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Markov state models (MSMs) have been successful in computing metastable states, slow relaxation

timescales and associated structural changes, and stationary or kinetic experimental observables of

complex molecules from large amounts of molecular dynamics simulation data. However, MSMs

approximate the true dynamics by assuming a Markov chain on a clusters discretization of the state

space. This approximation is difficult to make for high-dimensional biomolecular systems, and the

quality and reproducibility of MSMs has, therefore, been limited. Here, we discard the assump-

tion that dynamics are Markovian on the discrete clusters. Instead, we only assume that the full

phase-space molecular dynamics is Markovian, and a projection of this full dynamics is observed

on the discrete states, leading to the concept of Projected Markov Models (PMMs). Robust estima-

tion methods for PMMs are not yet available, but we derive a practically feasible approximation

via Hidden Markov Models (HMMs). It is shown how various molecular observables of interest

that are often computed from MSMs can be computed from HMMs/PMMs. The new framework

is applicable to both, simulation and single-molecule experimental data. We demonstrate its ver-

satility by applications to educative model systems, a 1 ms Anton MD simulation of the bovine

pancreatic trypsin inhibitor protein, and an optical tweezer force probe trajectory of an RNA hairpin.

© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4828816]

I. INTRODUCTION

Conformational transitions are essential to the function

of proteins and nucleic acids. With the ever increasing time

resolution of ensemble kinetics experiments and the more

recent maturation of sensitive single-molecule techniques

in biophysics, experimental evidence supporting the near-

universality of the existence of multiple metastable confor-

mational substates and complex kinetics in biomolecules has

continued to accumulate.11, 13, 14, 32, 44 Markov (state) models

(MSMs) are a very successful approach to deal with such a

multitude of metastable states that has emerged from the sim-

ulation community.5, 6, 24, 26, 34, 38, 39 A MSM consists of a dis-

cretization of the molecular state space into n clusters, and a

n × n transition probability matrix containing the conditional

probabilities that the system will, given that it is in one of

its n discrete substates, be found in any of these n discrete

substates a fixed lag time τ later. Because only conditional

transition probabilities are needed, an MSM can be estimated

from ensembles of short trajectories, computed distributedly

on clusters or volunteer networks.4, 26, 40 This circumvents the

need for ultralong trajectories that can only be computed

by special-purpose supercomputers.20, 37 Additionally, MSMs

have been so successful because they permit many important

thermodynamic, kinetic, and mechanistic molecular quanti-

ties to be computed much more directly and unambiguously

than with conventional MD analyses.

a)Author to whom correspondence should be addressed. Electronic mail:
frank.noe@fu-berlin.de

b)H. Wu and J.-H. Prinz contributed equally to this work.

However, a key approximation of MSMs is that they

assume a Markov chain on the discrete clusters—although

these discrete dynamics are not Markovian. It has been rigor-

ously shown that the MSM approximation can be very precise

if the molecular coordinates relevant for the slow transitions

are finely discretized.29, 33 In practice the discretization qual-

ity will depend on the subset molecular coordinates and met-

ric used as input, and the method used to cluster this co-

ordinate space. The sheer high-dimensionality of solvated

biomolecular systems, and the necessity to neglect many co-

ordinates (velocities, solvent positions), limits the practical

ability to produce a very fine discretization. Therefore, MSM

results may significantly differ depending on the choice of in-

put coordinates and clustering methods.5, 6, 27, 29, 35 Moreover,

the assumption that the dynamics of the clustered molec-

ular observables is Markovian prohibits the use of MSMs

for the analysis of experimental single-molecule trajecto-

ries, where the molecular coordinate traced is determined by

what is experimentally observable and cannot be arbitrarily

chosen.

Here, we introduce a new framework that altogether dis-

cards the assumption that dynamics are Markovian on the

observed clusters. Instead we only make very basic physi-

cal assumptions: The full phase-space dynamics are Marko-

vian, and in thermodynamic equilibrium. This full-space dy-

namics becomes projected onto the discrete clusters whose

discrete dynamics is observed. This leads to the concept

of Projected Markov Models (PMMs). We show that if the

dynamics are metastable, having a number m slow relax-

ation processes, and if there is a separation of timescales

to the next-faster relaxation processes, then PMMs can be

0021-9606/2013/139(18)/184114/17/$30.00 © 2013 AIP Publishing LLC139, 184114-1
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approximated by Hidden Markov Models (HMMs) with m

hidden states. We describe an MSM→HMM transformation

that provides a good starting point to estimate the HMM via

Baum-Welch Expectation Maximization (EM) algorithm. It is

shown how various molecular observables of interest that are

often computed from MSMs can be computed from HMMs.

The new method is applicable to both, simulation and single-

molecule experimental data. Moreover, all important thermo-

dynamic, kinetic, and mechanistic molecular quantities com-

putable from MSMs can also be computed from HMMs. We

demonstrate the versatility of our approach by applications to

various systems—including model systems that demonstrate

the superiority of PMM/HMM models over MSMs, a 1 ms

Anton MD simulation of the bovine pancreatic trypsin in-

hibitor (BPTI) protein where a three-state rate matrix with

metastable sets of structures is readily obtained, and an op-

tical tweezer force probe trajectory of an RNA hairpin, where

a hidden and yet unreported transition state is found.

II. PROJECTED MARKOV MODELS

We assume that there is a Markov process {zt } in state

space � (a state may consist of both positions and velocities—

depending on the model of the dynamics). This Markov pro-

cess is assumed to be ergodic and reversible with respect to

a unique stationary distribution μ(z). Often, a canonical en-

semble is employed, and then the stationary distribution is the

Boltzmann distribution μ(z) = Z−1e−βH (z) with H (z) the to-

tal energy and β = 1/kBT the inverse temperature. For such

a process, we can write the ensemble dynamics as follows:

We consider a probability distribution of states p0. At a later

time τ , the distribution has evolved according to the Markov

propagator P ,

pτ (zτ ) = P(τ ) p0(z0) =

∫

z0

dz0 pτ (z0, zτ ) p0(z0), (1)

where the conditional transition probability pτ (z0, zτ ) char-

acterizes the dynamics of the system. With the ergodicity, we

can expand the propagation density into basis functions

pτ (z0, zτ ) = μ(zτ ) +

∞∑

i=2

e−κiτ
φi(z0)

μ(z0)
φi(zτ ), (2)

where κ i is the relaxation rate of the ith-slowest process and

ti = κ−1
i is the corresponding relaxation timescale. We can

also consider the corresponding correlation density, i.e., the

joint probability density to observe the system at position z0

at time 0 and at position zτ at time τ ,

cτ (z0, zτ ) = μ(z0)μ(zτ ) +

∞∑

i=2

e−κiτφi(z0)φi(zτ ). (3)

Note that for τ → ∞, the joint probability density is

simply given by the stationary probabilities: c∞(z0, z∞)

= μ(z0)μ(z∞). For the rest of the paper we assume that our

system of interest has m slow processes and a timescale sepa-

ration to the faster processes. Thus, at lag times significantly

larger than tm = κ−1
m , the correlation density is approximately

given by

cτ (z0, zτ ) ≈ μ(z0)μ(zτ ) +

m∑

i=2

e−κiτφi(z0)φi(zτ ). (4)

Now we assume that the molecular state space (typically only

configurations, not velocities) is completely partitioned into

a set of n clusters {Si}, which might be rather coarse. What

happens to the dynamics when we observe it on the space of

clusters? From Eq. (4) we can compute the correlation matrix

between clusters,

Cij =

∫

z0∈Si

dz0

∫

zτ ∈Sj

dzτ cτ (z0, zτ )

= πiπj +

m∑

k=2

e−κkτqkiqkj ,

where πi =
∫

z∈Si
dz μ(z) are the stationary probabilities and

qk is the kth discretized eigenfunction,

qki =

∫

z0∈Si

dz0 φk(z0).

