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Abstract

Cascaded regression approaches have been recently

shown to achieve state-of-the-art performance for many

computer vision tasks. Beyond its connection to boosting,

cascaded regression has been interpreted as a learning-

based approach to iterative optimization methods like the

Newton’s method. However, in prior work, the connection

to optimization theory is limited only in learning a mapping

from image features to problem parameters.

In this paper, we consider the problem of facial de-

formable model fitting using cascaded regression and make

the following contributions: (a) We propose regression to

learn a sequence of averaged Jacobian and Hessian matri-

ces from data, and from them descent directions in a fashion

inspired by Gauss-Newton optimization. (b) We show that

the optimization problem in hand has structure and devise

a learning strategy for a cascaded regression approach that

takes the problem structure into account. By doing so, the

proposed method learns and employs a sequence of aver-

aged Jacobians and descent directions in a subspace or-

thogonal to the facial appearance variation; hence, we call

it Project-Out Cascaded Regression (PO-CR). (c) Based on

the principles of PO-CR, we built a face alignment system

that produces remarkably accurate results on the challeng-

ing iBUG data set outperforming previously proposed sys-

tems by a large margin. Code for our system is available

from http://www.cs.nott.ac.uk/˜yzt/.

1. Introduction

Regression is a standard tool for approaching various

computer vision problems like human and head pose esti-

mation [30, 12], deformable model fitting [7, 37], object

localization and tracking [33], and face and behaviour anal-

ysis [24] to name a few. Typically, regression-based meth-

ods wish to learn a function that maps object appearance

to the desired target output variables. Being discrimina-

tive in nature and by capitalizing on the very large anno-

tated data sets that are now readily available, they have been
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Figure 1. Project-Out Cascaded Regression vs Gauss-Newton op-

timization. In prior work in face alignment, given the current esti-

mate of the landmarks’ location (a)-(b), image specific Jacobians

are calculated to be used in analytic gradient descent. In (c), the

image Jacobian with respect to the 3rd shape parameter is shown.

In this work, we propose regression to learn a sequence of av-

eraged Jacobians from data, and from them descent directions. In

(d), the learned averaged Jacobian with respect to the 3rd shape pa-

rameter for the first level of the cascade is shown. Notably, PO-CR

learns averaged Jacobians from which facial appearance variation

is projected-out.

shown to produce state-of-the-art performance for many of

the aforementioned tasks. At the same time, regression-

based methods enjoy a high degree of computational effi-

ciency in both training and testing. In this work, the focus

is on regression-based fitting of facial deformable models

to unconstrained images, also known as face alignment in-

the-wild. Arguably, for this problem, regression-based ap-

proaches have recently emerged as the state-of-the-art.

A plethora of regression methods have been employed to

tackle the above mentioned problems including linear and

ridge [4], Support Vector [31], Boosted [13], Gaussian pro-

cess [26], and more recently, Deep Neural Nets [18]. A

recent notable approach that is of particular interest in this

work is the so-called Cascaded Pose Regression (CPR) [11].

CPR is an iterative (cascaded) regression method that is re-

lated to boosting with the main difference being that it uses

pose-indexed features i.e. features that are sampled from

the image based on the current pose estimate. This idea

has been shown to produce excellent results on a variety of

tasks and, owing to its efficiency and accuracy, it has been

recently extensively explored by a number of authors for the

problem of face alignment [6, 38, 32, 40, 39, 27, 1, 17].
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Regression, as a learning-based solution to optimiza-

tion, dates back to the seminal work of [7]. More recently,

the Supervised Descent Method (SDM) [38] considers the

problem of fitting deformable models to facial images using

non-linear least squares optimization and derives CPR as a

supervised (learning-based) solution to that problem. As

we show hereafter, in prior work (including [7] and [38]),

(a) the connection to optimization theory is limited only in

learning a mapping from image features to problem param-

eters, (b) there is no attempt to estimate the Jacobian and

Hessian matrices (key concepts in optimization) and (c) the

structure of the optimization problem in hand is not taken

into account.

