °exibility, consistent with

option pricing theory. The other types of operational variability, however, may have the

e®ect of reducing the value of °exibility, as we show in subsections 4.3 to 4.5.

3 The Basic Model

3.1 Contingent Claims Analysis

The real option value of managerial °exibility can be evaluated using contingent claims

analysis, developed for pricing options in ¯nancial markets. This approach, however,

requires a complete market of risky assets capable of exactly1 replicating the project's risk

by the stochastic component of some traded asset (Dixit and Pindyck 1994, p. 121). Such

replicability often does not apply in R&D projects, whose risks are typically idiosyncratic

and uncorrelated with the ¯nancial markets. Merton (1998) proposes an approximation,

where a dynamically traded asset portfolio is used to track the project value as closely as

1Here, \exactly" means for every sample path of the realization of the uncertainty.
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possible. The approximating portfolio can then be used to derive an option value from

the ¯nancial markets. This is complex and beyond the scope of this article, as the key

parameter continuously tracked during the project is product performance (see below),

which is a non-¯nancial parameter.

We, therefore, revert to an equivalent approach to option evaluation, dynamic program-

ming (Dixit and Pindyck 1994, p. 7, Smith and Nau 1995), which does not require asset

replication. Thus, we develop in this section a dynamic programming model of an R&D

investment.2

The drawback of the dynamic programming approach is that it does not address the

question of the correct risk-adjusted discount rate. Dynamic programming requires an

exogenously speci¯ed discount rate that re°ects the decision-maker's risk attitude. How-

ever, the risk of an R&D project is typically due to factors unique to this project and thus

unsystematic or diversi¯able. Therefore, a rational investor can diversify the project risk

away by holding a portfolio of securities without requiring a risk premium. A reasonable

assumption for a large ¯rm is, therefore, a risk-neutral attitude toward the project with

discounting at the risk-free rate (Trigeorgis 1997, p. 43). All our results are insensitive to

the discount rate assumed.

3.2 A Dynamic Programming Model of an R&D Project

Consider an R&D project proceeding in T discrete stages (corresponding to regular design

reviews) toward market introduction. The market success is determined by the product

performance, which is modeled by a one-dimensional parameter i, such as processor speed

in a computer, or in the case of a multi-attribute product, the customer utility derived

2Smith and McCardle 1998 propose an \integrated" approach for oil exploration projects, where they

use option pricing for risks that can be replicated in the market and dynamic programming for risks that

cannot be priced.
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from a conjoint analysis (see, e.g., Aaker and Day 1990). The project is subject to un-

certainty stemming from the market and from technical development risk. Performance

uncertainty manifests itself in the variability of a probability distribution. A distribu-

tion is said to exhibit higher variability than a second distribution if both have the same

mean and the former has a higher variance. This de¯nition corresponds to Rothschild and

Stiglitz's (1970) de¯nition of higher risk. Focusing on variability distinguishes changes in

distribution means from changes in risk.

Performance variability causes the product performance i to \drift" between review peri-

ods of the project. The state of the system is characterized by (i; t), the level of product

performance i at project review t. From the viewpoint of an R&D manager, (i; t) signi¯es

\expected ¯nal product performance given information at review t". R&D teams com-

monly perform design reviews, where expected performance is estimated based on tests,

simulations or prototypes (e.g., Thomke 1998). For example, a prototype test may reveal

whether a chip is stable at a certain clock speed and provide an estimate of achievable speed

at market introduction. Such a test may also trigger corrective action, which is discussed

below. Typically, reviews are not directed toward an estimate of the value of maintain-

ing further °exibility, depending on the newest information about market requirements or

project state. This is modeled below.

The performance drift follows a binomial distribution in each period, independent of the

previous history of project progress. From period t to the next period, the performance

may unexpectedly improve with probability p, or it may deteriorate with probability (1¡p)

due to unexpected adverse events. We generalize the binomial distribution by allowing the

performance improvement and deterioration, respectively, to be \spread" over the next N
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performance states with transition probabilities.

pij =

8
>>>>>><
>>>>>>:

p
N

if j 2 fi+ 1
2
; : : : ; i+ N

2
g

1¡p
N

if j 2 fi¡ 1
2
; : : : ; i¡ N

2
g

0 otherwise.

(2)

The mean of this distribution is N+1
4
(2p ¡ 1) + i, and the variance is N+1

8
[N
3
+ (N +

1)(1
3

¡ (2p¡1)2
2

)]. With two parameters, this discrete distribution can approximate the

¯rst two moments of a range of continuous distributions. Moreover, this approximation

leads to a recombining lattice tree model, which reduces the size of the state space and,

thus, computational complexity. If p = 0:5 (a particularly relevant case for the analysis

below), N characterizes the variability of the product performance. The state space of

product performance over two periods is illustrated in Figure 2, in which the left section

corresponds to the transition probabilities (2).

Product
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Improvement:
probability shift
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Note:  In this example, the spread of the performance uncertainty is N = 3

Transition
without improvement

Transition
with improvement

Project 
period t

p

N

p

N

p

N

Figure 2: Transition Probabilities of Product Performance

If p = 0:5, the expected performance state for the product launch is Ei = 0 at time zero,

which means that the project plan is initially unbiased. If p > 0:5, the project plan is

\pessimistic", and the true expected performance at launch is Ei > 0. If p < 0:5, the

project plan is \optimistic", and the true expected performance is Ei < 0.
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At each period t, management can take any one of three possible actions: abandon, con-

tinue, or improve. The ¯rst two options are standard in real option theory. Abandonment

terminates the project immediately, cutting any further costs and foregoing any further

revenues. Continuation proceeds to the next stage (t + 1) at a continuation cost of c(t).

