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Abstract. In this paper we deal with a pseudo effect algebra A possessing a certain
interpolation property. According to a result of Dvurečenskij and Vettterlein, A can be
represented as an interval of a unital partially ordered group G. We prove that A is
projectable (strongly projectable) if and only if G is projectable (strongly projectable). An
analogous result concerning weak homogeneity of A and of G is shown to be valid.
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1. Introduction

Pseudo effect algebras were introduced by Dvurečenskij and Vetterlein in [3], [4],

[5]. In [4] it was proved that if A is a pseudo effect algebra having an interpolation

property denoted as (RDP1), then there exists a unital partially ordered group (G, u)

such that A can be represented as the interval [0, u] of G (for detailed definitions,

cf. Section 2 below).

We denote by D the class of all pseudo effect algebras satisfying the condi-

tion (RDP1). The class of allMV -algebras (cf. Cignoli, D’Ottaviano and Mundici [1])

and the class of all pseudo MV -algebras (cf. Georgescu and Iorgulescu [6], [7] and

Rach̊unek [11]) are subclasses of the class D . Assume that A ∈ D .

A series of results on the relations between the properties of A and of G were

proved in [5].

* Supported by VEGA grant 1/2002/05.
This work has been partially supported by the Slovak Academy of Sciences via the project
Center of Excellence—Physics of Information (grant I/2/2005).
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The relations between internal direct product decompositions of A and those of G

were dealt with by the author [10].

The notion of a polar in A or in G is defined analogously to the case of lattice

ordered groups, where it was extensively studied in several papers.

In accordance with the terminology applied in the theory of lattice ordered groups

we say that G is projectable (strongly projectable) if every principal polar (or every

polar, respectively) of G is an internal direct factor of G. An analogous definition is

used for A .

By using some results of [10] we prove that A is projectable (strongly projectable)

if and only if G is projectable (strongly projectable).

The underlying set of A will be denoted by A. An interval of a partially ordered

set is called trivial if it is a one-element set.

We say that A is weakly homogeneous if any two nontrivial intervals of A have

the same cardinality. The weak homogeneity of G (and of other partially ordered

sets) is defined analogously. We prove the following result:

Assume that cardA > 2. Then A is weakly homogeneous if and only if G is

weakly homogeneneous.

The notions of projectability and strong projectability of lattice ordered groups

were studied by several authors in an extensive series of papers; for detailed references

cf., e.g., the monograph Darnel [2].

Further we recall that the weak homogeneity of Boolean algebras was investigated

by Sikorski [12]; the weak homogeneity ofMV -algebras and of lattice ordered groups

was dealt with by the author [8], [9].

2. Preliminaries

For the sake of completeness, we recall some definitions.

A partial algebra A = (A; +, 0, 1) where + is a partial binary operation and 0,

1 are constants is a pseudo effect algebra if for all a, b, c ∈ A the following conditions

are satisfied:

(i) suppose that a+ b exists; then (a+ b)+ c exist if and only if b+ c and a+(b+ c)

exist and in this case (a+ b) + c = a+ (b+ c);

(ii) there is exactly one d ∈ A and exactly one e ∈ A such that a+ d = e+ a = 1;

(iii) if a+ b exists, then there are d, e ∈ A such that a+ b = d+ a = b+ e;

(iv) if 1 + a or a+ 1 exists, then a = 0.

We put a 6 b iff there exists c ∈ A with a+ c = b. Then 6 is a relation of partial

order on A and 0 6 a 6 1 for each a ∈ A.

The group operation in a partially ordered group is denoted additively though it

is not assumed to be commutative. Let G be a partially ordered group, 0 6 u ∈ G.

184



Put A = [0, u]. Consider the partial operation + on A defined by restricting the

group operation to the set A. We denote Γ(G, u) = (A; +, 0, u). Then Γ(G, u) is a

pseudo effect algebra.

Let A be a pseudo effect algebra; consider the following condition:

(RDP1) For any a1, a2, b1, b2 ∈ A with a1 + a2 = b1 + b2 there are d1, d2, d3, d4 ∈ A

such that

(i) d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, d3 + d4 = b2;

(ii) for each d′2, d
′

3 ∈ A with d′2 6 d2 and d
′

3 6 d3 we have d
′

2 + d′3 = d′3 + d′2.