1.1. Contributions and main results

In this paper, we consider the problem of facial de-

formable model fitting using cascaded regression and make

the following contributions:

• We propose regression to learn a sequence of averaged

Jacobian and Hessian matrices from data, and from

them descent directions. Our method is inspired by

prior work on Gauss-Newton optimization for fitting

facial deformable models but rather than calculating

image specific Jacobians to be used in analytic gradi-

ent descent, we propose cascaded regression to learn

a sequence of averaged Jacobians from data, one per

iteration.

• We show that the optimization problem in hand has

structure and devise a learning strategy for a cascaded

regression approach that takes the problem structure

into account. In particular, we propose Project-Out

Cascaded Regression (PO-CR), a cascaded regression

approach for fitting facial deformable models to un-

constrained images that learns and employs regressors

in a subspace orthogonal to the appearance variation.

In particular, the key idea in the proposed learning

strategy for PO-CR is to compute a sequence of aver-

aged Jacobians from which facial appearance variation

is projected-out.

• Based on the principles of PO-CR, we built a face

alignment system and tested it on the most popular fa-

cial databases, namely LFPW [3], Helen [19], AFW

[41] and iBUG [28]. Notably, our system produces

remarkably accurate results on the challenging iBUG

data set outperforming previously proposed systems

by a large margin. Code for our system is available

from http://www.cs.nott.ac.uk/˜yzt/.

We note that there are many examples of computer vision

problems including bundle adjustment [34, 20], parameter-

ized model fitting [15, 23] and detection/tracking [14, 16],

in which the resulting optimization problems have structure;

for example, the underlying normal equations might exhibit

a sparse block or circulant structure [5]. Within the pro-

posed formulation, our results show that this structure must

be exploited during learning to produce accurate and robust

solutions during testing.

1.2. Related work

The proposed Project-Out Cascaded Regression (PO-

CR) is a cascaded regression approach and hence the start-

ing point for our work is the CPR of [11]. CPR is an itera-

tive regression method in which the output of regression at

iteration k − 1 is used as input for iteration k, and each

regressor uses image features that depend on the current

pose estimate. This idea was explored for the problem of

face alignment in [6] where the authors demonstrated ex-

cellent results on the LFPW data set [3]. The proposed

PO-CR is a cascaded regression approach that is derived as

a solution to a non-linear least squares optimization prob-

lem for fitting generative deformable models to facial im-

ages and as such is related to the recently proposed SDM

of [38]. Interestingly, the connection between regression

and non-linear least squares optimization dates back to the

original Active Appearance Model (AAM) formulation of

[7]. None of these approaches however proposes to learn a

sequence of averaged Jacobian and Hessian matrices from

data nor takes into account the problem structure in the for-

mulated optimization problem as suggested by PO-CR. This

structure has been occasionally explored by a number of

authors in the context of fitting facial deformable models

to images using analytic gradient descent (Gauss-Newton

optimization) [15, 23, 25, 35], with well-known examples

being the Project-Out Inverse Compositional algorithm of

[23] and, more recently, the Gauss-Newton generative de-

formable part model of [36]. Notably, in these methods, the

update of the shape parameters at each iteration is found by

projecting-out the facial appearance variation from the im-

age specific Jacobian. A similar idea is explored for learn-

ing in the proposed PO-CR. See also Fig. 1.

2. State-of-the-art in face alignment

The problem of face alignment has a long history in

computer vision and a large number of approaches have

been proposed to tackle it. Typically, faces are modelled

as deformable objects which can vary in terms of shape

and appearance. Much of early work revolved around the

Active Shape Models (ASMs) and the Active Appearance

Models (AAMs) [8, 7, 23]. In ASMs, facial shape is ex-

pressed as a linear combination of shape bases learned

via Principal Component Analysis (PCA), while appear-

ance is modelled locally using (most commonly) discrim-

inatively learned templates. In AAMs, shape is modelled

as in ASMs but appearance is modelled globally using PCA

in a canonical coordinate frame where shape variation has



been removed. More recently, the focus has been shifted

to the family of methods coined Constrained Local Mod-

els (CLMs) [9, 22, 29] which build upon the ASMs. Be-

sides new methodologies, another notable development in

the field has been the collection and annotation of large

facial data sets captured in unconstrained conditions (in-

the-wild) [3, 41, 19, 28]. Being able to capitalize on large

amounts of data, a number of (cascaded) regression-based

techniques have been recently proposed which achieve im-

pressive performance [37, 6, 38, 32, 27, 1, 17]. The ap-

proaches described in [38, 27, 1, 17] along with the part-

based generative deformable model of [36] are considered

to be the state-of-the-art in face alignment.

