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PROJECTABLE ALMOST COMPLEX CONTACT STRUCTURES

By D.E. BLAIR, S. IsHIHARA AND G.D. LUDDEN

A complex manifold of complex dimension 2m-41 is said to be a complex
contact mamifold if it admits an open covering {u,} such that on each u, there
is a holomorphic 1-form w, with wA(dw)™#0 on u,Nuz#0, wg=/fw, for some
non-vanishing holomorphic function f. In general such a structure is not given
by a global 1-form w; in fact this is the case for a compact complex manifold
if and only if its first Chern class vanishes [6]. However, a complex contact
manifold is the base space of a principal fibre bundle with 1-dimensional fibres
and real contact structure. Homogeneous complex contact manifolds were studied
by Boothby in [3].

It is also shown in [6] that the structural group of the tangent bundle of a
Hermitian contact manifold M is reducible to (Sp(m)-Sp(1))X U(1) where Sp(m)
-Sp(1)=Sp(m)x Sp(1)/{£I} and hence equivalently M admits the following local
structure tensors. Let F denote the almost complex structure and g the Hermitian
metric on M. Then each coordinate neighborhood admits tensor fields G, H of
type (1,1) and vector fields U, V with covariant forms u and » such that
(G,U,V, g)and (H, U, V, g) are metric f-structures with complemented frames
(see e.g. [11), FU=V and GH=—HG=F+vQU—u®V. In the overlap of
coordinate neighborhoods we have

G'=aG-+bH, w =qu-t+bv,
H =—bG+aH, v/ =—bu+tav

0.1)

with a®4-6*=1. Such a structure is called an almost complex contact structure [5]
and our first project here will be to given an equivalent definition in terms of
global tensor fields.

A standard example of a complex contact manifold is the odd-dimensional
complex projective space PC*™*!, It is also well known that PC?*"*! is a fibre
space over the quaternionic projective space PH™ with fibres S:=PC®. In
sections 3 and 4 we generalize this situation to a projectable almost complex
contact structure on a Kédhlerian manifold.

§1. Almost Complex Contact Structures

In terms of the above local tensor fields G, H, U, V we can define global
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tensor fields X of type (1,3) and S of type (1,1). For local vector fields X, Y, Z

set
XyyZ=g(GX,Y)GZ+g(HX, Y)HZ (1.1)

SX=uw(X)UAv(X)V . (1.2)

It is then easy to check using equations (0.1) that ¥ and S are globally defined.
Note also that S is a projection tensor field of rank 2, i.e. S*=S. For a unit
vector AT ,M with SA=0, let

o.={BeT,M|g(A, B)=0, [B|=1, 2(4, B, 4, B)=1},

and

where (X, YV, Z, W)=g(FxyZ, W) and [o,] the subspace of T,M generated by

G4

The following properties of 2 and S are now easily deduced. 1)-8) are
straightforward computations using equations (1.1) and (1.2) and elementary
properties of metric f-structures. For 9) given A set B=GA and it is easy to
see that B<oy.

1) SF=FS
2) ZXY:_“ZYX

4) Z’XYSISZXYZO

5) EXYF:—‘FZXY

6) ZXFYFZZXY

N EXY,ZW)=XZ, W, X, Y)

8) xv, xW=g(X,(I=S)X)Iy ;W

~“YZ
9) 0,4%0 for any unit vector A with SA=0 and at any point p of M.

Conversely we will show that an almost Hermitian manifold M with structure
tensors (F, g) admitting global tensor fields 2 and S satisfying 1)-9) is an almost
complex contact manifold. We first give several lemmas.

LEMMA 1.1. For Beoy, 2 ,3A=B, SB=0 and ¢4 1s invariant under F.
Proof. Since X(A, B, A, B)=g(2 ,3A, B)=1 to show that X ,;A=B it suffices
to show that X ,zA is a unit vector.
8(3 454, 2 45 A)=—g(F 1A, A)=—g(—A+SA, A)=1

by 2), 7) and 3), since A is a unit vector and SA=0. Now SB=SX,;A=0 by
4). Finally for the invariance by F,

ZAFBA:—‘ZAFBFZA:FZABA:FB )’
from which Z(A, FB, A, FB)=1 and g(FB, A)=g(Z ;msA, A)=0.

LEMMA 1.2. For any unit vector Beo, set C=FB&a,, then
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ZABZACZF—SF .