The continuation cost usually increases over time for R&D projects: c(t) · c(t + 1),

but this is not required for our results. Over the period, the performance state evolves

according to the transition probabilities shown above.

In addition to these two possibilities, management can also choose to take corrective action

and inject additional resources in order to improve expected product performance by one

level. For example, the gate layout of a processor chip is changed to eliminate cross-line

interference at high frequencies. Such improvement imposes an improvement cost of ®(t)

in addition to the continuation costs. The improvement cost typically also increases over

time since engineering changes become more di±cult as more of the product design is

completed (again, this is not required for our results): ®(t) · ®(t+ 1). The improvement

results in a \mean shift" of the transition probabilities (right section of Figure 2).3

pij =

8
>>>>>><
>>>>>>:

p
N

if j 2 fi+ 1 + 1
2
; : : : ; i+ 1 + N

2
g

1¡p
N

if j 2 fi+ 1¡ 1
2
; : : : ; i+ 1¡ N

2
g

0 otherwise.

(3)

At the start of the project, an initial investment of I must be made (e.g., to put the project

infrastructure in place). Costs and revenues are discounted at the risk-free rate r. Project

continuation and improvement costs have to be paid at the beginning of each period.

When the project is launched at time T with a performance level i, it will generate an

expected market payo® ¦i in the form of an S-curve, that is, ¦i is convex-concave in i

3This implies that the improvement can be carried out purely with additional resources (such as

engineers, or experimental lab. capacity), without an additional time delay. Time delays, or schedule risk,

will be treated separately in subsection 4.5.
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(left section of Figure 3). The S-curve is a general market payo® model, which includes

linear, convex or concave payo® functions as special cases. It is intuitive to assume that a

performance improvement makes little di®erence when performance is very low (improve-

ment does not save a bad product) or very high (improvement makes little di®erence for

an already great product). Performance matters most for intermediate performance levels

(Kalyanaram and Krishnan 1997, Bhattacharya et al. 1999).

In particular, the S-curve may be the result of a competitive performance threshold that is

not known in advance. In such a case, the market requires a certain level of performance

D, dictated by competitive dynamics. If the project meets or exceeds this performance

level, the market will yield a premium pro¯t margin M . But if the project misses the

target, it must compete on cost, and produces only a smaller margin m (right section of

Figure 3). The required market performance is not known to the ¯rm in advance and is

resolved only after the product launch. The ¯rm has an e±cient forecast in the form of a

probability distribution F of D (center in Figure 3).

ED

realized
performance
requirement D

m M
Density of  Performance
Requirement

Realized Payoff
(margin)

Note:  project performance is normalized around the expected market requirement ΕD.

m M

Expected Market Payoff

Product Performance i Product Performance iPerformance Requirement D

Figure 3: Market Uncertainty and Project Payo®s

Thus, if the project launches a product of performance level i, the expected payo® can be
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written as ¦i = m+F (i)(M¡m), where F (i) represents the probability that performance

i exceeds the market requirement D. It can easily be shown that for any distribution F

with a density that has a single maximum, ¦i is strictly convex-concave increasing in i.4

For simplicity of exposition, we assume that the mode of F (that is the point where ¦

turns from convex to concave) is at the expectation ED.5

The sequential decision problem resulting from the above described setup can be formu-

lated as a stochastic dynamic program with the following value function, which can be

solved with the standard backward recursion:

Vi(T ) = max

8
>>>>>><
>>>>>>:

abandon: 0;

continue: ¡c(T ) +
PN

j=1
[p¦i+j=2+(1¡p)¦i¡j=2]

N (1+r)
;

improve: ¡c(T )¡ ®(T ) +
PN

j=1
[p¦i+1+j=2+(1¡p)¦i+1¡j=2]

N (1+r)

(4)

Vi(t) = max

8
>>>>>><
>>>>>>:

abandon: 0;

continue: ¡c(t) +
PN

j=1
[pVi+j=2(t+1)+(1¡p)Vi¡j=2(t+1)]

N(1+r)
;

improve: ¡c(t)¡ ®(t) +
PN

j=1
[pVi+1+j=2(t+1)+(1¡p)Vi+1¡j=2(t+1)]

N (1+r)

(5)

We can characterize the optimal decision rule, or policy, for this dynamic program. Propo-

sition 1 describes the optimal policy for an increasing and convex-concave ¦i (this includes

as special cases ¦i convex or concave).

Proposition 1 If the payo® function ¦i is convex-concave increasing, the optimal policy

in period t is characterized by control limits Lu(t) ¸ Lm(t) and Ld(t) (all may be outside

the range [¡Nt=2; (N=2 + 1)t]) such that it is optimal to:

choose abandonment if Ld(t) ¸ i. Otherwise: choose continuation if i > Lu(t), choose

improvement if Lu(t) ¸ i > Lm(t), and choose continuation if Lm(t) ¸ i.