An element u of a partially ordered group G is a strong unit if for each g ∈ G

there exists a positive integer n such that g 6 nu; the pair (G, u) is called a unital

partially ordered group.

In view of [4], for each pseudo effect algebra A satisfying the condition (RDP1)

there exists a unique unital partially ordered group (G, u) such that A = Γ(G, u).

The condition (RDP1) implies the validity of the following conditions for A :

(RIP) For any a1, a2, b1, b2 ∈ A such that ai 6 bj (i, j = 1, 2) there is c ∈ A with

ai 6 c 6 bj (i, j = 1, 2).

(RDP0) For any a, b1, b2 ∈ A with a 6 b1+b2 there are d1, d2 ∈ A such that d1 6 b1,

d2 6 b2 and a = d1 + d2.

3. Polars of A and of G

Polars in vector lattices, lattice ordered groups, partially ordered groups and in

some other partially ordered algebraic structures were extensively investigated in

several papers.

As above, we suppose that A is a pseudo effect algebra belonging to the class D

and that A = Γ(G, u). The underlying partially ordered set of A will be denoted

by ℓ(A ).

If a1, a2, b ∈ A, then b is the join of the set {a1, a} in ℓ(A ) if and only if b is the

join of {a1, a2} in G; in such case we write a1 ∨ a2 = b. The corresponding dual

assertion is also valid; in this case we write a1 ∧ a2 = b.

As usual, G+ denotes the positive cone of G; i.e., G+ = {x ∈ G : x > 0}.

Let ∅ 6= X ⊆ G+. We put

Xδ0 = {g ∈ G+ : g ∧ x = 0 for each x ∈ X}, Xδ =
⋃

t∈Xδ0

[−t, t].

The set Xδ is a polar of G.
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Further, let ∅ 6= Y ⊆ A. We set

Y δ1 = {a ∈ A : a ∧ y = 0 for each y ∈ Y }.

We call Y δ1 a polar of A .

The system of all polars of G will be denoted by P (G); the symbol P (A ) has an

analogous meaning concerning A . Also, we put

P (G+) = {Xδ0 : ∅ 6= X ⊆ G+}.

Each of the systems P (G), P (A ) and P (G+) is partially ordered by the set-

theoretical inclusion.

For each Z ∈ P (G) we put χ1(Z) = Z ∩ G+. From the definition of P (G) and

P (G+) we immediately obtain

Lemma 3.1. χ1 is an isomorphism of P (G) onto P (G+).

Let a, x ∈ G+. There exists a positive integer n with a 6 nu. Then according

to (RDP0) and by induction we obtain that there exist a1, . . . , an ∈ G+ such that

a = a1 + . . .+ an and ai 6 u for i = 1, 2, . . . , n. Under this notation we have

Lemma 3.2. x ∧ a = 0 if and only if x ∧ ai = 0 for i = 1, 2, . . . , n.

P r o o f. Assume that x ∧ a = 0 and let i ∈ {1, 2, . . . , n}. Then 0 6 ai 6 a,

whence x ∧ ai = 0. Conversely, suppose that x ∧ ai = 0 for i = 1, 2, . . . , n. Further,

assume that z ∈ G, 0 6 z 6 x, z 6 a. Applying (RDP0) and induction we get that

there exist z1, . . . , zn ∈ G+ such that zi 6 ai for i = 1, 2, . . . , n and z = z1 + . . .+ zn.

Hence zi 6 x and thus zi = 0 for i = 1, 2, . . . , n. Therefore z = 0.

Further, assume that t ∈ G, t 6 x, t 6 a. In view of 0 6 x, 0 6 a and according

to (RIP) there exists z ∈ G with 0 6 z 6 x, t 6 z 6 a. We have already verified

that in this case z = 0. Hence t 6 0. Therefore x ∧ a = 0. �

For each ∅ 6= X ⊆ G+ we denote by X0 the set of all x0 ∈ [0, u] such that there is

x ∈ X with x0 6 x. From 3.1 we immediately obtain

Lemma 3.3. For each ∅ 6= X ⊆ G+ we have Xδ = (X0)
δ.

Let ∅ 6= Y ⊆ A. The definitions of Y δ0 and Y δ1 imply

(∗) Y δ1 = Y δ0 ∩A.

Hence if ∅ 6= Y1 ⊆ A, then

(1) Y δ0 = Y δ0

1 ⇒ Y δ1 = Y δ1

1 .
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We put

χ2(Y
δ1) = Y δ0 .