3. Project-Out Cascaded Regression

The proposed Project-Out Cascaded Regression (PO-

CR) uses generative models of facial shape and appearance

fitted via cascaded regression in a subspace orthogonal to

the learned appearance variation. In the following sections,

we describe (a) the facial shape and appearance models em-

ployed by PO-CR (section 3.1), (b) the optimization prob-

lem which provides the basis for learning in PO-CR (section

3.2), (c) the learning and fitting process in PO-CR (section

3.3), and finally (d) the differences between PO-CR and re-

lated prior work (section 3.4).

3.1. Shape and appearance models

In this section, we describe the shape and appearance

models employed by the proposed PO-CR. In particular,

we use a parametric global shape model and a paramet-

ric part-based appearance model akin to the ones originally

proposed in [10] and more recently employed in [36]. A

notable difference from recent work on cascaded regression

is that we use parametric generative models for shape and

appearance both learned via PCA from an annotated train-

ing set as explained below. Although recent regression ap-

proaches advocate the use of non-parametric shape mod-

els [6], the parametric one employed here is more compact

having far less number of parameters to optimize. Addi-

tionally, learning a generative appearance model is a key

idea in PO-CR. In contrast to recently proposed cascaded

regression methods, PO-CR learns and employs averaged

Jacobians and descent directions in a subspace orthogonal

to the learned appearance model.

As in most works in face alignment, we assume a super-

vised setting where a set of training facial images Ii are an-

notated with u fiducial points. For each image, the set of all

points is a vector ∈ R2u×1 that is said to define the shape

of each face. To learn the shape model used in PO-CR,

the annotated shapes are firstly normalized using Procrustes

Analysis. This step removes variations due to similarity

transformations (translation, rotation and scaling). Then,

PCA is applied on the normalized shapes to obtain the shape

model. The model is defined by the mean shape s0 and n

shape eigenvectors si compactly represented as columns of

matrix S ∈ R2u×n. Finally, to model similarity transforms,

S is appended with 4 additional bases as described in [23].

An instance of the shape model is given by

s(p) = s0 + Sp, (1)

where p ∈ Rn×1 is the vector of the shape parameters.

To learn the appearance model used in PO-CR, each

training image Ii is warped to a reference frame so that sim-

ilarity transformations are removed. Then, a descriptor (e.g.

image patch or SIFT [21]) describing the local appearance

around each landmark is computed and all descriptors are

stacked in a vector ∈ RN×1 which defines the part-based

appearance of Ii. Then, PCA is applied on the part-based

representations of all training images to obtain the appear-

ance model. The model is defined by the mean appearance

A0 and m appearance eigenvectors Ai compactly repre-

sented as columns of matrix A ∈ RN×m. An instance of

the appearance model is given by

A(c) = A0 +Ac, (2)

where c ∈ Rm×1 is the vector of the appearance parame-

ters.

3.2. Optimization problem for POCR

In this section, we formulate and solve the non-linear

least squares optimization problem which provides the basis

for learning and fitting in PO-CR. Similarly to [38], we will

proceed by employing analytic gradient descent [23, 35]

which will give rise to Eqs. (7) and (8). Then, in the next

section, we will use Eqs. (7) and (8) to devise the learning

and fitting process for the proposed PO-CR.

The derived optimization problem below is akin to the

one described in [36] with one difference being that here

we consider forward rather than inverse fitting algorithms.

Note that the fundamental difference between PO-CR and

all the aforementioned works (including the method de-

scribed below) is that PO-CR proposes a regression-based

solution as opposed to analytic gradient descent.

Let us denote by I(s(p)) ∈ RN×1 the vector obtained

by generating u landmarks from a shape instance s(p) and

concatenating the computed descriptors for all landmarks.