4For example, Kalyanaram and Krishnan (1997) use an equivalent setup, expressed in terms of fraction

of customers questioned who like the design, where F is assumed to be a normal distribution.
5This is true, for example, for the normal distribution. Our results are slightly simpli¯ed by this

assumption, but do not depend on it.
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Moreover, the optimal value function V (t) is also convex-concave increasing in i, and Lu(t)

lies in its concave region and Lm(t) in its convex region.

Proof

For easier readability of the text, all proofs are shown in the Appendix.

Figure 4 demonstrates the structure of the optimal policy. In the center, where the convex-

concave payo®-function is at its steepest, improvement is worthwhile. However, in the

°atter regions of the payo® function, the higher payo® does not justify the improvement

cost ®t. The lower control Ld cuts o® the project whenever the expected payo® (over

the 2N reachable states) is too low to justify the continuation cost ct. If ¦i is concave,

Lm = ¡1, and if ¦i is convex, Lu =1.

Πii

LU

A abandonC1

continue

(Ld may be
anywhere
with respect to Lm
and Lu)

Ld

Lm

I

C2

continue

improve

Figure 4: Control Limits of Optimal Policy

Figure 5 demonstrates the policy and the value function on an example. To the right is

the market payo® function ¦i. The lattice tree, corresponding to the increasing number

of possible states over time, contains the values of the optimal value function. Below

each state in the tree, the optimal value function is shown, along with the corresponding

decision. In this example, the uncertainty N has been set at 1 for easier exhibition.

V0(t = 0) corresponds to the optimal value of the project before the investment costs of
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I = 50 are deducted. Below the tree, the optimal project value after deducting I is shown.

V0(t = 0) includes a compound real option, namely, the value of the managerial °exibility

to choose improvement or abandonment in any period.

Along with the optimal project value, two benchmark values are shown: ¯rst, the project

value resulting from having the possibility to abandon, but not to improve, in each period.

It comes as no surprise that it is lower than the optimal value, as it includes an abandon-

ment option only. The second benchmark is the \traditional" net present value (NPV),

which corresponds to setting all decisions equal to \C" (continue) and deciding at the

beginning if the project should be carried out or not, depending on whether V0(0) exceeds

I. If the project plan is unbiased, this is equivalent to discounting the expectation of the

payo®s minus the appropriately discounted continuation costs. At the bottom, ¯nally,

the compound option value itself, or the value of the managerial °exibility, is shown (the

di®erence between the optimal project value and the NPV). The example shows that the

value of °exibility can be substantial.
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Figure 5: Example of Optimal Policy and Value Function
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Improvement represents a source of managerial °exibility di®erent from the standard \ex-

pansion" or \contraction", which are strategic options, such as additonal target markets

or capacity enlargements. Mid-course improvement in the way of a delayed design freeze,

engineering changes, or a change in the project team, poses challenges not for project

strategy, but for project execution.

4 Uncertainty and the Value of Flexibility

The value function of the dynamic program speci¯es function (1). Market payo® is repre-

sented by ¦, cost by ct, schedule by T , performance by i, and the market requirement by

D. Our question is how the variances (increasing uncertainty) of these drivers in°uence

the value of managerial °exibility. The variances correspond to the price spread (M ¡m),

the variance of ct, schedule variance º, transition spread N and requirement variance ¾2,

respectively.

4.1 Market Payo® Variability

In the context of our model, payo® variability corresponds to the di®erence (M ¡ m),

holding the average constant. Suppose we have two ¯nancial payo® functions ¦i and ¦i,

both are convex-concave increasing, and ¦i exhibits greater variability in the Rothschild-

Stiglitz (1970) sense: ¦0 = ¦0, and ¦i ¡ ¦i = ¦¡i ¡ ¦¡i ¸ 0 for all i.

Proposition 2 Assume the project plan is unbiased, that is, p = 0:5. Then the option

value corresponding to the payo® function with larger variability, ¦i, is larger: V 0(0) ¸

V0(0) while the NPV remains unchanged.

The reader may note that this proposition is valid in the case that ¦i is convex, convex-

concave, or concave (that is, the result is independent of where the expected performance
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requirement ED is relative to the expected product performance Ei = 0). The condition

that the project plan be unbiased serves to distinguish variance from mean e®ects. Con-

sider the case of an optimistic project plan with p < 0:5. Then product performance will

drift downward over time as the project progresses, and the payo® will be biased toward

lower values. If the payo® function has higher variability, the project is likely to end up

in the lower half of the performance range where the expected payo® decreases with the

higher variability. In other words, the mean project value is likely to su®er. The options of

improvement and abandonment may or may not su±ce to o®set this su®ering of the mean

payo®. If the project plan is pessimistic (p > 0:5), product performance is biased toward

the upper end of the performance range, and even the straight NPV already bene¯ts from

a payo® variability increase. Thus, the unbiased case that we analyze in Proposition 2 is

the limit case where the NPV is not a®ected by the increase in variability.6

Corollary. If the market payo® di®erence (M ¡m) increases while the mean (M +m)=2

remains constant, the option value of managerial °exibility increases.

This result con¯rms the real option theory intuition in our model: the value of managerial

°exibility is enhanced by an increase in market payo® variability.