We can also express the correlation matrix as

C = Q⊤�̃Q, (5)

where Q ∈ R
m×n contains the discretized projected eigen-

functions qk , and �̃ ∈ R
m×m contains the m dominant eigen-

values. We will use the tilde in order to annotate “small”

matrices or vectors related to the m dominant eigenvalues

λ1 = 1, λ2 = e−κ2τ . . . , λm = e−κmτ , and thus to the m most

metastable processes. If we write the stationary probability

vector π on the diagonal of the matrix �, we can write the

transition matrix between clusters as

T(τ ) = �−1Q⊤�̃(τ )Q. (6)

This is the transition matrix that is estimated when building a

Markov model at lag time τ . Now we can easily illustrate the

problem of MSMs: The dynamics between clusters are not

Markovian, i.e., the transition matrix estimated at τ cannot be

used to predict long-timescale behavior,

T(2τ ) = �−1Q�̃(2τ )QT = �−1Q[�̃(τ )]2QT

�= �−1Q�̃(τ )QT �−1Q�̃(τ )QT = T2(τ ). (7)

The first row is not equal to the second row because projected

eigenvectors Q of the full-space dynamics are not eigenvec-

tors of T, and are, therefore, not orthonormal with respect to

the observed stationary distribution: QT �−1Q �= Id. There-

fore, in order to estimate the cluster dynamics in a way that is

unbiased, and that allows the long-time dynamics to be pre-

dicted, one needs to estimate the PMM quantities

{Q, �̃} (8)

separately.
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III. APPROXIMATING PMMS VIA HIDDEN
MARKOV MODELS

In general, estimating the matrices {Q, �̃} is difficult, es-

pecially for large m and n. Therefore, we consider a slightly

different model that we can efficiently estimate: A HMM. A

hidden Markov model consists of a transition matrix between

m hidden (here metastable) states, T̃(τ ), and an associated sta-

tionary distribution π̃ . This hidden dynamics has a joint prob-

ability (correlation) matrix C̃ = �̃T̃. Each hidden state i will

output to one of the observable states j with a probability χ ij,

such that the vector χ i is the output probability distribution

of hidden state i. We can write the correlation matrix on the

observed states as

C = χ⊤C̃χ = χ⊤�̃T̃χ

= χ⊤L̃⊤�̃L̃χ

= Q⊤�̃Q, (9)

where L̃ = [l̃1, . . . , l̃m]⊤ contains the dominant m eigenval-

ues of the hidden transition matrix T̃(τ ), i.e., l̃⊤i T̃ = λi l̃
⊤
i . By

comparing the last row to (5), it is apparent that a HMM has

a similar structure like a PMM. Here, the vectors in Q are

given by the HMM eigenvectors L̃ projected onto the observ-

able states via χ . However, we want to use HMM estima-

tion algorithms to estimate the slow molecular kinetics of a

Markov process observed on a cluster space, which is a PMM

(5)—and therefore we must show that a PMM can also be

represented as a HMM. This is not obvious: A given PMM,

defined by the slow process eigenfunctions and the chosen

discretization has a certain Q. It is not a priori clear whether

this Q-matrix can be represented by decomposition into the

two matrices χL̃, because these matrices have to fulfill the

constraints that the columns of χ are probability distributions

and the rows of L̃ form a set of eigenvectors which are or-

thonormal with respect to π̃−1. Appendix A contains a proof

that modeling a PMM with an HMM is valid in a special, but

interesting case. We summarize it as follows:

Given a Markov process {xt } that is ergodic and re-

versible with respect to the unique stationary distribution

μ(x). Given that this process has m metastable states, such

that there is a gap in the relaxation timescales, tm+1 ≪ tm,

and the stationary distribution μ(x) almost decomposes into

m modes, such that almost all stationary probability is in the

metastable states and the intervening transition states have

vanishing populations. We further consider an arbitrary dis-

cretization of the state space x into n clusters. Then, the dy-

namics on the n discrete states is described by a discrete hid-

den Markov model with m hidden and n observed states.

This is an important result: in many applications, espe-

cially in biomolecular dynamics, we have a few metastable

states with rarely populated transition regions. The theorem

above says, that even using a poor discretization of the state

space of such a system, we can still describe its metastable dy-

namics exactly with an HMM. Of course, our practical ability

to find the true HMM will depend on the amount of statis-

tics at hand, and may very well depend on the quality of the

discretization. However, we will show in Sec. V that HMMs

perform very well in this setting, and almost exclusively better

than MSMs.

A. Initializing a hidden Markov model from
a Markov model

Estimating hidden Markov models is more difficult than

estimating directly observed Markov models, because in con-

trast to the MSM likelihood, the HMM likelihood does not

necessarily have a unique optimum. Therefore, it is impor-

tant to start the HMM estimation “close” to the optimal result.

How do we get a good initial guess for the hidden transition

matrix T̃(τ ) and the output probability matrix χ?

Hence, we propose an initial HMM based on a direct

Markov model. Given the simulation trajectories, discretized

in n states, we estimate a Markov model transition matrix at

some lag time τ , T(τ ) ∈ R
n×n. In order to ensure that this

Matrix fulfills detailed balance, we use the reversible transi-

tion matrix estimator described in Ref. 29 and implemented

in the EMMA software.36

Next, we fix a number of hidden states, m, and obtain an

initial estimate of the output probability matrix χ . For this,

we first employ the PCCA+ method8 implemented in the

EMMA software.36 PCCA+ is a clustering method, which

provides, for each observed state i a degree of membership

to a metastable state j, mij. This is done first fixing m states

as representatives of the metastable states, each obtaining

membership 1 to the respective metastable states and 0 to

the others. The choice of these states depends on the imple-

mentation of PCCA+ (Ref. 42 optimizes metastability, while

Ref. 31 maximizes the crispness of the memberships). Some

current codes do not implement the full PCCA+ algorithm

and select m representatives from the available set of states,

often providing spurious negative membership functions.

However, these differences are unimportant for the present

context, as they will be taken care of by the subsequent HMM

optimization. The full membership matrix M ∈ R
n×m is ob-

tained by solving a linear system of equations, as described in

Ref. 8.

Now, the membership mij can be interpreted as a proba-

bility of being in a metastable state j, given that the system is

observed in discrete state i. We can use the membership ma-

trix to coarse-grain the stationary probabilities to the hidden

metastable states,

π̃ = M⊤π (10)

and we can use Bayesian statistics in order to transform M to

the desired output probabilities,

P [cluster j | hidden i] =
P [cluster j ]

P [hidden i]
P [hidden i| cluster j ]

(11)

χij =
πj

π̃i

mji .

In matrix form,

χ = �̃
−1

M⊤�. (12)

Finally, we need a hidden transition matrix T̃ which fulfills

Eq. (9), i.e., which produces, together with χ , the observable

correlation matrix C. A method for computing such a matrix
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is given in Ref. 17. Using their Eq. (12) and performing some

algebraic transformations given in Appendix B 1, we obtain

the result,

T̃ = M⊤TM(M⊤M)−1, (13)

which has a nice interpretation: M⊤TM performs a coarse-

graining of T, and M⊤M is an overlap matrix needed for

normalization. T̃ has the nice property that it preserves the

dominant kinetics of T: the eigenvalues of T̃ are identical to

the dominant m eigenvalues of T. In some cases T̃ may have

(usually only slightly) negative elements. Moreover, T̃, when

computed from Eq. (13), may no longer exactly fulfill detailed

balance. As we want to obtain a starting guess for the tran-

sition matrix in a reversible HMM estimation framework, we

enforce reversibility of T̃. For this, we compute the correlation

matrix, C̃ = �̃T̃, symmetrizing it C̃ ← 1/2(C̃ + C̃⊤), setting

negative elements to 0, and then renormalizing the rows of C̃

to obtain T̃. Note that this intervention is important to make

sure that the HMM optimization is seeded with a T̃ matrix

that has a meaningful structure, but should not strongly affect

the results as T̃ will be subsequently optimized.