To localize the landmarks in a new image, we would like to

find p and c such that

argmin
p,c

||I(s(p))−A(c)||2. (3)

To find a locally optimal solution to the above problem, we

iterate the following procedure: given a current estimate of

p and c at iteration k, we perform a first-order Taylor ap-

proximation in a similar fashion to the Lucas-Kanade algo-

rithm [2]. Then, an update for p and c can be found by



solving the following optimization problem

arg min
∆p,∆c

||I(s(p)) + JI∆p−A0 −Ac−A∆c||2, (4)

where JI ∈ RN×n is the image specific Jacobian with re-

spect to the shape parameters.

Let us define ∆q = [∆p; ∆c] ∈ R(n+m)×1, Jq =
[JI − A] ∈ RN×(n+m) and Hq = JT

q Jq . Then, a so-

lution for ∆q at iteration k can be found from

∆q = −H−1
q JT

q (I(s(p))−A(c)). (5)

As we may observe at each iteration one needs to solve

for both ∆p and ∆c. Fortunately, there is an alternative way

that by-passes the computation for the optimal ∆c at each

iteration and guarantees an exact update for ∆p by taking

into account the problem structure. This structure can be

readily seen by writing

Hq =

[
Hpp Hpc

Hcp Hcc

]
=

[
JT
I JI −JT

I A

−ATJI Em

]
,

where Em = ATA is the m×m identity matrix.

To take advantage of the problem structure, we firstly

optimize the problem of Eq. (4) with respect to ∆c. The

optimal ∆c is readily given by

∆c = AT (I(s(p)) + JI∆p−A(c)), (6)

which as we may observe is a function of ∆p. Then, we

plug in the solution back to Eq. (4) [5, 15, 35]. By doing

so, we end up with the following optimization problem

argmin
∆p

||I(s(p)) + JI∆p−A0||
2
P, (7)

where we have used the notation ||x||2W = xTWx to de-

note the weighted ℓ2-norm of a vector x. The solution to

the above problem is readily given by 1

∆p = −H−1
P JT

P (I(s(p))−A0), (8)

where JP = PJI and HP = JT
PJP , P = E −AAT is a

projection operator that projects out the facial appearance

variation from the image Jacobian JI , and E is the identity

matrix. Note that the Jacobian, the Hessian and its inverse

need to be re-computed per iteration giving rise to an algo-

rithm with complexity O(nmN + n2N) per iteration.

To summarize, we have derived Eqs. (7) and (8) from an

analytic gradient descent perspective. In the next section,

we will describe the learning and fitting process for the pro-

posed PO-CR as a regression-based solution to Eqs. (7) and

(8).

1Alternatively, we could use Schur’s complement to derive ∆p, but this

way does not allow us to derive (7) which is used in PO-CR for learning

averaged Jacobians from data. See also section 3.3.

3.3. Learning and fitting in POCR

Learning in PO-CR is based on Eqs. (7) and (8). In

particular, as we may observe from Eq. (8), at each itera-

tion calculating ∆p requires (a) computing the image Jaco-

bian, (b) projecting-out the facial appearance variation from

it and (c) computing the Hessian and its inverse. Based on

this procedure, we propose to adopt a similar idea for our

learning strategy in PO-CR.

In particular, for notational clarity let us first make the

dependency of variables on iteration k explicit. Then, the

key idea in PO-CR is to compute from a set of training

examples an averaged Jacobian Ĵ(k) from which the fa-

cial appearance variation is projected-out. The averaged

projected-out Jacobian, denoted as ĴP (k), is then used to

compute an averaged projected-out Hessian and descent di-

rections. In detail, our learning strategy for PO-CR is as

follows:

Step I. Starting from the ground truth shape parameters

p∗

i for each training image Ii, i = 1, . . . , H , we gener-

ate a set of K perturbed shape parameters for iteration 1

pi,j(1), j = 1, . . . ,K that capture the statistics of the face

detection initialization process. Using the set ∆pi,j(1) =
p∗

i − pi,j(1), PO-CR learns the averaged projected-out Ja-

cobian ĴP (1) = PĴ(1) for iteration 1 by solving the fol-

lowing weighted least squares problem

arg min
ĴP (1)

H∑

i=1

K∑

j=1

||I(s(pi,j(1))) + J(1)∆pi,j(1)−A0||
2
P,

(9)

where the solution for ĴP (1) is obtained using ridge-

regression 2. Notice that the above optimization problem

is formulated in P. As our experiments have shown work-

ing in this subspace is necessary for achieving good perfor-

mance. See also section 4.