Proof. 1f we take an arbitrary vector DeT,M then, using (3) and (6), we
have

242 4eD=2 432 s mpD=—3 152, psI*D
=—23 432 s FD=(I—-S)FD.
LEMMA 1.3. For any orthonormal paw {B,C}<o,,
Zapdao=—2 402 5.
Proof. First, using (3), we have
2asro=2(4, B+C,’A, B+C)(—I+S)
=2(—I+3S).
On the other hand, we obtain
Zapre=(T 4pt+3 40)°
=2A—I+5)+(2 s uct 2 4c 2 4n)
Thus we have X 32 02 402 453=0.

LEMMA 14. dim[o,]=2.

Proof. Take B and C as in Lemma 1.1 and assume that there is a unit
vector Delo,] such that D is orthogonal to B and C. They by Lemmas 1.2 and
1.3 we have

ZABZACZAD:ZADZABZAC,
and so
(F—=SF)Y ;=23 ,,(F—SF).

Thus, using (1) and (4), we obtain
FY ADZZ ADF ’
which contradicts (5). Therefore, [o,] is necessarily of dimension 2.

LEMMA 15. For any wvectors B,CsT,M, satisfymmg 2(B,C, B,C)=1,
ZBCAEO'A.

Proof. Using (8), we have
ZAEBCAAZZBCA ’

from which it follows that YzcA<0,.
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LEMMA 1.6. Take a unit vector AT ,M with SA=0 and a unit vector BEo .
Put C=FBeog,. The X ,3D and Y ,;D are orthonormal, where D 1s an arbitrary
umit vector at p such that SD=0.

Proof. g(3 43D, 15D)=—g(2*%,5D, D)=g(D—SD, D)=1 and similarly % 4D
is also a unit vector. Finally

g(X¥ gD, Y o D)y=—g(X¥ 15D, 5 s s F*D)=—g(¥ 415D, Y ;5FD)
=g(2 45D, FX ,3D)=0.
Summing up Lemmas 1.4, 1.5 and 1.6, we have

ProrosITION 1. Take a umt vector A€T,M such that SA=0 and a wunit
vector BEo,. Put C=FB&o,. Then, for any unit vector DT M with SD=0,
248D and X oD form an orthonormal basis of [op].

LeMMmA 1.7. Take A, B and C as wn Proposition 1. Then, for any D, E
eT,M,
ZDEZE(A’ B; D, E)ZAB+§(A; C, D, E)ZAC-

Proof. When D (or E) satisfies SD=D (or SE=E), then both sides of the
equation above vanish because of (4). So, D and E may be assumed to satisfy
SD=SE=0 and also that D and E are unit. First, we consider the case in
which E is orthogonal to op. Linearizing (3) we have Xypdyz+2yz3xr
=23(X,Y, X, Z)(—I+S). Thus if Yo, Ypr anti-commutes with Xpy and
2 p ry and hence 3,z commutes with Y,y pry which by Lemma 1.2 is equal to
F—SF. Therefore using (1) and (4)

FZDE:(F_SF)ZDE:ZDE<F_'SF):2DEF B

from which by (5) and the non-singularity of F we have 2pz=0 and again both

sides of the above equation vanish.
Finally we consider the case where Ecoy,. For simplicity set a=g(2 43D, E)

and b=g(3 oD, E). Then as {3 D, Y D} is an orthonormal basis of [o5],

E:aZABD+b2AcD .

Using (8) we have
ZDEAZGZ’DZABDA"i_bZDEACDA

:02A3A+bZAcA

=aB+bC.
Using (8) again
ZDE:ZAEDEAZGZAB+bZAc;

which is the desired formula.
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Take a suitable coordinate neighborhood u of an arbitrary point p of M and
a unit vector field A in u. Then there is in u a unit vector field B belonging
to o, at each point of u. On putting C=FBeco, we define locally in u two
tensor fields G and H of type (1, 1) respectively by

G=2%,5, H=X,;.
Then setting F¥=F—FS and using (3) and (4) and Lemma 1.3, we have
(FA)2=G*=H*=—I4S,
GH=—HG=F¥, HFi=—F"H=G, FiG=—GF"=H, (1.3)
FES=SFZ=(GS=SG=HS=SH=0.
Next, (1), (2), and (7) imply
g(FiX, Y)=—g(F'Y, X),
g(GX, YV )=—g(GY, X), g(HX, Y)=—g(HY, X),
for all X and Y. By Lemma 1.7, a local expression for 2 yy in u is the following
Yxy=g(GX, Y)G+g(HX,Y)H. 14