B. Hidden Markov model estimation

Consider the observed trajectory {st} and hidden trajec-

tory {ht}. The HMM likelihood is given by

P ({st }|T̃,χ ) =
∑

hidden paths

h0, . . . , htmax

π̃h0
χs0h0

tmax∏

t=1

T̃ht−1ht
χstht

. (14)

Obviously, the product over all possible hidden paths can-

not be directly computed due to a combinatorial explosion

of possibilities. The likelihood (14) can be maximized by a

Expectation-Maximization algorithm, more precisely by the

Baum-Welch method.18, 43 See Ref. 30 for a thorough and ed-

ucative description of HMMs and the Baum-Welch method.

Since the EM method is established, we give a brief sum-

mary of our implementation in Appendix B 3. EM iterates

two steps, called expectation and maximization step. While

the expectation step is general, the maximization step must

be designed for the specific HMM implementation. Here, we

use the Baum-Welch algorithm to estimate a count matrix

Z̃(τ ) containing the estimated numbers of transitions between

the m hidden states, and then estimate the maximum likeli-

hood transition matrix T̃(τ ) that fulfills detailed balance us-

ing the algorithm described in Ref. 29 and implemented in

the EMMA software.36 The HMM is assumed to be in equi-

librium, i.e., it uses the stationary probability distribution of

T̃(τ ) as an initial distribution. The output probabilities χ are

estimated through straightforward histograms of the expected

counts on the clusters.

C. Implied timescale plot

A commonly used approach to assess the quality of a

MSM introduced in Ref. 39 is the implied timescale plot.

Here, one asks how much the dynamics on the discretized

state space deviates from a Markov chain. For a Markov

chain, the Chapman-Kolmogorow equality [T(τ0)]n = T(nτ0)

holds, and therefore for every eigenvalue [λi(τ 0)]n

= [λi(nτ 0)]. This condition is equivalent to the condi-

tion that the relaxation timescales (or implied timescales)

ti(τ ) = −
τ

ln |λi(τ )|
(15)

are constant in τ = nτ 0. Because the dynamics on the dis-

cretized state space are not Markovian, the timescales (15) are

not constant in τ . In the limit of good statistics they are guar-

anteed to be smaller than the true relaxation timescales,10, 25

and the error between the estimated relaxation timescale ti(τ )

and the true relaxation timescale decays slowly, as τ−1.28

Here, we also conduct implied timescale plots in order

to get a first assessment of the quality and robustness of the

PMM estimation. However, instead of computing λi(τ ) from

a diagonalization of the transition matrix on the discretized

state space, we use the eigenvalues of the hidden transition

matrix, i.e., the timescales

t̃i(τ ) = −
τ

ln |λ̃i(τ )|
. (16)

If we are in a setting valid for PMM’s, i.e., τ ≫ tm + 1 (all

timescales that are not resolved by the PMM have decayed,

where “≫” is already given by a factor of 2–3), and we are in

the limit of good statistics, then the PMM/HMM estimate of

t̃i(τ ) should indeed be constant in τ .

D. Hidden Markov model validation

Finally, we estimate the HMM at a lag time τ 0 that has

been selected such that the relaxation timescales t̃i(τ ) are con-

stant at lag times τ > τ 0 or larger. Validation of the model

consists of using it to compute kinetic quantities at a series of

lag times τ and comparing them with the directly computed

quantities at these different lag times. An example is the set-

based Chapman-Kolmogorow test suggested in Ref. 29. Here,

we suggest a very simple and direct test based on the relax-

ation timescales. Given the HMM estimated at τ 0, we com-

pute the predicted transition matrices for the discretized state

space at lag times τ = nτ 0,

Tpred(τ ) = �−1χ⊤�̃[T̃(τ0)]nχ (17)

and compare their relaxation timescales with the relaxation

timescales computed directly from MSM transition matrices

estimated at τ ,

t
pred

i (τ ) = ti(τ ). (18)

This test must succeed in order for the estimated HMM to be

a valid description of the metastable kinetics.

Note that a more general comparison is possible by com-

paring appropriate norms of Tpred(τ ) and T(τ ), or, alterna-

tively, of the correlation matrices Cpred(τ ) = χ�̃[T̃(τ0)]nχ⊤

and C(τ ) = �T(τ ). A practically feasible comparison could
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be constructed in a similar way as the Chapman-Kolmogorow

test in Ref. 29.

IV. QUANTITATIVE ANALYSIS

One of the reasons for the great success of direct (non-

hidden) Markov models is that various quantities related to the

molecule’s thermodynamics, kinetics, and mechanisms can be

calculated easily from an MSM transition matrix. Therefore,

although it will be shown in Sec. V that HMMs can be much

superior to MSMs in modeling the kinetics, their use needs

to be motivated by showing that they are equally versatile as

MSM. This section goes through a number of commonly used

molecular observables and discusses how they can be com-

puted from the HMM quantities T̃ and χ . Interestingly, for

some observables, the computation from HMMs is even more

straightforward than from MSMs.

Some important quantities can be directly accessed

through an eigenvalue decomposition of the hidden transition

matrix T̃(τ ). Such a decomposition provides the eigenvalues

λ̃i(τ ), the right eigenvector matrix R̃, which contains the right

eigenvectors r̃i as columns, and the left eigenvector matrix

L̃ = R̃−1 which contains the left eigenvectors l̃Ti as rows. The

first left eigenvector can be normalized to a sum of 1, yielding

the stationary distribution of hidden states, π̃ .

The stationary distribution π̃ provides the probability of

observing one of the metastable states. The free energy of

state i with respect to an arbitrary reference state 0 is given

by


Fi = −kBT ln
π̃i

π̃0

. (19)

Note that these free energy differences are associated to the

weights of the metastable states, even when the state space

discretization is poor. This is not the case when computing

the free energy of metastable states from an MSM, where a

poor discretization can lead to significant confusion which

microstate should be associated to what degree to a metastable

state. However, when the stationary distribution is sought on

the microstates, it can be easily computed by transforming the

stationary distributions of metastable states through the output

probabilities,

π = χ⊤π̃ . (20)

A quantity of particular interest is the definition of the

metastable states themselves. In particular, which set of

molecular structures is metastable? This question has been

an important driving force in the development of MSMs.

The original contribution in this field was made by Schütte,

Deuflhard, and co-workers by noticing that for m most

metastable states, the signs of the dominant m MSM eigen-

vectors are indicative.9, 34 Hence, they have proposed the

clustering method PCCA, which finds m metastable sets ac-

cording to the signs of the elements in the first m MSM tran-

sition matrix eigenvectors. A few years later, Weber and Deu-

flhard have invented an improved algorithm PCCA+,8 which

is numerically and conceptually superior and assigns to each

microstate i a fuzzy membership mij to each metastable state

j based on the proximity of microstate i to a representative

state that is representative for metastable state j in the space

of the dominant m eigenvectors of the MSM transition ma-

trix. While PCCA and PCCA+ have nice theoretical prop-

erties, they are both unsatisfactory from a statistical point of

view. As the PCCA(+) metastable states are defined based on

the transition matrix eigenvectors, any information of the sta-

tistical significance is lost. Reference 2 has taken a Bayesian

standpoint and proposed the agglomerative clustering method

BACE, which defines the quality of a clustering based on in-

formation in the MSM transition count matrix.