Lemma 3.4. χ2 is an isomorphism of P (A ) onto P (G+).

P r o o f. In view of (1), χ2 is a correctly defined mapping of P (A ) into P (G+);

moreover, χ2 is a monomorphism. According to 3.3, χ2 is surjective. Hence χ2 is a

bijection. Also, if Y and Y1 are nonempty subsets of A, then

Y δ1 ⊆ Y δ1

1 ⇔ χ2(Y
δ1) ⊆ χ2(Y

δ1

1 ).

Therefore χ2 is an isomorphism. �

Lemma 3.5. Let Z ∈ P (G+). Then χ−1
2 (Z) = Z ∩A.

P r o o f. In view of 3.4, there exists ∅ 6= Y ⊆ A such that Z = Y δ0 . Then

Z = χ2(Y
δ1), whence χ−1

2 (Z) = Y δ1 . Thus according to (∗), χ−1
2 (Z) = Z ∩A. �

Let y ∈ A; we put Y = {y}. Then Y δ1δ1 is a principal polar of A (generated

by y).

Further, let x ∈ G+ and X = {x}. The set Xδ0δ0 is a principal polar of G+

(generated by x), and χ−1
1 (Xδ0δ0) is said to be a principal polar of G.

Consider the isomorphisms

P (A )
χ2

−→ P (G+)
χ
−1

1−→ P (G).

For each X ∈ P (A ) we put χ3(X) = χ−1
1 (χ2(X)). In view of the definition of χ1

and according to 3.5 we have

Lemma 3.5.1. Let Z ∈ P (G). Then χ−1
3 (Z) = Z ∩A.

Lemma 3.6. Let Z be a principal polar of A . Then χ3(Z) is a principal polar

of G.

P r o o f. This is an immediate consequence of the definition of χ3. �
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4. Internal direct factors; strong projectability

Internal direct product decompositions of pseudo effect algebras satisfying the

condition (RDP1) were investigated in [10]. For the present purposes it suffices to

consider only finite direct product decompositions.

Again, let A be a pseudo effect algebra belonging to the class D and let (G, u)

be a unital partially ordered group such that A = Γ(G, u). Further, let u1 ∈ A; the

convex subgroup of G generated by u1 will be denoted by G1. Hence u1 is a strong

unit of G1. Put A1 = Γ(G1, u1). We say that A1 is an interval subalgebra of A . We

denote A1 = [0, u1].

Now suppose that A1, . . . ,An are interval subalgebras ofA such that the following

conditions are satisfied (we put I = {1, 2, . . . , n}):

(i) for each a ∈ A there are uniquely determined elements ai (i ∈ I) such that

ai ∈ Ai and a = a1 + . . .+ an;

(ii) if a is as above and a′ ∈ A, a′ = a′1 + . . . + a′n with a
′

i ∈ Ai (i ∈ I), then

a + a′ exists in A iff for each i ∈ I, ai + a′i exists in Ai; in that case we have

a+ a′ = (a1 + a′1) + . . .+ (an + a′n);

(iii) if a and a′ are as in (ii), then a 6 a′ iff ai 6 a′i for each i ∈ I.

Under these assumptions we say thatA is an internal direct product ofA1, . . . ,An

and we write

(1) A = (int)A1 × . . .× An.

The relation (1) is called an internal direct product decomposition of A and

A1, . . . ,An are called internal direct factors of A .

For a ∈ A and i ∈ I, ai is the component of a in Ai; we denote it also by a(Ai).

An analogous definition can be applied for a partially ordered group G; instead of

interval subalgebras of A we take now convex subgroups of G.

Also, in the same way we define the internal direct product decomposition of

the partially ordered semigroup G+; here, instead of interval subalgebras of A we

consider convex subsemigroups of G+ containing the element 0.

Under the above mentioned conditions, G is an internal direct product of G1, . . . ,

Gn; we write

(2) G = (int)G1 × . . .×Gn.

The convex subgroups G1, . . . , Gn are internal direct factors of G; for g ∈ G the

component of G in Gi is denoted by gi or by g(Gi).
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Analogous terminology and notation is applied for the partially ordered semi-

group G+. It is easy to verify that if (2) is valid, then

(2′) G+ = (int)G+
1 × . . .×G+

n .