We now take another coordinate neighborhood u'(u/\u’+0) and define G’ and
H’ as in u, say G'=2% , p and H'=23 .. By the formula of Lemma 1.7

2pp=2(A, B, A, B)Y 5+2(A, C A, C) 3 o
2po=2(A,B,A,C)35+2(A,C A, CN3 4o -
Setting a=2(A4, B, A’, B’) and b=2(A, C, A’, B’) we have that
I=g(Xyp A, B)=2(A, B, A, B'*+2(A,C, A, B'))=a*+b?
e 2(A,C A, C)=—g(2 psfF*A', FB)=—g(Z 4sF A, FB')
=g(FX4pd’, FB )=g(3 134!, B')=a,
2(A, B, A, C)=—~g(3  psFA, F*C")=—g(FX ,cA’, FB")
=—g(2 4, B)=—b,
so that G'=aG+bH and H' =—bG+aH.

THEOREM 1. Let (M, G, F) be an almost Hermitian manifold. Then M is an
almost complex contact mamfold 1f and only 1f M admits a global tensor field ¥
of type (1,3) and a projection tensor field S of rank 2 satisfying 1)-9).
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§ 2. Horizontal and Vertical Tensors

Given a vector field X on an almost Hermitian manifold (M, g, F') with almost
complex contact structure (g, F,2%,S), XV=SX and X¥=X—XV will be called
the wvertical and the horizontal parts of X, respectively. For a 1-form w,
®"=w*S and w?=w—o" will be called the vertical and the horizontal parts of
o, respectively. We now define, for a function f, fZ=s"=y. Then we easily
have

(fX+RY Y E=fEXELREY H (fX+hY )W =fYXV+RVYY,

(2.1)
(fot+hm)¥= o™ +1"n", (fo+hr) =f 0" +h'z",

where f, h are arbitrary functions and w, = are arbitrary 1-forms.
We now define the horizontal part T of an arbitrary tensor field 7. Assume

that the operation of taking the horizontal part satisfies
(22) (P+Q)"=PH+-Q", (PRU)=P*QU*,

where P and @ are arbitrary tensor fields of the same type and U another
arbitrary tensor field, then by using (2.1) we can inductively define the horizontal
part TH of an arbitrary tensor field T on M.

§3. Almost Complex Contact Structures which are Projectable

The Riemannian connection is denoted by /' in a Kédhlerian manifold M with
almost complex contact structure (g, F, 2, S). We define a tensor field P of type

1,2) by

3.0 PyY=(FvS)X)".
Note that

(3:2) SPy=0.
Next, differentiating covariantly S*=S we have
(3.3) Psx=Px

and differentiating covariantly (1)

(34) Ppy=FPy.

LemmA 3.1. When P=0, a Kdhlerian manifold M of complex dimension
2m+-1 with almost complex contact structure (g, F, Y, S) 1s locally a product of
two Kdihlerian manifolds of complex dimensions 2m and 1 respectely.

Proof. If P=0, (3.1) implies
Fr(SXNE=(FyS)X)¥=0,
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which means that the distribution determined by S and its complement are
parallel. This with SF=FS proves the lemma.

We now consider the following conditions :

(P1) for any vector A€T M, there are two vectors B, C€T,M such that
P,=XYg 2(B,C, B,C)=ag(SA, SA) with constant a;
(P2) (Vsx2)7=0.

When an almost complex contact structure (g, F, 2, S) satisfies the conditions
(P1) and (P2), it is said to be projectable.

In this section, the almost complex contact structure (g, F, 2, S) is assumed
to be projectable. Then 3)-4) and (P1) imply

(3.5) Py*=ag(SX, SX)(—I+S)
for some a and

(3.6) PxS=0

is equivalent to

3.7 SV syS)=FsyS.
Thus we now have from (1) and (3.7)

PROPOSITION 2. In a Kdihlerian manifold M with almost complex contact
structure (g, F, X, S) which satisfies (P1), the distribution determined by S is
integrable and each of its integral submanifolds is totally geodesic and holomorphic.

Since (P1) is satisfied, restricting ourselves to a coordinate neighborhood u
in which (1.4) is established, we find

(3.8) Py=c(uw(X)G+v(X)H)

with local 1-forms u and v defined in u, where the associated vector fields U of
u and V of v satisfy |Ul*=]V|*=1, g(U, V)=0, i.e,

(3.9) S=uR@U+vQV .
(3.8) implies that
(3.10) PSXNE=c(u(x)G+v(x)H).