4.2 Budget Variability

Budget varability is already included in the model to the extent that improvement, the

occurrence of which is stochastic according to the optimal policy, carries a cost ®t. The

question is how the value of °exibility is impacted if the continuation cost becomes stochas-

6The requirement that the two payo® functions cross at i = 0 and their di®erences are symmetric

is required to ensure that the NPV for both is the same, which makes the change in V0(0) equal to

the change in option value. Even if the two payo® functions have non-symmetric di®erences, the ideas

described here remain valid, although exposition becomes more complicated because the change in NPV

has to be factored into the analysis.
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tic, independent of whether improvement is chosen or not. Variability is represented by

the variance µ2t of the continuation cost ct.

We need to consider two cases. First, if ct is independent of ct¡1, the optimal policy

continues to hold, and both V0(0) and the NPV are unchanged. Thus, the option value

of abandonment and improvement is una®ected, although the variance of the project

payo® increases. The reason for this is that past variations of the project costs carry no

information about the future. The value of °exibility is neither enhanced nor reduced.

This changes if project costs are correlated over time, that is, if a budget overrun in ct makes

a future budget overrun more likely. In this case, the realization of ct carries information

about the future, based on which °exibility can be used to improve the expected payo®.

Formally, we can use the realization of ct to update our estimate of the future value

function. Suppose that ct becomes known at the beginning of period t and encapsulates

all information from previous costs. We can then expand the state space to (t; i; ct), and

the value function becomes V (t; i; ct¡1) = ct + E[V (t + 1) j ct]. Qualitatively, a higher

variance µt of the continuation cost implies a higher variance of the (updated) V (t + 1),

which, by Proposition 2, means that the option value of °exibility increases. We conclude

that the real option intuition continues to hold for the case of budget variability.

4.3 Performance Variability

The product performance i of the product varies stochastically because of the state tran-

sitions from one period to the next. Performance variability increases with parameter N

and thus the variance in the transition probabilities (a larger N makes a greater number

of states reachable in a transition). We now show that performance variability may reduce

¯nancial payo® variability and thus the real option value.

Proposition 3 Assume the project plan is unbiased, that is, p = 0:5, and the expected
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performance requirement ED = Ei = 0. Then the option value V0(0) decreases when the

performance variability N increases.

The negative impact on the option value stems from the higher uncertainty \smearing

out," or averaging out, the achievable performance over a wider range. This smearing out

reduces the available payo® variability. The intuition is represented in Figure 6. From any

current performance state during the project, higher performance uncertainty increases

the reachable performance range. Thus, the expected payo® function °attens out, which

reduces the downside protection the decision-maker can achieve by intelligently choosing

improvement or abandonment of the project. Therefore, the value of managerial °exibility

su®ers.

Performance

Payoff  Π i

VT (i), on average,
decreases with N

M + m

2

i - N

2

i

i + N

2

ED

VT (i), on average,
increases with N

Figure 6: The E®ect of Larger Performance Variability

This e®ect does not appear if the payo® function ¦i is linear in the stochastic variable,

e.g., the option value follows directly the stochastically varying project performance. The

convex-concavity in our model stems from the fact that the performance requirement in

the market itself is stochastic (unforeseeable). Convex-concavity is the essential driver

of our result that performance variability \washes out" payo® variability. Performance

uncertainty is only revealed in the future, after possible decisions have been made. This
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uncertainty may cause \mean reversion" that reduces the payo® variance for which °ex-

ibility is valuable. Mean reversion does not occur for a linear payo® function, in which

case, performance variability does not impact °exibility value.

As before, this result has been \isolated" from other e®ects by assuming an unbiased

project plan. If the project plan is optimistic, i.e., p < 0:5, an increase in the performance

variability parameter N shifts the expected project performance downward, making im-

provement and abandonment even more important, thus boosting the option value for an

increasing N .7 This can be illustrated using the example that was introduced in Figure 5.

If N is increased from 1 to 2, the option value decreases from 29:4 to 17:5. If, however,

the upward transition probability is reduced to p = 0:1, the option value increases to 43

for N = 1 and even higher to 53 for N = 2.

4.4 Market Requirements Variability

In the context of our model, market requirement variability is represented by the variance

¾2 of the market performance requirement, while holding the mean market requirement

ED constant. Proposition 4 shows another negative e®ect of operational variability on

the option value.

Proposition 4 Assume the project plan is unbiased, that is, p = 0:5. Then the option

value V0(0) decreases if ¾, the market requirement variability, increases. Furthermore, if

V0(0) ¸ 0 for any ¾, then there is a ¾ such that for all ¾ ¸ ¾ the optimal policy is to

\continue" in all states (i; t), in which case V0(0) = NPV.

7Similarly, if the expected market requirement ED < 0, the expected performance is larger than the

expected requirement, in which case more of the distribution of i lies in the concave region of ¦. In this

case, V0(0) and the NPV both decrease, so the option value may increase or decrease. The converse holds

if ED > 0. As in Proposition 2, the assumption in the proposition distinguishes the variability e®ect on

the option value from the mean e®ect on the NPV .
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The reason for the real option value to be diminished by market requirement variability

is summarized in Figure 7. When market requirements are more spread out without a

corresponding increase in payo® variability, part of the probability mass \escapes" beyond

the performance range in reach of the development project. As a result, the information

about payo® variability o®ered by the current performance state i is reduced, which de-

stroys the value of °exibility responding to this information. When variability becomes

so great that no expected payo® di®erence exists over the reachable performance range,

there remains no option bene¯t. The project decision becomes equivalent to the static

NPV criterion since the performance states carry no information about payo®s.