It can be proved that (iii) is a consequence of (i) and (ii). We will not apply this

implication.

We denote by DF (A ) the system of all internal direct factors A ; the sym-

bols DF (G) and DF (G+) have analogous meanings with respect to G and G+.

Let A1 be an element of DF (A ). Then there exists A2 ∈ DF (A ) and an internal

direct product decomposition

(3) A = (int)A1 × A2.

For i ∈ {1, 2} let Ai be the underlying set of Ai. (Below we apply this convention

also in the case when an interval subalgebra of A is denoted by another symbol).

Lemma 4.1. Let (3) be valid and let a ∈ A. Then the component a1 of a in A1

is the greatest element of the set {x ∈ A1 : x 6 a}.

P r o o f. Under the notation as above, we have a = a1 + a2. This yields a1 6 a2.

Let x ∈ A, x 6 a. Under similar notation, x = x1 + x2. Assume that x ∈ A1. Then

x1 = x and x2 = 0. Since x1 6 a1, we obtain x 6 a1. �

In view of the condition (ii) above, A2 is the set of all t ∈ A such that there exists

a ∈ A with a = a1 + t. Thus we obtain

Lemma 4.2. If an element A1 of DF (A ) is given and if (3) is valid then A2 is

uniquely determined.

Let us denote by G1 the convex subgroup of G which is generated by the set A1,

i.e.,

G1 =
⋃

n∈N

[−nu1, nu1],

where u1 is the greatest element of A1. In fact, u1 = u(A1).

We put ψ0(A1) = G1. Then ψ0 is a mapping ofDF (A ) intoDF (G). Applying 4.2

and [10 (Theorem 6.8, Lemma 7.2 and the construction performed in Section 6)] we

conclude

Lemma 4.3. ψ0 is an isomorphism ofDF (A ) ontoDF (G). For each Z ∈ DF (G)

we have ψ−1
0 (Z) = Z ∩A.
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Lemma 4.4. Let G = (int)G1 ×G2. Then G
+
1 , G

+
2 ∈ P (G+) and (G+

1 )δ0 = G+
2 .

P r o o f. Let x ∈ G+
1 , y ∈ G+

2 . Then in view 3.1 and 4.3 of [10], x ∧ y = 0.

This yields G+
2 ⊆ (G+

1 )δ0 . Assume that z ∈ (G+
1 )δ0 . Put z1 = z(G1), z2 = z(G2).

Hence z1 > 0 and z2 > 0; also, z = z1 + z2. Then z1 ∈ G+
1 , z1 6 z. In view of

the assumption, z ∧ z1 = 0. Since z ∧ z1 = z1 we obtain z1 = 0, thus z = z2 ∈ G2.

Summarizing, (G+
1 )δ0 = G+

2 . Hence G
+
2 ∈ P (G+). Similarly, G+

1 ∈ P (G+). �

According to 4.4, G+
2 is an element of P (G+). Similarly, G+

1 ∈ P (G+). Hence by

the definition of P (G) we have

Corollary 4.4.1. Let G = (int)G1 ×G2. Then G1 and G2 belong to P (G).

The proof of the next lemma is analogous to that of 4.4.

Lemma 4.5. Let A = (int)A1 × A2. Then A1, A2 ∈ P (A ) and (A1)
δ1 = A2.

From the fact that χ−1
3 is a bijection of P (G) onto P (A ) and from 3.5 we obtain

Lemma 4.6. If Z1, Z2 ∈ P (G) and Z1 ∩A = Z2 ∩A, then Z1 = Z2.

Lemma 4.7. Let A1 ∈ DF (A ). Then ψ0(A1) = χ3(A1).

P r o o f. Denote ψ0(A1) = G1 and χ3(A1) = Z. In view of 4.4.1, G1 ∈ P (G).

According to 4.3, A1 = G1 ∩A. Further, 3.5 yields A1 = Z ∩A. Then in view of 4.6,

G1 = Z. �

Theorem 4.8. Let A be a pseudo effect algebra belonging to the class D . Let

(G, u) be a unital partially ordered group with A = Γ(G, u). Then the following

conditions are equivalent:

(i) A is strongly projectable;

(ii) G is strongly projectable.