HMMs directly provide information of the metastable

states. The output matrix χ = [χij ] directly provides the prob-

ability that a given metastable state i is observed in a given

microstate j. Its row vectors χ i , therefore, are probability dis-

tributions of metastable states on the space of clusters. With

the weight π̃i these probability distributions can be weighted,

such that these vectors sum up to the overall probability distri-

bution of microstates: πj =
∑

i π̃iχij . Using Bayesian inver-

sion, the χ matrix can be transformed into a membership ma-

trix M = [mij ] which contains the information “how much”

microstate i belongs to metastable state j,

M = �−1χT �̃, (21)

where � = diag(π) and �̃ = diag(π̃). This approach of

defining metastable states unifies the advantages of PCCA+

and of statistically driven methods such as BACE: (1) As in

PCCA+, the membership vectors of M lie in the subspace of

the slow dynamics, and are therefore a mathematically mean-

ingful approach for characterizing metastability. (2) In con-

trast to PCCA+, one does not need to define an objective

function that will determine the location of the representa-

tive states, and therefore the memberships. The membership

matrix M is a natural result of the HMM estimation itself.

(3) Since HMMs include χ as a direct parameter, the quantity

χ is directly amenable to statistical treatment like in BACE.

When estimated via EM, χ is the result of a likelihood (or pos-

terior) maximization. When using Monte-Carlo sampling of

the HMM likelihood,7 the statistical uncertainty of elements

in χ can be directly assessed.

Let us turn to kinetic quantities. The m slowest relaxation

rates, or phenomenological rates, of the molecule are given by

κ̃i = −
ln |λ̃i(τ )|

τ
. (22)

These rates, and their inverses, the relaxation timescales t̃i
= κ̃i are of central interest in kinetics, because they can be

probed by various experimental techniques. A main advan-

tage of PMMs is that—in stark contrast to MSMs—the rates

κ̃i can be estimated without systematic error. This is also true

for HMMs, when they are employed for metastable systems

(see discussion in Sec. III). From these relaxation rates, and

the eigenvectors of the hidden transition matrix, we can com-

pute the rate matrix between metastable states,

K̃ = �̃
−1

L̃⊤

⎡
⎢⎢⎢⎢⎣

0

−κ̃2

. . .

−κ̃m

⎤
⎥⎥⎥⎥⎦

L̃. (23)
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In contrast to MSMs, the transformation to a rate matrix is

possible, because the first m processes are metastable, and

therefore λ1 . . . λm are positive such that the rates (22) exit.

Besides the decomposition into metastable states, and the

rate or transition matrix switching between them, the eigen-

vectors themselves provide a quite direct understanding of

the metastable dynamics: The sign changes in r̃i and l̃i in-

dicate structural changes that occur at the associated rates κ̃i

or timescales t̃i . On the discretized state space, these eigen-

vectors occur as projections from the hidden states through

the output probability matrix,

si = M̃ri,
(24)

qi = χ ⊤̃li .

Note that these projected eigenvectors may significantly dif-

fer from the right and left eigenvectors that are directly com-

puted from an MSM transition matrix on the cluster space.

The projected eigenvectors and the relaxation rates are the key

components for calculating kinetic experimental observables.

In Refs. 16 and 23, we have derived general expressions for

computing correlation and relaxation experiments that can be

straightforwardly extended to HMMs. In Ref. 19, we have ex-

tended this theory to scattering experiments.

An important source of kinetic information is time-

correlation experiment. This may be realized by taking tra-

jectories from time-resolved single molecule experiments,

such as single molecule fluorescence or pulling experiments,

and computing time correlations from these trajectories.

Moreover, several ensemble kinetic experiments effectively

measure time-correlation functions, for example, dynamical

neutron scattering. A general expression for modeling these

experiments is that of the time cross-correlation, of two exper-

imentally observable quantities. Given a partition into states

Si, let us denote by ai and bi the averages of the two exper-

imentally observable quantities over the discrete state Si. a,

b are the vectors with these averages as elements. The cross-

correlation for time τ can be expressed as

E[a(t)b(t + τ )] =

m∑

i=1

e−τκi 〈a, qi〉〈b, qi〉

= 〈a,π〉〈b,π〉 +

m∑

i=2

e−τκi 〈a, qi〉〈b, qi〉.

(25)

Autocorrelation experiments can be modeled by simply set-

ting a = b.

Alternatively, relaxation experiments can be used to

probe the molecules’ kinetics. In these experiments, the

system is allowed to relax from a nonequilibrium starting

state with probability distribution. Examples are temperature-

jump, pressure-jump, or pH-jump experiments, rapid mix-

ing experiments, or experiments where measurement at

t = 0 starts from a synchronized starting state, such as

in processes that are started by an external trigger like a

photoflash. We consider initial distributions that are modeled

on the metastable states, p̃(0). For example, in an ideal two-

state folder, the relaxation experiment shifts probabilities be-

tween the two metastable states, and a meaningful value of

p̃(0) could be computed from available experimental titration

curves. The time evolution of such an initial distribution can

be computed by propagating it with the transition or rate ma-

trix that describe the dynamics for the conditions after the

trigger,

p⊤
τ = p̃⊤

0 [T̃(τ0)]nχ

= p̃⊤
0 exp[τ K̃]χ (26)

with τ = nτ 0. The ensemble average E p(0)[a(τ )] of an exper-

imentally measurable quantity, a, is recorded while the sys-

tem relaxes from the initial distribution p̃(0) to the new equi-

librium distribution π̃ . The expectation value of the signal at

time τ is then given by

Ep̃0
[a(τ )] =

m∑

i=1

e−τκi
〈
a, ql

i

〉
〈l̃i, p̃∗

0〉, (27)

where p̃∗
0 is the excess probability distribution p̃∗

0 = �−1p̃0.

Ep̃0
[a(τ )] is again a multiexponential decay function with am-

plitudes 〈a, ql
i〉〈l̃i, p̃∗

0〉. Each of the amplitudes is associated

with an eigenvector of the transition matrix, and therefore

readily interpretable in terms of structural changes.

The combination of Markov models and the spectral the-

ory given is useful to compare simulations and experiments

via the dynamical fingerprint representation of the system

kinetics.23 Furthermore, this approach permits to design ex-

periments that are optimal to probe individual relaxations.23

Finally, detailed molecular mechanisms of a particular

process that transitions between two states A and B can be

calculated with transition path theory (TPT).41 Here, A and B

may be associated to the unfolded and folded ensembles in

protein folding, or to the dissociated and associated states in

protein-ligand binding. TPT can be straightforwardly applied

on the level of metastable states. This is done either by di-

rectly applying to the transition matrix T̃ (see Ref. 26), or by

computing rate matrix K̃ (see above) and conducting TPT as

described in Ref. 21.

V. APPLICATIONS

Figure 1 compares the performances of MSMs and

HMMs on a diffusion in a metastable two-well potential

(model details see supplementary material of Ref. 29). The

state space is discretized into two clusters, comparing results

for a good discretization separating the two metastable states

in the transition region (Fig. 1(a)) and a bad discretization

that splits one of the metastable states (Fig. 1(c)). For the

good discretization, the MSM estimate converges to the true

timescale when the lag time τ is increased, although slowly

with an error that vanishes as τ−1—see Ref. 28 for deriva-

tion. For the poor discretization, the convergence of the MSM

is so slow that it does not come close to the true timescale

before hitting the “forbidden” region τ > t at which no nu-

merically robust MSM estimate is possible.1 In contrast, the

PMM/HMM converges quickly to the true timescale, and the

timescale estimate then stays constant in τ . The speed of this
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FIG. 1. Comparison of MSM and PMM/HMM for modeling the diffusion in a bistable potential, using (a) good and (c) poor discretization into two states.