Project Development
States (i, t)

0
Development Time t

T m
Expected Market Payoff Function Πi
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Performance State i

high σ : payoff variability
in reachable range reduced

low σ : full
requirement range

reachable by project

(N/2 +1) T 

Figure 7: Increased Market Requirements Variability

The decrease in option value is demonstrated in Figure 8 on the same example as in

Figure 5, with market requirement variability increased from ¾ = 2 to ¾ = 3. The NPV

value of the project has remained unchanged, but the value of both the abandonment

option and the improvement option has been reduced. This becomes apparent when

comparing the optimal policies of Figures 4 and 7. The number of states in which it is

worthwhile to choose improvement has shrunk because the payo® function is °atter.
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Figure 8: Example With Increased Requirements Variability

As in subsection 4.3, option value is lost because uncertainty is resolved after all decisions

are made. Thus, a variability increase causes mean-reversion in the variability against

which °exibility can be exercised. Yet, the reason for the lost option value in Proposition

4 is very di®erent from that in Proposition 3. The e®ect in Proposition 4 has nothing to

do with payo® nonlinearity (or with convex-concavity, for that matter). Indeed, the e®ect

would persist with a linear function ¦i, which would be \rotated" around i = 0 such that

its extreme values in the reachable performance cone would be pushed closer together.

The key phenomenon is that the end point of the payo® distribution is pushed beyond the

reachable performance range, and therefore, the reachable payo® variability is reduced.

A similar e®ect of probability mass escaping beyond a reachable \capacity" limit is very

important in a di®erent context as well. Consider an investment in a °exible production

facility with a capacity limit. More variability can be detrimental if probability mass of

demand, and thus part of the upside of the option, escapes beyond the capacity limit

(Jordan and Graves 1995, Cohen and Huchzermeier 1999).
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4.5 Schedule Variability

Suppose that the expected market payo® ¦i is sensitive to the time-to-market: a product

launch delay by ± beyond the planned launch time T reduces ¦i(±). This is consistent

with empirical results that a time-to-market delay may destroy development project payo®s

(Datar et al. 1997). In order to focus on schedule variability and to make its e®ects very

clear, we simplify our basic model by collapsing the product performance states, i.e., by

considering a situation where the target performance is well-known and reachable.8 We

consider a two-stage project, in which stage 1 may be delayed, as is shown in Figure 9.

Time t

0 t1 t1+δ t1 + δ + t2 

stage 1
cost c1 

delay δ
mean δ

variance v 

stage 2
cost c2 

Possibility to abort
(exercise abandon-

ment option)
market launch,

expected project
payoff  Π(δ)

Figure 9: A Development Project With Schedule Variability

The ¯rst stage may be interpreted as technical development, with the risk of a delay ±,

and the second stage as the marketing and launch campaign. The expected project payo®

is a strictly decreasing function of the delay ±. Management may, after the delay has been

observed, decide to abort the project before the launch costs are incurred (exercising an

8The impact of delays on revenues can be incorporated into the basic model from Section 3 by expanding

the state space from (i; t) to (i; t;¢), where ¢ is the accumulated delay up to time t. This would complicate

the model without adding clarity to the argument. Similarly, we formally leave discounting out of the

model. Discounting alone would correspond to ¦ decreasing convexly with ±, which is incorporated in our

analysis as a special case.
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abandonment option).

The decision rule at the beginning of stage 2 (at which point ± has been revealed) is clear:

continue if ¦(±) ¡ c2 > 0, and abort otherwise. We can invert ¦(±) and thus write the

prior probability of continuation as Pf± · ¦¡1(c2)g, where ¦¡1 stands for the inverse.

This allows us to write the optimal project value and the NPV of the project (which

assumes continuation regardless of the delay). The value of the abandonment option is

the di®erence:

V0(0) = ¡c1 + Pf± · ¦¡1(c2)gE[¦(±)¡ c2 j ± · ¦¡1(c2)];

NPV = ¡c1 ¡ c2 + E[¦(±)];

Option value = Pf± > ¦¡1(c2)g(c2 ¡ E[¦(±) j ± > ¦¡1(c2)]): (6)

As this expression shows, the option value lies in the avoidance of the loss-making case

where the reduced payo®s are too small to cover the launch costs. The option value

depends on where the critical cuto® delay ¦¡1(c2) lies with respect to the distribution

of ±. This critical delay indicates how \bad" things must become before the project is

aborted. If the critical delay is very large, revenues are very unlikely to be reduced so

much as to make the project unpro¯table. Thus, the option is unlikely to be exercised and

not worth much. If the critical delay is small, the option is likely to be \in the money,"

and thus worth more.

How does increased schedule uncertainty, represented by the delay variance v2, in°uence

this option value? The answer depends on two e®ects: ¯rst, the probability of exercising

the option is determined by the distribution of the delay ±, and second, the shape of the

payo® over time ¦(±) in°uences the e®ect of averaging. Proposition 5 summarizes the

result.