P r o o f. Let (i) be valid and let P be a polar of G. Put Q = χ−1
3 (P ). Then

Q ∈ P (A ). In view of (i), there exists A1 ∈ DF (A ) such that A1 = Q. Denote

ψ0(A1) = G1. Hence G1 ∈ DF (G). According to 4.6, P = G1. Thus (ii) is valid.

Conversely, assume (ii) holds. Let Q ∈ P (A ). Put P = χ3(Q). Hence P ∈ P (G)

and in view of (ii), P ∈ DF (G). According to 4.3 and 4.7 we have Q = P ∩ A and

there is A1 ∈ DF (A ) such that A1 = Q. Therefore (i) is satisfied. �
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5. Projectability of A and of G

Assume that A and (G, u) are as in 4.6. In the present section we will consider

the conditions

(i0) A is projectable;

(ii0) G is projectable.

Lemma 5.1. (ii0) ⇒ (i0).

P r o o f. Let (ii0) be valid and let P be a principal polar in A . Put Q = χ3(P ).

Then in view of 3.6, A is a principal polar of G. According to (ii0), Q ∈ DF (G).

Hence 4.3 and 4.7 yield that there exists A1 ∈ DF (A ) with A1 = P . Therefore

(i0) is valid. �

Let Q be a principal polar of G. The question whether χ−1
3 (Q) is a principal polar

of A remains open. Therefore, to prove the implication (ii0) ⇒ (i0) we cannot apply

the method analogous to that of 4.8.

Let A1 ∈ D , A1 = Γ(G1, u1) for some unital partially ordered group (G1, u1) and

let x ∈ G+
1 . Let n1 be the least positive integer with x 6 n1u1. Then we put

n1 = n(x,A1, G1, u1).

For 0 6 y ∈ G1 we denote

{y}δ(G1) = {t ∈ G1 : t ∧ y = 0}

where the meaning of the relation t ∧ y = 0 is taken with respect to the partially

ordered group G1.

Lemma 5.2. Under the notation as above and under the assumption that A is

projectable there exists an internal direct product decomposition

(1) G1 = (int)G0 ×G′

02

such that {x}δ(G1) = G′

02.

P r o o f. The case x = 0 being trivial we may suppose that x > 0. Then x can

be expressed in the form x = a1 + . . .+ an1
with 0 6= ai ∈ A for i = 1, 2, . . . , n1. We

proceed by induction with respect to n1. To A1 and G1 we apply the notation as

introduced above for A and G.

a) First assume that n1 = 1. Then x = a1. We have

{a1}
δ(G1) = χ3({a1}

δ1(A1)),
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where the meaning of δ1(A1) is analogous to that of δ(G1). Since A1 is projectable,

{a1}
δ1(A1) belongs to DF (A1). Then 4.3 and 4.7 yield that χ3({a1}

δ1(A1)) is an

element of DF (G1). Thus there exists G0 ∈ DF (G1) such that (1) is valid, where

G′

02 = {a1}δ(G1).

b) Now suppose that n1 > 1. Considering the element a1 instead of x and using the

method from a) we obtain that there exists an internal direct product decomposition

(2) G1 = (int)G01 ×G′

01

such that {a1}δ(G1) = G′

01. This yields a1 ∈ G01 and hence a1(G
′

01) = 0. From (2)

and from 6.8 in [10] we obtain

(3) A1 = (int)A01 × A
′

01,

where A01 and A ′

01 are interval subalgebras of A with the underlying sets A01 =

A1 ∩G01 and A
′

01 = A1 ∩G′

01, respectively.

Put y = x(G′

01), y2 = a2(G
′

01), . . ., yn = an1(G
′

01). We have y = y2 + . . . + yn1

and according to (3), all elements y2, . . . , yn1
belong to A′

01.

Let u01 be the component of u1 in G
′

01. Hence we obtain

n(y,A ′

01, G
′

01, u01) 6 n1 − 1.

Thus from the induction hypothesis we get that there exists an internal direct product

decomposition

(4) G′

01 = (int)G02 ×G′

02

such that

(5) {y}δ01 = G′

01,

where the meaning of δ01 is analogous to that of δ with the distinction that instead

of G1 we now have G
′

01.

The relations (2) and (4) yield

(6) G1 = (int)G01 ×G02 ×G′

02.

Thus we obtain

G1 = (int)G0 ×G′

02,
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where G0 = (int)G01 ×G02. We have to verify that the relation

(7) {x}δ(G1) = G′

02

is valid.