(b) and (d) τ -dependence of relaxation timescales computed with MSMs and HMMs. The grey region is the τ > t region where no numerically robust estimation

of the relaxation timescale t is possible.

convergence goes exponential with the greatest neglected

timescale, as exp (− τ /t3). Thus, the HMM behaves as a multi-

τ estimator analyzed in Ref. 28. Obtaining a good model for

the slow kinetics for a short lag time τ is very important for

ensemble simulations, because it allows to keep the length

of the individual simulations short as well. Shorter trajectory

lengths also permit a more rapid turnover in adaptive sam-

pling simulations,3, 15, 38 thus allowing to get statistically con-

verged estimates of the slow kinetics with lesser total sam-

pling effort.

Figure 2 compares the performances of MSMs and

HMMs when constructing the model on a subspace of con-

formation space that neglects important degrees of freedom.

For the diffusive dynamics in the two-dimensional three-well

potential shown in Fig. 2(a), both dimensions are needed in

order to separate the three metastable states from one another.

The projections of the probability density onto either the x or

y coordinate (grey distributions) only exhibit two poorly sep-

arated modes. The slowest relaxation timescale is associated

to the transition between the two deep wells, and therefore

mostly with the x-axis, while the second-slowest relaxation

timescale is associated to the transition between the lower

left minimum and the shallow upper minimum. An MSM is

able to estimate the slowest relaxation timescale from the x-

projections (Figs. 2(b) and 2(c)), and the second-slowest re-

laxation timescale from the y-projection (Fig. 2(d)). However,

an MSM is not able to estimate both slow processes simulta-

neously. The HMM performs similarly on the x-projection:

When using a two-state HMM, the slowest timescale is es-

timated very accurately, and with a shorter lagtime than the

MSM (Fig. 2(b)). When using a three-state HMM, the result

for the slowest timescale actually gets worse (Fig. 2(c)), while

still being unable to estimate the second-slowest timescale.

This shows a limitation of the method in the worst-case sce-

nario that a process is completely hidden: For the x-projection,

the stable lower left state and the less stable upper state are

projected to exactly the same observable values. Since the up-

per state only exchanges with the lower state and has much

shorter lifetimes, its presence does not even affect the kinetics

significantly. Therefore, the projection onto x really behaves

like a system with two-state kinetics, and using in a three-state

HMM will compromise the estimation.

How can the estimate become worse when too many hid-

den states are used? The answer lies in the structure the hidden
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(a)

(d)

(b) (c)

FIG. 2. Comparison of MSM and PMM/HMM for modeling the diffusion in a bistable potential (model details see supplementary material of Ref. 29) from

projections onto the x- and y-coordinates, respectively. A fine (30-state) discretization in the respectively observed coordinate is used in order to build the

MSM or PMM/HMM. (a) Energy landscape and observed probability densities in x and y. (b) and (c) 1- and 2-timescale estimates for the projection onto x.

(d) Timescale estimation for the projection onto y.

HMM transition matrix which has eigenvectors l̃i associated

with the slowest processes. When analyzing a two-state sys-

tem with two hidden states, the HMM transition matrix will

have two two-element vectors l̃1 = π̃ and l̃2, associated with

the stationary distribution and the slowest relaxation process,

respectively, and these eigenvectors will fulfill the orthogo-

nality condition 〈l̃2, π̃〉 = 0. When analyzing a two-state sys-

tem with three eigenvectors, the transition matrix will have a

third eigenvector l̃3, but there is no relaxation process in the

data associated to that. Therefore, the HMM estimate will pro-

duce a random vector for l̃3. Unfortunately, this also affects

the quality of the other eigenvectors l̃1 = π̃ and l̃2, because

these eigenvectors are linked by pairwise orthogonality con-

straints. The MSM is less affected by this problem, because

it has many more (n) eigenvectors, so errors in estimating the

fast process eigenvectors do not necessarily compromise the
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FIG. 3. Comparison of MSM and PMM/HMM for modeling the conformation dynamics of BPTI using a 1 ms simulation trajectory generated by the Anton

supercomputer37 and kindly provided by D.E. Shaw research. The discretization consisted of either 13 or 191 clusters, approximately uniformly distributed

on the data projected onto the space of the two dominant independent components of a TICA analysis (see Ref. 27 for details), using the EMMA software

implementation.36 (a) 191 clusters and a visualization of their reduced free energy, −ln π i. (b) and (c) Comparison of the slowest MSM timescales with the

timescales of the 2 and 3-states HMM, respectively, using 13 clusters ((b.1) and (c.1)) or 191 clusters ((b.2) and (c.2)). (d) and (e) Visualization of the second

and third eigenvectors, l2 and l3 for the 191 cluster discretization. (f) Three-state rate matrix corresponding to the 3-state HMM. The structures are overlays of

10 frames drawn from the state distributions χ1, χ2, and χ3.

slow process eigenvectors. This emphasizes that it is impor-

tant to use HMMs in the right setting: estimating an HMM

with m states requires m relaxation processes to be present in

the data, and having a timescale separation to the (m + 1)th

process.

Figure 2(d) shows that the three-state HMM is able to

accurately estimate both relaxation timescales from the y-

projection, and is therefore superior to the MSM in this

case.

Figure 3 shows the analysis of a 1 ms MD simulation of

the BPTI produced on the Anton supercomputer37 and kindly

provided by D.E. Shaw research. We again consider two and

three hidden states, because an MSM analysis suggested gaps

after the slowest and second-slowest timescale. To obtain a

cluster discretization, we first computed the slowest indepen-

dent components with time-lagged independent component

analysis (TICA)22 as described in Ref. 27 using the EMMA

1.4 software implementation. The data were then projected

onto the two slowest components and we considered two clus-

ter discretizations into 13 and 191 clusters. Figure 3 shows

a scatter plot of the 191 cluster centers in the two domi-

nant independent components. The color code is a map of the
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logarithmized probability map of the clusters, indicating a

free energy surface. Note that such free-energy surfaces gen-

erally suffer from overlap of states in the directions not re-

solved in this plot, and only serves to provide a qualitative

impression where the regions with most statistical weight are.

Figures 3(b) and 3(c) show that the MSMs slowly converge

towards slowest timescale estimates of around 30 and 15 μs,

while the HMMs converge to robust and nearly τ -constant es-

timates of timescales around 40 and 20 μs—at lagtimes of

0.7 μs for the 13-cluster partition and at a lagtime of 0.3 μs

for the 191-cluster partition. The HMMs, therefore, estimate

somewhat larger relaxation timescales and do that robustly

for shorter lag times. Figure 3(c.1) nicely shows what hap-

pens when employing a two-state HMM in a three-state kinet-

ics system: for short lagtimes, the HMM first finds the faster

timescale, and after a lagtime of about τ = 0.3 μs then jumps

to the slower timescale.

Figures 3(d) and 3(e) illustrate the two slow processes by

plotting the projected eigenvectors q1 and q2 (Eq. (24)) on

the two dominant independent components. The slowest pro-

cess is associated with probability exchange along the first

independent component (Fig. 3(d)) and the second-slowest

process along the second independent component (Fig. 3(e)).

Figure 3(f) illustrates the structures associated with the three

corresponding metastable states by plotting overlays of 10

structures each selected from the metastable state output

distributions {χ1,χ2,χ3} that are directly estimated by the

HMM. Here, the black state is associated with the lower left

minimum in Fig. 3(a), and is the most ordered structure. The

red state is associated with the top left minimum in Fig. 3(a),

and is a slightly less ordered structure, while the green state

is associated with the rightmost minimum in Fig. 3(a) and ex-

hibits a re-folded loop on the N-terminal side of the backbone.

Figure 3(f) also shows the 3 × 3 rate matrix between

metastable states computed from Eq. (23). This shows that

the three metastable states are linearly connected, with the

black and red states exchanging on the faster 20 μs timescale,

while the red state and the green state exchange on the slower

40 μs timescale. Note that the green state is rather unsta-

ble, and actually only one transition into and back out of the

green state occurs in the 1 ms trajectory, while the red and

black states interchange more frequently. Therefore, the 40 μs

timescale is dominated by the relatively short exit time from

the green state, and this process is statistically unreliable—

thus, the 40 μs timescale is a rough estimate. It is possi-

ble to extend the present HMM estimations towards a fully

Bayesian approach (analogously to Ref. 7). Thus, in the fu-

ture, it will be possible to compute error bars on the HMM

estimates.