Proposition 5 If the critical delay ¦¡1(c2) is small (large) relative to the expected delay ±,

an increasing schedule variability v2 may decrease (increase) the option value of °exibility.
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If the payo® function ¦(±) is convex (concave), an increasing schedule variability v2 may

decrease (increase) the option value of °exibility.

Two simple examples best illustrate the essence of the argument. First, suppose there

is a critical introduction date ±crit, for example, the announced introduction date by a

competitor or a regulatory deadline, beyond which revenues su®er discontinuously. ¦(±)

is una®ected at H > c2 as long as ± < ±crit, but it drops to L < c2 if ± ¸ ±crit. Suppose also

that the delay is normally distributed with parameters (±; v). Then the option value (6)

becomes [1 ¡ ©((±crit ¡ ±)=v)](c2 ¡ L). The derivative of this option value with respect

to the standard deviation v is c2¡L
v2
Á((±crit ¡ ±)=v)(±crit ¡ ±). This is positive for ±crit > ±

and negative for ±crit < ±. This means that when the expected delay is large, the project

will only be carried through in the left tail of the distribution. This left tail increases with

v, so the probability of the option being exercised shrinks with v. As the low payo® L is

constant in ±, the probability of exercise determines the value of the option.

The second example shows the e®ect of averaging over convex functions. A convex ¦(±)

corresponds to a situation where a small delay does a lot of damage, but then further

delays matter less and less. Suppose the payo® ¦(±) = 50e¡0:1±, and the continuation cost

c2 = 20. Then the cuto® delay at which the abandonment is exercised is ¦¡1(c2) = 9:16.

Now, suppose that the delay is normally distributed with parameters (30; v). We ¯nd that

with v = 10, the option value is 16:1, with v = 20 it is 13:9, and with v = 30 it shrinks to

12:7. A larger variance of ± spreads the possible delays and thus increases the expected

NPV payo® (over the region where the option is exercised). In this example, a change in

variability cannot be separated from a change in the NPV.

Similarly to performance and requirement variability, schedule uncertainty smears out

payo® variability against which °exibility has value. However, in the ¯rst example, this

is not due to uncertainty being revealed after decisions are made. More variability may

reduce the probability that °exibility will ever be exercised, which diminishes its value.
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5 Conclusion

In this article, we have developed a simple real option model of an R&D project, in which

not only the market payo® is subject to uncertainty, but also operational variables of

budget, product performance, market performance requirement, and schedule. In each

of T stages of the project, management has the °exibility of improving or abandoning

the project when additional information becomes available. \Improvement" represents

an extra source of option value, in addition to continuation, abandonment, expansion,

contraction, or switching. Improvement is the capability of an operational mid-course

correction during the execution of the project.

Standard real options intuition states that more variability increases the value of manage-

rial °exibility, as more \downside" can be avoided. Our results imply that this intuition

is not always correct. The structure of uncertainty resolution determines whether or not

variability makes °exibility valuable. If uncertainty is resolved and then a decision can be

made before costs or revenues accrue, the intuition holds: more variability creates more

downside to be avoided, making °exibility worth more. This applies to payo® and budget

variability in our model. However, if uncertainty is resolved or costs/revenues occur after

all decisions are made, more variability may smear out contingencies and thus reduce the

value of °exibility. In our model, this is the case for performance and market requirements

variability. In addition, operational variability may reduce the probability of °exibility

ever being exercised, which also reduces its expected value. This is demonstrated on the

example of schedule variability in our model.

The results of our model have clear managerial implications, indicating when it is most

important to delay commitments. For example, project management °exibility o®ers a

signi¯cant option value for an incremental innovation project in a mature market with low

performance and requirement variability. Thus, a good project plan with a little °exibility
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may be the right approach. However, in a radically new project with high performance and

requirement uncertainty, the option value of °exible project management may be reduced.

Thus, a lot of °exibility is required to e®ectively react to contingencies. Recent ¯ndings

in the empirical product development literature suggest a trial-and-error approach for

such projects (e.g., O'Connor 1998, Chandy and Tellis 1998). But such high °exibility is

expensive. Our model implies that management should perform regular, formal reviews to

obtain information on all sources of uncertainty, in order to target °exibility to where it is

needed. For example, if performance uncertainty is most critical, testing and prototyping

capacity should be provided to resolve technical problems as quickly as possible when they

arise. If, in contrast, market requirement uncertainty is most critical, management should

be prepared to quickly respond to customer feedback by changing features or product

aethetics.

More generally, our results suggest that managers should be willing to pay for °exibility

after new information becomes available and before major costs or revenues occur, if

the probability of that °exibility being exercised is signi¯cant. It is worth maintaining

°exibility until additional information becomes available about product performance (e.g.,

through testing or simulation) or customer requirements (e.g., through prototypes or lead

users). There is an option value of additional information. If information (from any source)

is not updated, the default decision may be \just continue and see what happens". This

may represent a \continuation trap" if additional information could be obtained leading

to abortion.9

The model proposed in this paper makes a conceptual step toward understanding the

e®ects of operational variability on the value of managerial °exibility in R&D projects.