Step II. Having computed ĴP (1), we further com-

pute the averaged projected-out Hessian ĤP (1) =

ĴP (1)
T ĴP (1) and its inverse.

Step III. Given ĴP (1) and ĤP (1)
−1, the descent direc-

tions R(1) ∈ Rn×N for iteration 1 are given by

R(1) = ĤP (1)
−1ĴP (1)

T . (10)

Step IV. For each training sample, a new estimate for

its shape parameters (to be used at the next iteration) is ob-

tained from

pi,j(2) = pi,j(1) +R(1)(I(s(pi,j(1)))−A0). (11)

Finally, Steps I-IV are sequentially repeated until conver-

gence and the whole process produces a set of L regressor

matrices R(l), l = 1, . . . , L.

2Notice that by simple mathematical manipulation, the ℓ2-norm in Eq.

(9) becomes a function of ĴP (1).



During testing, and in a similar fashion to cascaded re-

gression techniques, given a current estimate of the shape

parameters at iteration k, p(k), we extract image features

I(s(p(k))) and then compute an update for the shape pa-

rameters from

∆p(k) = R(k)(I(s(p(k)))−A0). (12)

Finally, after L iterations we obtain the fitted shape. No-

tice that the complexity per iteration is O(nN) only, and

hence at testing time PO-CR maintains the high degree of

computational efficiency typically characterizing cascaded

regression techniques. We note that optimized implementa-

tions of such methods have been shown to operate in tens of

frames per second (e.g. [38, 1]).

3.4. Comparison with prior work

In this section, we highlight similarities and differences

between the proposed PO-CR and related prior work in an-

alytic gradient descent and cascaded regression.

Against AAMs. The proposed project-out formula-

tion is reminiscent of the well-known Project-Out Inverse

Compositional (PO-IC) algorithm used in AAM fitting

[23]. Both algorithms work in a subspace orthogonal to

the appearance variation and have the same computational

complexity per iteration (O(nN)). However, PO-IC pre-

computes and employs an image Jacobian from the mean

appearance A0 which remains fixed in all iterations. In

contrast, PO-CR proposes Eq. (9) and regression to pre-

compute a sequence of averaged Jacobians from data, one

per iteration. PO-IC is an approximate algorithm for solv-

ing the problem of Eq. (4) [35]. In contrast, PO-CR uses

Eqs. (7) and (8) as a basis for regression, i.e. the exact

method for solving the problem of Eq. (4).

Against SDM. Both PO-CR and SDM learn a sequence

of regression matrices (one per iteration) and during fitting

the update of the shape parameters is computed in a very

similar fashion. Both methods have similar computational

complexity. However, SDM uses non-parametric shape and

appearance models as opposed to the parametric ones em-

ployed by PO-CR. More importantly, learning in PO-CR

and SDM is very different. SDM learns directly a map-

ping from image features to problem parameters. In con-

trast, PO-CR learns a set of averaged Jacobian and Hessian

matrices from data, and from them descent directions in a

subspace orthogonal to the appearance variation.

4. Experiments

4.1. Performance evaluation

In this section, we evaluate the performance of PO-CR

for the problem of face alignment in-the-wild. To this end,

we conducted a large number of experiments on the most

popular facial databases, namely LFPW [3], Helen [19],

AFW [41] and iBUG [28]. We compare the performance

of PO-CR with that of a variant of our method as well as

with that of two publicly available systems.

In-house. As in [36], we used the SIFT implementation

of [38]. For training, we used the training sets of LFPW and

Helen and the available landmark annotations of the 300-W

challenge [28]. In addition to PO-CR, we implemented a

version of our method in which the project-out component

was intentionally omitted. This version simply replaces the

projected-out ĴP (k) with Ĵ(k), i.e. the solution to Eq. (9)

but after dropping the projection operator P. We simply

denote this method as “No projection”. We included this

version in order to illustrate the importance of working in a

subspace orthogonal to the learned appearance variation.