In view of (2) we have

x = x(G01) + x(G′

01).

Hence

(8) x = x(G01) + y, y ∈ G′

01.

Then (4) yields

y = y(G′

01) = y(G02) + y(G′

02).

In view of (5) we obtain y(G′

02) = 0, whence y = y(G02) and so y ∈ G02. Thus

y ∈ G0. Also, x(G01) ∈ G01 ⊆ G0. Therefore according to (8), x ∈ G0.

We have already shown that (1) is valid, whence x∧t = 0 in G1 for each t ∈ (G′

02)
+.

We obtain

(9) G′

02 ⊆ {x}δ(G1).

Now let z ∈ {x}δ(G1), z > 0. By way of contradiction, assume that z /∈ G′

02. Then

in view of (1) z(G0) > 0. Put z(G0) = z0. Since z0 ∈ G0, we get

z0 = z0(G01) + z0(G02).

Therefore either z0(G01) > 0 or z0(G02) > 0.

Suppose that z0(G01) > 0. According to the relation between a1 and G01 and in

view of the construction described in Section 6 of [10] we have

G01 =
⋃

n∈N

[−na1, na1].

Hence there exists n ∈ N with

0 < z0(G01) 6 na1.

Applying (RDP0) and induction we obtain that there exists 0 < z1 ∈ G with z1 6

z0(G01), z
1 6 a1. This yields z

1 6 z and z1 6 x, hence z /∈ {x}δ(G1), which is a

contradiction. Therefore z0(G01) = 0.

Then we have z0 ∈ G02 ⊆ G′

01. Since z0 6 z, we get z0 ∈ {x}δ(G1). Moreover,

because of z 6 x we obtain z0 ∈ {y}δ01 , where the meaning of δ01 is as in (5). But

then z0 ∈ G0 ∩G′

02 = {0}, which is a contradiction. This completes the proof. �

If (1) is valid, then (G′

02)
δ(G1) = G0. From this and from 5.2 we obtain
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Corollary 5.3. Under the assumption and notation as in 5.2 we have

{x}δ(G1)δ(G1) = G0.

As an immediate consequence we get

Theorem 5.4. Let A be a pseudo effect algebra belonging to the class D . Sup-

pose that A is projectable and that A = Γ(G, u). Then the partially ordered

group G is projectable.

We conclude that under the notation as in Lemma 5.1, the relation (ii0) ⇒ (i0) is

valid.

6. Weak homogeneity

Similarly to the previous sections, we assume that A is a pseudo effect algebra

belonging to the class D and that A = Γ(G, u) for some unital partially ordered

group (G, u).

Example. Let G be the set of all real functions on a finite set T ; the operation +

and the partial order in G are defined componentwise. Let u ∈ G such that u(t) = 1

for each t ∈ T . Put A = Γ(G, u). Both G and A are weakly homogeneous.

From the definition of weak homogeneity we immediately obtain

Lemma 6.1. Assume that G is weakly homogeneous. Then A is weakly homo-

geneous.

Example. Let Z have the usual meaning; put u = 1 and A = Γ(G, u). Hence

A = {0, 1} and thus A is weakly homogeneous. On the other hand, G fails to be

weakly homogeneous.

We will prove that there are no examples of this type in the case when cardA > 2;

i.e., we have

Theorem 6.2. Let A ∈ D , A = Γ(G, u), cardA > 2. Then A is weakly

homogeneous if and only if G is weakly homogeneous.

We need some auxiliary results.
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Lemma 6.3. Let [p, q] be an interval in G, card[p, q] = α > 1. Then there exists

0 < a ∈ A such that card[0, a] 6 α.

P r o o f. We have card[p, q] = card[0, q−p] and q−p > 0. There exists a positive

integer n such that q − p 6 nu. Hence there are x1, x2, . . . , xn ∈ [0, u] such that

q − p = x1 + x2 + . . . + xn. Without loss of generality we can assume that x1 > 0.

Put x1 = a. We have 0 < a ∈ A and a 6 q− p. Hence card[0, a] 6 card[0, q− p] = α.

�

Lemma 6.4. The following conditions are equivalent:

(i) all nontrivial intervals in G are infinite;

(ii) all nontrivial intervals in A are infinite.