There remains a great need for empirical evaluation of managerial °exibility in real R&D

environments. In addition, many issues remain to be explored, e.g., dynamic R&D in-

9We are grateful to an anonymous referee for suggesting this point.
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vestment policies for several R&D projects in parallel, or reduction of market requirement

uncertainty over time. Such considerations may lead to additional types of variability with

surprising e®ects. As R&D project costs and risks increase, evaluation of °exibility will

become even more important.
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6 Appendix

6.1 Proof of Proposition 1

We proceed by induction. By assumption, ¦i is convex-concave increasing. We show ¯rst

that the control policy is optimal as claimed. Then we show that the resulting value

function Vi(t) is convex-concave increasing as well.

Lemma 1. If Vi(t+1) is convex-concave increasing, Vi(t) has the described optimal policy.

28



Proof. The values corresponding to continuation and improvement in (5) both increase

in i because Vi(t + 1) does. Thus, if we ¯nd an Ld(t) for which abandoning is the best

action, abandoning is also best for all i · Ld(t). This determines region A in Figure 4.

The reader should note that region A is independent of regions C1, C2 and I.

Improvement is preferred over continuation in state i i®

®(t) < Ri ´
PN

j=1
[pVi+1+j=2(t+1)+(1¡p)Vi+1¡j=2(t+1)]

N (1+r)

¡
PN

j=1
[pVi+j=2(t+1)+(1¡p)Vi¡j=2(t+1)]

N(1+r)
: (7)

By convex-concavity of Vi(t+ 1), the right-hand side of (7) ¯rst increases, then decreases

in i. Thus, if there is an Lm(t) with RLm(t) < RLm(t)+1 such that ®(t) ¸ RLm(t) but ®(t) ·
RLm(t)+1, continuation is preferred for all i · Lm(t). For state Lm(t) + 1, improvement is

preferred. This describes region C1 in Figure 4.

If there is an Lu(t) with RLu(t) < RLu(t)¡1 (i.e., Vi(t) is locally concave), such that ®(t) ¸
RLu(t) but ®(t) · RLu(t)¡1, then continuation is preferred, for all i ¸ Lu(t). For state

Lu(t) ¡ 1, improvement is preferred. This determines region C2 in Figure 4. Finally, by
convex-concavity of Vi(t+1), there can be no additional switch of condition (7) in between,

which settles region I in Figure 4.

Lemma 2. Vi(t) is convex-concave increasing in i.

Proof. Within the regions of Figure 4, Vi(t) is convex-concave increasing since it is a

linear combination of summands from Vi(t+ 1). The borders between the regions remain

to be checked.

At i = Lu(t) + 1, continuation is optimal, and at Lu(t) improvement is optimal.

Vi+1(t)¡ Vi(t) = ®(t);

Vi(t)¡ Vi¡1(t) =

PN

j=1
[pVi+1+j=2(t+1)+(1¡p)Vi+1¡j=2(t+1)]

N(1+r)

¡
PN

j=1
[pVi+j=2(t+1)+(1¡p)Vi¡j=2(t+1)]

N (1+r)

¸ ®(t) by Equation (7):

Thus, Vi(t) is concave at Lu(t). A symmetric argument at i = Lm(t) implies that Vi(t) is

convex at Lm(t).

Finally, for Ld(t) we must consider two cases. First, if Ld(t) is in the convex region of
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Vi(t), we can write the increments of Vi(t) as follows:

VLd(t)¡1(t) = VLd(t)(t) = 0 by de¯nition of Ld(t); thus:

VLd(t)+1(t)¡ VLd(t)(t) =
p
PLd(t)+(N+2)=2

Ld(t)+3=2
Vj(t+1)+(1¡p)

PLd(t)¡(N¡2)=2
Ld(t)+1=2

Vj (t+1)

N (1+r)

¡p
Pi+N=2

i+1=2
Vj(t+1)+(1¡p)

Pi¡N=2
i¡1=2 Vj(t+1)

N (1+r)
¡ 0

· VLd(t)+2(t)¡ VLd(t)+1(t) because VLd(t)(t) is bounded below at zero
and by local convexity of Vi(t+ 1):

Thus, Vi(t) is convex at Ld(t). Second, if Ld(t) is in the concave region of Vi(t), the

symmetric argument can be used to establish that Vi(t) is concave at Ld(t).

6.2 Proof of Proposition 2

Lemma 3. Suppose there are two value functions Vi(t+ 1) and V i(t + 1), both convex-

concave increasing in i, with the following characteristics:

larger increments: V i(t+ 1)¡ V i¡1(t+ 1) ¸ Vi(t+ 1)¡ Vi¡1(t+ 1) 8i; (8)

equal value:
imax(t+1)X

imin(t+1)

V i(t+ 1) ¸
imax(t+1)X

imin(t+1)

Vi(t+ 1); (9)

where imin is the lowest performance possible at launch if continuation is chosen in all

project states, and imax is the highest. Then Vi(t) and V i(t) are convex-concave increasing

and ful¯ll conditions (8) and (9).

Proof. Convex-concavity of both value functions follows directly from Proposition 1.

Each value function is, by its de¯nition (5), a linear combination within the regions of

improvement (I) and continuation (C) separately. This implies condition (8) for the regions

I and C separately. In addition, by the de¯nition (7) of Lm and Lu, Lm · Lm, and Lu ¸ Lu,

that is, the range of action I is larger for V i(t) because V i(t+ 1) is steeper by (8).