Publicly available systems. We compared the perfor-

mance of PO-CR with that of two publicly available sys-

tems: SDM [38] and Chehra [1]. SDM was trained on in-

ternal CMU data that are not publicly available, and Chehra

on the whole LFPW, Helen, AFW and iBUG data sets in-

cluding data that is not publicly available. We note that the

training data for Chehra included the test sets of LFPW, He-

len, AFW and iBUG on which we report performance be-

low, and hence Chehra has an inherent advantage over all

other methods.

For initialization, we used the ground truth points to

compute the ground truth bounding box for each image (ro-

tation angle was removed). This bounding box was then

scaled and translated according to a noise distribution, de-

fined by standard deviation σ. In this way, we could identify

the range of initializations that SDM [38] and Chehra [1]

can handle. We used a noise level of σnoise = 3.5 for which

both methods performed very well on LFPW. We found that

Chehra works satisfactorily for noise level up to σnoise = 5.

For the same noise level (i.e. σnoise = 5) our systems op-

erates with literally no loss in performance. To measure

performance, we used the point-to-point (pt-pt) error nor-

malized by the face size defined in [41]. We report the cu-

mulative curve corresponding to the percentage of images

for which the error was less than a specific value. To facil-

itate comparison with [38] and [1], we report performance

on the 49 interior points.

Fig. 2 shows our results on LFPW, Helen, AFW and

iBUG. From these results, we can draw a number of inter-

esting conclusions: (a) LFPW and Helen are the “easiest to

fit” data sets, followed by AFW and iBUG. It seems that

iBUG is by far the most challenging data set. (b) By re-

moving the project-out component from our method (“No

projection”- cyan), fitting performance drops dramatically.

In fact, this method performs the worst compared to all

other methods. This shows the importance of the proposed

project-out formulation. (c) Our system consistently pro-

duces the most accurate results on all data sets. (d) Our sys-

tem is the most robust among all other methods producing



Figure 2. Average pt-pt Euclidean error (normalized by the face size) vs fraction of images for LFPW, Helen, AFW and iBUG. We compare

the performance of Project-Out Cascaded Regression (black), our approach without projecting-out (cyan), SDM [38] (magenta) and Chehra

[1] (yellow). The average error is computed over 49 points.

literally the same fitting accuracy on all data sets, including

iBUG.

4.2. Fitting results from the iBUG data set

As the iBUG data set is the most challenging among all

data sets but contains only 135 images, in Figs. 3 and 4, we

present the fittings produced by PO-CR for all 135 images

of this data set as well as the bounding box initializations

used (produced by noise level σnoise = 5). As it can be

observed, our system is able to fit images with very large

shape and appearance variation even for the case of chal-

lenging initializations.

5. Conclusions

We proposed Project-Out Cascaded Regression, a cas-

caded regression approach derived from a Gauss-Newton

solution to a non-linear least squares problem that has struc-

ture. The learning strategy in PO-CR capitalizes on this

structure to compute averaged Jacobians from which the fa-

cial appearance variation is projected-out and then employs

the projected-out Jacobians to compute descent directions.

The fitting process in PO-CR is similar to that of other cas-

caded regression techniques and hence our method main-

tains a high degree of computational efficiency. We con-

ducted a large number of experiments on the most popu-

lar facial databases, namely LFPW, Helen, AFW and iBUG

that show that our system outperforms state-of-the-art sys-

tems sometimes by a large margin.



Figure 3. Application of Project-Out Cascaded Regression to the alignment of the iBUG data set. For each image, the black bounding

box shows the face detection initialization. Our algorithm is able to produce highly accurate fittings for images with very large shape and

appearance variation even with challenging initializations. The first 70 images of the iBUG data set are shown.



Figure 4. Application of Project-Out Cascaded Regression to the alignment of the iBUG data set. The fittings and the initializations for the

remaining 65 images of the iBUG data set are shown.
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