As shown in the second example (Fig. 2), the HMM es-

timation can also deal with projections of higher-dimensional

dynamical systems onto low-dimensional observables, pro-

vided these projections do not hide some slow relaxation pro-

cesses completely. Therefore, we also illustrate the perfor-

mance of our method on experimental single-molecule data.

Note that a key assumption of our approach is that dynam-

ics are reversible, thus only experiments probing equilibrium

fluctuations, such as passive-mode force probe experiments or

equilibrium single-molecule Förster resonance energy trans-

fer (FRET) experiments, are suitable for this. We have cho-

sen optical tweezer measurements of the extension fluctua-

tions of two biomolecules examined in a recent optical force

spectroscopy study: the p5ab RNA hairpin.12 The p5ab hair-

pin forms stem-loop structure with a bulge under native con-

ditions (Fig. 4(a)) and zips/unzips repeatedly under the con-

ditions used to collect data (Fig. 4(b)). Experimental force

trajectory data were generously provided by the authors of

Ref. 12; experimental details are given therein. The instru-

ment used to collect both datasets was a dual-beam counter-

propagating optical trap. The molecule of interest was teth-

ered to polystyrene beads by means of dsDNA handles, with

one bead suctioned onto a pipette and the other held in the op-

tical trap. A piezoactuator controlled the position of the trap

and allowed position resolution to within 0.5 nm, with the

instrument operated in passive (equilibrium) mode such that

the trap was stationary relative to the pipette during data col-

lection. The force on the bead held in the optical trap was

recorded at 50 kHz, with each recorded force trajectory 60 s

in duration. The trajectory shown in Fig. 4(b) that was cho-

sen for analysis has a relative similar population in the open

and closed states. This experimental construct suffers from a

slow drift in the recorded force trajectory. Although the drift

is very small for the selected trajectory, it may interfere with

an analysis of the slow kinetics; and it will be seen below how

the HMM analysis deals with this.

For the analysis, we discretized the observed force coor-

dinate into 30 regularly spaced bins. Figures 4(c) and 4(d)

compare the performances of 30-state MSMs with two- or

three-state HMMs, respectively. While the MSMs converge

only very slowly towards the ∼17 ms timescale associated

with the exchange of open and closed states, both HMMs

estimate this timescale robustly after a lag time of 0.7 ms.

Interestingly, for the three-state HMM, there is a switch of

eigenvectors at lag times of 2–2.5 ms. While the open/close

transition is now estimated as the second-slowest timescale,

the slowest timescale vastly increases to a timescale on the

order of the entire trajectory length. Inspection of the corre-

sponding eigenvector has confirmed that the process found

by this second timescale indeed corresponds to a slight shift

of the output distributions that captures the small drift that is

present in the trajectory and is associated to a slight shift of

the open and closed force distributions between the beginning

and the end of the trajectory.

Figure 4(d) shows that the three-state HMM also finds a

faster process of less than 1 ms for short lag times. Clearly,

this fast process disappears at long lag times, and therefore

the blue curve in Fig. 4(d) leaves this initial plateau after τ

> 0.7 ms. However, at τ = 0.7 ms both processes are present

in the data, and a three-state HMM can be successfully con-

structed. Figures 4(e) and 4(f) show the corresponding HMM

output distributions {χ1,χ2,χ3}, weighted by the stationary

probabilities {π̃1, π̃2, π̃3}, thus illustrating where the two or

three metastable states are located in the force coordinate.

As expected, the most stable black state (small forces) and

the less stable green state (higher forces) correspond to the

open and closed states of the hairpin. Interestingly, the three-

state HMM identifies a third (red) state that lies “in between”

open and closed. This state has so far not been reported. The
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p5ab RNA Hairpinp p(a)

(c)

(f)(e)

(d)

(b)

FIG. 4. Comparison of MSM and HMM for analyzing single-molecule force-probe data of the RNA hairpin p5ab.12 (a) Sketch of the folded secondary structure,

(b) the optical tweezer trace. (c) and (d) Relaxation timescales computed by MSMs compared with HMMs with 2 and 3 states, respectively. (e) and (f) HMM

output distributions for the 2- and 3-states HMM, respectively. (g) and (h) rate matrices of the 2- and 3-states HMM, respectively.

rate matrix and stationary probabilities shown in Fig. 4(h) re-

veal that the three states are linearly connected, and the low-

populated red state is a transition state. This rate matrix also

indicates that the intermediate state has a lifetime of about

0.65 ms.

VI. CONCLUSIONS

We have introduced the concept of PMMs and estab-

lished a connection between conformation dynamics, PMMs,

HMMs, and the widely used MSMs. When observing the
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continuous and full-phase space dynamics on some (possibly

coarse) set of discrete clusters, the true kinetics is described

by PMMs, rather than with MSMs, although MSMs are very

widely used on this discrete dynamics. MSMs are, therefore,

just an approximation of the discrete dynamics, which are not

actually Markovian.

Currently, no efficient approach for directly estimating

PMMs is available. Here, we have shown that in the impor-

tant setting where the dynamics are metastable, with rarely

populated transition regions, and there is a timescale sepa-

ration after the first m − 1 slow relaxation timescales (m

could be any number, but is usually small), PMMs can be

approximated with HMMs. This is an important result, be-

cause HMMs can be efficiently estimated by maximum-

likelihood or Bayesian techniques, and will in this setting give

the correct estimate of the slow molecular kinetics—without

the systematic bias induced by the Markovianity assumption

of MSMs.

HMMs are then estimated with an m × m transition ma-

trix describing the dynamics between the m hidden states,

and each hidden state associated with an n-element proba-

bility vector containing the probability that the hidden state

will appear in one of the n discrete clusters. In order to suc-

cessfully and reliably conduct the HMM estimation for large

values of n, it is important to have a good starting guess of

the transition matrix and the output probability matrix. Here,

we have also made a new connection between MSMs and

HMMs and shown that the initial HMM transition matrix

and output probability matrix can be computed from a set of

established algebraic transformations of an MSM transition

matrix.

We have shown that a vast number of relevant thermody-

namics, kinetic, and mechanistic quantities that are commonly

computed from MSMs can also be computed from HMMs.

Notably, this includes kinetic experimental observables such

as time-correlation functions and time-dependent expectation

values of triggered dynamics. These experimentally observ-

able quantities occur in a functional form that can be read-

ily interpreted by assigning experimentally measurable relax-

ation timescales to the experimentally not directly measurable

structural changes.

Thereby, PMMs, and their HMM-approximations, are in-

voked as a new modeling framework for slow molecular ki-

netics, and a real alternative to MSMs. Future studies will ex-

tend this framework, e.g., by addressing the computation of

the statistical error of the present HMMs via a full Bayesian

analysis.
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APPENDIX A: PROOF THAT AN OBSERVED
METASTABLE MARKOV PROCESS WITH m SLOW
RELAXATION PROCESSES IS EQUIVALENT TO
A m-STATE HMM

We consider the dynamics of the Markov process zt ∈

�, in the full-dimensional phase space. In this section, we do

not yet consider any projection to an observation space. The

purpose of this section is to investigate if the following two

processes are equivalent:

Definition: m-timescale Markov process: A reversible

and ergodic Markov process with m dominant slow processes.

We assume that we work at a lag time τ , at which the all other

processes have decayed. Thus the spectrum is assumed to be

1, λ2 . . . , λm, 0, . . . , 0).