P r o o f. The validity of the inplication (i) ⇒ (ii) is obvious. The relation

(ii) ⇒ (i) is a consequence of 6.3. �

Lemma 6.5. Assume that cardA > 2 and that A is weakly homogeneous. Then

each nontrivial interval of A is infinite.

P r o o f. By way of contradiction, assume that [p, q] is a finite nontrivial interval

in A . Put q′ = q − p. Then 0 < q′ ∈ A and the interval [0, q′] of A is finite.

Hence there exists an atom q1 in [0, q′]. In view of the weak homogeneity we obtain

2 = card[0, q1] = card[0, u] = A, which is a contradiction. �

Lemma 6.6. Let α be an infinite cardinal. Assume that each nontrivial interval

of A has cardinality α. Then each nontrivial interval of G has cardinality α as well.

P r o o f. a) We have card[0, u] = α. Denote card[0, 2u] = β. Since [0, u] ⊆ [0, 2u]

we get α 6 β. If x1, x2 ∈ [0, u], then x1 + x2 ∈ [0, 2u]. Let x ∈ [0, 2u]. There are

x1, x2 ∈ [0, u] such that x1 +x2 = x. Consider the mapping ϕ : [0, u]× [0, u] → [0, 2u]

defined by ϕ(x1, x2) = x1 + x2. Hence ϕ is surjective. This yields

α = α2 = card([0, u] × [0, u]) > card[0, 2u] = β.

Therefore β = α. By the obvious induction we then obtain card[0, nu] = α for each

n ∈ N.

b) Let [p, q] be a nontrivial interval in G; put q′ = q−p. Let card[p, q] = β. Hence

card[0, q′] = β. There exists n ∈ N with q′ 6 nu. Then [0, q′] ⊆ [0, nu] and thus, in

view of a), β 6 α. Further, according to 6.3 we obtain α 6 β. Therefore α = β. �
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Lemma 6.7. Let cardA > 2 and assume that A is weakly homogeneous. Then

G is weakly homogeneous.

P r o o f. In view of 6.5, there is an infinite cardinal α such that each nontrivial

interval of A has cardinality α. According to 6.6, the same holds for G; hence G is

weakly homogeneous. �

In view of 6.7 and 6.1 we conclude that 6.2 is valid.

References

[1] R. Cignoli, M. I. D’Ottaviano, D. Mundici: Algebraic Foundations of Many-Valued Rea-
soning. Trends in Logic, Studia Logica Library Vol. 7. Kluwer, Dordrecht, 2000.

[2] M.R. Darnel: Theory of Lattice-Ordered Groups. Marcel Dekker, New York, 1995.
[3] A.Dvurečenskij, T. Vetterlein: Pseudoeffect algebras. I. Basic properties. Inter. J. Theor.
Phys. 40 (2001), 685–701.

[4] A. Dvurečenskij, T. Vetterlein: Pseudoeffect algebras. II. Group representations. Int.
J. Theor. Phys. 40 (2001), 703–726.

[5] A. Dvurečenskij, T. Vetterlein: Infinitary lattice and Riesz properties of pseudoeffect
algebras and po-groups. J. Aust. Math. Soc. 75 (2003), 295–311.

[6] G. Georgescu, A. Iorgulescu: Pseudo MV -algebras: a noncommutative extension of
MV -algebras. In: Proceedings of the Fourth International Symposium on Economic
Informatics, Bucharest, 6–9 May, Romania. 1999, pp. 961–968.

[7] G. Georgescu, A. Iorgulescu: PseudoMV -algebras. Mult.-Valued Log. 6 (2001), 95–135.
[8] J. Jakubík: Weak homogeneity and Pierce’s theorem for MV -algebras. Czechoslovak
Math. J. 56 (2006), 1215–1227.

[9] J. Jakubík: Weak homogeneity of lattice ordered groups. Czechoslovak Math. J. To
appear.

[10] J. Jakubík: Direct product decompositions of pseudo effect algebras. Math. Slovaca 55
(2005), 379–398.

[11] J. Rach̊unek: A non-commutative generalization ofMV -algebras. Czechoslovak Math. J.
52 (2002), 255–273.

[12] R. Sikorski: Boolean Algebras, 2nd edition. Springer, Berlin, 1964.

Author’s address: J . J a k u b í k, Matematický ústav SAV, Grešákova 6, 040 01 Košice,
Slovakia, e-mail: kstefan@saske.sk.

196