The fundamental 2-form @ of the Kéihlerian manifold (M, g, F) is defined by
O(X,Y)=g(FX,Y). We now define in M a tensor field 4 of type (0,4) by

(3.11) A=0FRQO*+ 5,

which is horizontal, that is, A¥=/A. Then, using (1.3) and (3.8), we can verify
that in u



82 D.E. BLAIR, S. ISHIHARA AND G.D. LUDDEN

Py-A=0, Py-4=0,

where Py- denotes the action of Py as a derivation. Thus, using (3.9), we
obtain

(3.13) Py-A=0.
Since VF=0, we find
(3.14) (Fsx4)7=0

as a consequence of (P2). As is well known, the Lie derivative Lsy4 is given
by
LsxA=VsxA+Px-A

(See e.g. Yano [8]). Thus we have
(3.15) (L A)T=0.

LEMMA 3.2. If an almost complex contact structure (g, F, 2, S) is projectable,
then
(Lxv A7 =0.

On the other hand, by Proposition 2, each integral submanifold of the dis-
tribution determined by S is totally geodesic. Thus we have (see Ishihara and
Konishi [5])

LEMMA 3.3. If an almost complex contact structure (g, F, 2, S) 1s projectable,
then
(Lxvg")"=0.
We now put
A=0RQF+2Y .

Then Lemmas 3.2 and 3.3 imply

LEMMA 34. If an almost complex contact structure (g, F, X, S)1s projectable,

then
(LevADHE=0.

§4. Submersion of a Kihlerian Manifold with Almost Complex Contact
Structure

Let (M, G, F) be a Kéhlerian manifold of complex dimension 2m+1 with
almost complex contact structure (g, F, Y, S), which is projectable, and M a
manifold of real dimension 4m. Suppose that there is a differential mapping
71 M—M which is of rank 4m everywhere and satisfies n(M):]VI and that for
each point p of 1\7[, = %p) is a connected integral submanifold of the distribution
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determined by S. In such a case, the K&hlerian manifold M with almostN COmple)N(
contact structure is said to have a fibred Riemanman structure = : M—M and M
is called the base space. When M is compact and the distribution & determined
by S is regular, M has a fibred Riemannian structure if M is defined as the set
of all maximal integral submanifolds of 9, 7 M—M being defined by x(p)= Dp,
peM, where Dp is the maximal integral submanifold passing through p, and M
is naturally topologized.

Consider a Kdihlerian manifold A/ with almost complex contact structure
(g, F, 2, S), which is projectable, and with fibred Riemannian structure = : M—M.
Then, taking account of arguments developed in [5], we see by Lemma 3.4 that
the tensor field A4 is projectable in M and its projection is a tensor field A of
type (1,3) in the base space M. The metric tensor g in M is, by Lemma 3.3,
projectable and its proyectlon g defines a Riemannian structure on M. Thus,
(2)-(9) implies that (& A) is an almost quaternionic structure in the base space M
(see Blair and Showers [2]). Thus, summing up, we have

THEOREM 2. Suppose that (M, g, F) 1s a Kdhlerian manifold with almost
complex contact structure (g, F, X, S), which 1s projectable. Assume moreover that
(M, g, F) has a fibred Riemannian structure m: M—M. Then (g 1) is an almost
quaternionic structure in the base space M, where § and A are the projections of g
and A, respectwely.

If in a Kidhlerian manifold M satisfying the conditions given in Theorem 2
FADHE=0

holds, then the projection dof Ain Mis covariantly constant. Thus in such a
case (g, 4) is a quaternionic K4hlerian structure (see Ishihara [4]). Thus we have

THEOREM 3. If, an a Kdhlerian manifold M satisfying the conditions gwen in
Theorem 2, (F A" =0, then (g, 4) is a quaternionic Kdhlerian structure in the base
space M.

Taking account of Lemma 3.1, we easily have

PropOSITION 3. If a Kdhlerian manijold M of complex dimension 2m-+1
with almost complex contact structure (g, F, 2, S), which 15 projectable, sahisfies
the condition P=0, then M is locally a product of K&hierian mamfolds (My, g, Fy)
of complex dimension 2m and (M,, g., Fo) of complex dimension 1, where M,
admits quatermon structure (g,, A.).

ProrosiTioN 4. If, i a Kahlerian manifold M satisfying the conditions given
m Proposition 3 W ADF=0 then M, admits a quatermomic Kdhlerian structure
(gi, Ay) with vamshing Ricer tensor (see Ishihara [47).
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