Definition: m-state hybrid process: A m × m Markov

chain where each state has a fixed output distribution ρk(z),

z ∈ �. The process consists of propagating the Markov chain

in time. At every time instant, we draw an independent ran-

dom number from ρk(z) where k is the current discrete state.

These two are equivalent if their transition kernels are

identical,

p(1)
τ (z0, zτ ) = p(2)

τ (z0, zτ ) (A1)

or, equivalently, if their correlation densities are identical,

μ(1)(z0)p(1)
τ (z0, zτ ) = μ(2)(z0)p(2)

τ (z0, zτ ),
(A2)

c(1)
τ (z0, zτ ) = c(2)

τ (z0, zτ ),

where μ is the stationary distribution of the respective pro-

cess. We write down the corresponding correlation densities:

1. m-timescale Markov process: see Ref. 25,

cτ (z0, zτ ) = μ(z0)μ(zτ ) +

m∑

k=2

e−κkτφk(z0)φk(zτ ). (A3)

2. m-state hybrid process: We use the m × m transition

matrix T̃(τ ) that is reversible with respect to its sta-

tionary distribution π̃ , and the corresponding correlation

matrix C̃(τ ) = �̃T̃(τ ). At every time step, the process

generates output by drawing independent random vari-

ables from the continuous output functions ρ i associated

to the current state i,

cτ (z0, zτ ) =
∑

i,j

ρi(z0 )̃cij (τ )ρj (zτ )

=
∑

k

∑

i,j

ρi(z0)l̃kiλk(τ )l̃kjρj (zτ )

=
∑

i,j

πiρi(z0)πjρj (zτ )

+
∑

k

e−κkτ
∑

i,j

l̃kiρi(z0)l̃kjρj (zτ ). (A4)
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In order to show (1) ≡ (2), we must show that the expansion

of eigenfunctions into a basis of state output functions,

φk(z) =
∑

i

l̃kiρi(z) (A5)

is feasible. We immediately see that this implies a necessary

condition: in the expansion above, the normalization condi-

tions of eigenfunctions imply,

〈φk|φo〉μ−1 =

〈 ∑

i

l̃kiρi(z)|
∑

j

l̃ojρj (z)

〉

μ−1

=
∑

i,j

l̃ki l̃oj 〈ρi |ρj 〉μ−1

=
∑

i,j

l̃ki l̃oj sij

= l̃Tk Sl̃o, (A6)

where

sij := 〈ρi |ρj 〉μ−1 (A7)

is the overlap matrix of basis functions. We have to fulfill

LSLT = Id
(A8)

S = (LT L)−1 = (LT RT �)−1 = �−1,

but that means that S has to be a diagonal matrix. Since the

output distributions ρ i are non-negative, S can only be diag-

onal if the sets on which the ρ i are non-zero do not overlap

in the full state space. This condition is necessary for both

directions of the proof.

This observation suggests that the two processes m-

timescale Markov process and m-state hybrid process are

generally not equivalent, but equivalence is possible when the

nonoverlap condition 〈ρ i|ρ j〉 = 0 for i �= j is used as a con-

dition. Additionally, it has been observed that the weighted

eigenfunction ψ i = μ−1φi is approximately constant on the

metastable sets, a property that will be required later. There-

fore, we define a variation of the m-process Markov

Definition: m-metastable Markov process: is a m-

timescale Markov process with the following additional prop-

erties: Let {ρi}
m
i=1 be a set of non-overlapping probability

density functions, and let {A1, . . . , Am} be a partition of �

defined as

z ∈ Ai ⇔ ρi (z) > 0 (A9)

and

z ∈ Ai ⇔
φi(z)

μ(z)
= const. (A10)

In this definition, the sets A1, . . . , Am are metastable sets and

the boundaries between them are the transition states. The

definition represents an idealized metastable Markov process:

The decomposability of μ into m distinct modes implies that

transition states between the metastable sets have no prob-

ability density: μ(z) = 0. Furthermore, the assumption that

the weighted eigenfunctions φiμ
−1 are constant on the sets

A1, . . . , Am is an idealization of the fact that these eigenfunc-

tions have been observed to be almost constant on metastable

sets.34

Therefore, no classical physical system can be an m-

metastable Markov process—whenever transitions between

the sets A1, . . . , Am are possible, the dynamical process

must travel through the transition regions, and therefore,

μ(z) will not be exactly zero in these regions. However, a

real metastable system may have transition states that are

rarely populated, and thereby approximate the idealized m-

metastable Markov process.

Below, we will show the following:

1. m-hybrid process ⇒ m-metastable Markov process

2. m-metastable Markov process ⇒ m-hybrid process

3. m-metastable PMM ⇔ m-state HMM

From 1 and 2 it is obvious that m-metastable Markov process

⇔ m-hybrid process. The third step follows from a projection

of these full phase-space processes on the observed discrete

clusters.

1. A m-hybrid process is a m-metastable
Markov process

Suppose that the stochastic process {zt } in the state space

� is generated by a m-hybrid dynamics with transition matrix

T̃ (τ ) and output distribution functions {ρi}
m
i=1, where T̃ (τ )

is reversible with respect to its invariant distribution π̃ which

can be decomposed as

T̃ (τ ) = �̃
−1

m∑

i=1

e−κiτ l̃i l̃
T
i , (A11)

where �̃ = diag (π ), l̃i denotes the ith left eigenvector of

T̃ (τ ). The eigenvectors are normalized such that they satisfy

l̃1 = π̃ and l̃Ti �̃
−1

l̃j = δij . We now prove that {z(t)} is also a

m-metastable Markov process. Note that for any t1 > t2 ≥ 0

and B ⊂ �,

P
(
zt1 ∈ B|{zt }

t2
t=0

)
=

∑

i

P
(
zt1 ∈ B, st2 = i|{zt }

t2
t=0

)

=
∑

i

P
(
zt1 ∈ B|st2 = i, {zt }

t2
t=0

)

× P
(
s (t2) = i|{zt }

t2
t=0

)
(A12)

=
∑

i

P
(
zt1 ∈ B|st2 = i

)

× P (st2 = i|zt2 ) (A13)

= P (zt1 ∈ B|zt2 ), (A14)

where st denotes the state of the HMM at time t. Therefore,

{zt } is a Markov process.

Furthermore, we have the correlation density given in

(A4) with the eigenfunction representation (A5). Using the

non-overlap condition (A6), these eigenfunctions have the

correct normalization:

〈φi |φj 〉μ−1 = lTi Slj = δij . (A15)

Therefore, {zt } is a m-metastable Markov process.
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2. A m-metastable Markov process is a
m-hybrid process

Suppose that the stochastic process {zt } is a m-metastable

Markov process in state space �. Then its correlation density

is given by (A3) and the propagator eigenfunctions {φi}
m
i=1,

where φ1 = μ is the stationary distribution of {z(t)}, satisfy

the orthogonality conditions 〈φi |φj 〉μ−1 = δij . From (A9), we

can directly follow

〈ρi |ρj 〉μ−1 = 0 ∀i �= j (A16)

and thus, every density can be described as a linear combina-

tion of basis functions,

μ(z) ∈ span (ρ1, . . . , ρm) . (A17)

Combining this result with (A10), it follows that the entire set

of propagator eigenfunctions must be expressable in terms of

such linear combinations:

φ1, . . . , φm ∈ span (ρ1, . . . , ρm) . (A18)

We call the coefficients required to represent the eigenfunc-

tions {φi}
m
i=1 in the basis {ρj }

m
j=1, l̃ij ,

φi =
∑

j

l̃ijρj (A19)

and define,

π̃ = [π̃i] := l̃1, (A20)