At the transition Lm, where V i(t) switches to I while Vi(t) still stays with C, condition (8)

also holds because the expected improvement payo® more than makes up for additional

improvement costs ®t. Similarly, at the upper transition Lu, Vi(t) switches back to C while

V i(t) still stays with I because V i(t+1) is still steep enough to justify the improvement cost,

while Vi(t+1) is not. Thus condition (8) holds here as well. Finally, at the abandonment

control Ld, we can argue that V i(t) is prevented from \dipping below zero," which limits

its disadvantage where it is below Vi(t). (The algebraic details of these comparisons are

omitted). This establishes condition (8) for V i(t) and Vi(t).
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To see that condition (9) holds, recall that if continuation was chosen everywhere, (9) would

hold for time t because both period t value functions are symmetric linear combinations

of the period t + 1 value functions. But as the improvement range of V i(t) is enlarged,

condition (7) ensures that the improvement enhances V i(t) at least for some states, and

similarly, abandonment limits V i(t) from below. Therefore, (9) holds for time t.

The proposition can now be proved by induction: ¦i and ¦i are convex-concave increasing

and ful¯ll conditions (8) and (9) by assumption, crossing over at i = 0. Then Lemma 3

establishes an induction backwards from T to time 0, where V 0(0) ¸ V0(0).

At the same time, ¦i and ¦i have the same project NPV (continuation at every state)

because the compounded probability distribution of the payo®s (as p = 0:5), as well as

the di®erences ¦i¡¦i (by assumption), are symmetric around zero. Therefore, the option
value of °exibility, corresponding to the di®erence V0(0)¡NPV , is larger for ¦i.

The corollary follows directly: Consider two payment distributions (m;M) and (m;M)

such that (M¡m) > (M¡m), but the averages are equal. Then ¦i > ¦i for all i > ED = 0
and vice versa. Moreover, ¦i ¡ ¦i¡1 ¸ ¦i ¡ ¦i¡1 for all i, by the de¯nition of the payo®
function. Thus, the two payo® functions ful¯ll the conditions for the proposition.

6.3 Proof of Proposition 3

We include N as an explicit parameter in the value function VT;N(i). We prove that for

every N , there exists an i¤N such that VT;N+1(i) ¸ VT;N (i) for all i < i¤N and VT;N+1(i) ·
VT;N (i) for all i ¸ i¤N . That is, the value function increases with the performance uncer-

tainty N below an in°ection point, and decreases with N above the in°ection point. As

a result, the value function VT;N(i) is \squeezed" more closely and has thus smaller incre-

ments. Therefore, by Proposition 2, the option value V0(0) decreases in N , re°ecting the

reduced potential for risk-hedging. Figure 5 summarizes the intuition of this argument.

First, consider the expected payo® in period T from continuation. From (4) and p = 0:5,

VT;N(i)(cont.) = ¡c(T ) +
PN
j=1¦i+j=2 +¦i¡j=2

N(1 + r)
:

Convex-concavity of ¦i implies that at i = 0, the ¯rst summand in the numerator decreases

with N , and the second summand in the numerator increases with N . As i > 0, the

convex combination in the numerator shifts more toward the concave part of ¦i and thus

toward decreasing in N , and vice versa. Therefore, we can de¯ne icont:(T ) analogously to

31



Proposition 2 such that VT;N(i)(cont.) increases in N for all i · icont:(T ) and VT;N(i)(cont.)

decreases in N for all i > icont:(T ). Moreover, by symmetry of ¦i, icont:(T ) = 0.

Thus, there exists an iimpr:(T ) such that VT;N (i)(impr.) (de¯ned in the same way as

VT;N (i)(cont.) above) increases in N for all i · iimpr:(T ) and VT;N (i)(impr.) decreases in

N for all i > iimpr:(T ). Moreover, iimpr:(T ) = icont:(T )¡ 1 = ¡1, which can be seen from
the fact that the two expected payo®s only shift by one performance level.

By convex-concavity of ¦i and (7), Lm(T;N) increases in N , and Lu(T;N) decreases in

N . Therefore, when considering N1 < N2, the two corresponding value functions ¯t the

structure in Figure 7 with VT;N1(i) corresponding to the higher variability value function

V T (i) in Lemma 3. Proposition 2 implies that the option value V0(0) decreases in N .

6.4 Proof of Proposition 4

Consider two performance requirement distributions with equal mean ED but ¾ > ¾.

Denote with the upper bar all policies and results corresponding to the distribution with ¾.

The payo® function ¦i has the same mean but lower variability: (¦i¡¦i¡1) < (¦i¡¦i¡1)
such that (¦i ¡ ¦i) < 0 for i > ED and vice versa for i < ED. Therefore, Proposition 2

applies with ¦i and ¦i exchanged. This proves statements 1 and 2 of the proposition.

Finally, suppose that ¦ED=(1+r)
T >

PT¡1
t=1 c(t) { the project exceeds its expected variable

cost. There is a ¾¤ such that (¦i ¡ ¦i¡1)=(1 + r) < ®(t) for all ¾ > ¾¤ and all (i; t) and
¦¡NT=2=(1 + r)T >

PT¡1
t=0 c(t)=(1 + r)

t. Then continuation is optimal in all states (i; t):

payo® increments are too small to justify improvement, and even the worst case scenario

permits continuation.
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