T̃ (τ ) = [T̃ij (τ )] := �̃
−1

·

m∑

k=1

e−κkτ l̃k l̃Tk , (A21)

with �̃ = diag (π̃ ). From these definitions, it follows that

π̃i =

∫

Ai

∑

j

π̃jρj (z) dz

= P (zt ∈ Ai) (A22)

and

π̃i T̃ij (τ ) =

m∑

k=1

exp (−κkτ ) l̃ki l̃kj

=

m∑

k=1

exp (−κkτ )

∫

Ai

l̃kiρi (z0) dz0

×

∫

Aj

l̃kjρj (zτ ) dzτ (A23)

=

m∑

k=1

exp (−κkτ )

∫

Ai

(
∑

a

l̃kaρa (z0)

)
dz0

×

∫

Aj

(
∑

b

l̃kbρb (zτ )

)
dzτ (A24)

=

m∑

k=1

exp (−κkτ )

∫

Ai

∫

Aj

φk (z0) φk (zτ ) dzτ dz0

=

∫

Ai

∫

Aj

c (z0, zτ ) dzτ dz0

= P (z0 ∈ Ai, zτ ∈ Aj ). (A25)

Therefore, π̃ is a discrete distribution and T̃ is a reversible

transition matrix with respect to π̃ , and we can construct a

m-state hybrid Markov process with transition matrix T̃ and

output distributions {ρi}
m
i=1. Noting that

〈l̃i |l̃j 〉π̃−1 =

∫ (∑
a l̃iaρa (z)

) (∑
b l̃jbρb (z)

)
∑

c π̃cχc (z)
dz

= 〈φi |φj 〉μ−1

= δij (A26)

and according to the conclusion in Appendix A 1, we can con-

clude that the dynamics of {zt } can be exactly described by a

m-state hybrid Markov process.

3. m-metastable PMM ≡ m-state HMM

We now consider that the dynamics are observed on a set

of n discrete states {S1, . . . , Sn}.

It is straightforward to classify the processes after pro-

jecting them onto an observable y:

1. When projecting a m-timescale Markov process onto

the discrete partition {S1, . . . , Sn}, we obtain a PMM

with m relaxation timescales (5). Therefore, when m-

metastable Markov process onto the partition {S1, . . . ,

Sn}, we also obtain a PMM. We call this specific PMM

a m-metastable PMM.

2. When projecting a m-hybrid process onto sets {Si}, we

obtain a m-state HMM with m hidden states, the m ×

m transition matrix of the m-hybrid process as a hidden

transition matrix, and the output probability matrix

χki =

∫

z∈Si

ρk(z) dz. (A27)

In Appendices A 1 and A 2 we have shown that for the

metastable case, we have the equality

m-metastable Markov dynamics ≡ m-hybrid dynamics

and thus we have shown

m-metastable PMM ≡ m-state HMM

APPENDIX B: ALGORITHMS AND DERIVATIONS

1. Estimation algorithm

We summarize by sketching the PMM/HMM estimation

algorithm
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ALGORITHM I. PMM/HMM estimation.

Input:

- N trajectories, discretized into n clusters: S = {{s
(1)
t }, . . . , {s

(N)
t }}

- lag time: τ

- number of slow relaxation processes considered: m

Algorithm:

1. Estimate reversible Markov transition matrix T(τ ) ∈ Rn×n from the

discrete trajectory S

2. Decompose T(τ ) into an initial guess for the HMM matrices:

χ ∈ Rn×m and T̃(τ ) ∈ Rm×m using PCCA and Eqs. (12) and (13).

3. Optimize χ and T̃(τ ) using the EM algorithm.

4. Validate model by comparing correlation matrices Cpred(τ )

= χ�̃[T̃(τ0)]nχ⊤ and C(τ ) = �T(τ ), or the apparent relaxation

timescales computed from Tpred(τ ) = �−1χ�̃[T̃(τ0)]nχ⊤ and the

direct MSM T(τ ).

2. Computing the HMM transition matrix from
PCCA memberships

We use the definition of the coarse-grained transition ma-

trix derived in Ref. 17,

T̃ = (RI)−⊤I⊤PR⊤ (B1)

with restriction and interpolation operators,

R = M⊤

I = �M�̃
−1

. (B2)

By a series of algebraic transformations we obtain:

T̃ = (RI)−⊤I⊤PR⊤

= (MT �M�̃
−1

)−T (�M�̃
−1

)T PM

= MT PT �M�̃
−1

(MT �M�̃
−1

)−1

= MT CM�̃
−1

(MT �M�̃
−1

)−1

= MT CM(MT �M�̃
−1

�̃)−1 (B3)

= MT CM(MT �M)−1

MT̃MT �MMT = MMT CMMT

T̃MT = (TM)T

T̃ = MT TM(MT M)−1.

3. EM implementation

In order to estimate a discrete HMM using the Baum-

Welch EM method, we iterate the following two steps

1. Expectation step: Estimate the hidden path probabilities

{αt }
(k) and {β t }

(k),

{{αt }
(k), {β t }

(k)}

= arg max
{αt },{β t }

P ({st }|{αt }, {β t }, T̃(k),χ (k)) (B4)

and compute the log-likelihood L = log P ({st }|T̃,χ ).

2. Maximization step: Estimate T̃(k+1) and χ (k+1):

{T̃(k+1),χ (k+1)} = arg max
T̃,χ

P (T̃,χ |{st }, {αt }
(k), {β t }

(k))

(B5)

until the increase of the likelihood (14) falls below a user-

defined threshold. While the expectation step is general, the

maximization step must be designed for the specific HMM

implementation. Here, we estimate the quantities T̃,χ as fol-

lows:

1. From the expectation step, we compute the Baum-Welch

count matrix between hidden states,18, 43

Z̃t = g−1αt T̃
(k)β t+1χ st

, (B6)

g = 1T αt T̃
(k)β t+1χ st

1, (B7)

where S is a normalization factor ensuring that we only

count 1 transition per time step. The total count matrix

is given by the sum over all single-step count matrices,

Z̃ =
∑

t

Z̃t , (B8)

which may run over multiple trajectories. Given the

count matrix Z̃, we estimate the maximum likelihood

transition matrix that fulfills detailed balance using the

algorithm described in Ref. 29 and implemented in the

EMMA software,36

T̃ = arg max
T̃

P (Z̃|T̃)

such that �̃T̃ = T̃⊤�̃. (B9)

2. The stationary probability is computed from the hidden

transition matrix

π̃⊤ = π̃⊤T̃. (B10)

3. The output probability distributions are computed by

first estimating histograms,

yij = y0
ij +

∑

t

αt,iβt,i1(st = j )∑
k αt,kβt,k

, (B11)

where yij is the estimated number of times that hidden

state i has produced cluster j as an output. 1(st = j) is an

indicator function that is 1 if the cluster trajectory is at

state j at time t, and 0 otherwise. y0
ij is a prior count, here

uniformly set to n−1. Then, the histograms are normal-

ized to

χij =
yij∑
k ykj

. (B12)
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4. Derivation of experimental observables

Correlation function between observables a and b for lag

time τ = nτ 0,

E[a(t)b(t + τ )] = a⊤χ⊤�̃[T̃(τ0)]nχb

= a⊤χ⊤

m∑

i=1

λi(τ )l̃i l̃
⊤
i χb

=

m∑

i=1

e−τκi 〈a, ql
i〉〈b, ql

i〉. (B13)

Relaxation function of observable a, starting from the

hidden-state probability distribution p̃0,

Ep̃0
[a(τ )] = a⊤ (̃p⊤

0 [T̃(τ0)]nχ)⊤

= a⊤χ⊤ (̃p⊤
0 [T̃(τ0)]n)⊤

= a⊤χ⊤ (̃p⊤
0 �̃

−1
m∑

i=1

λi(τ )l̃i l̃
⊤
i )⊤

=

m∑

i=1

λi(τ )a⊤χ⊤ l̃i l̃
⊤
i �̃

−1
p̃0

=

m∑

i=1

e−τκi 〈a, ql
i〉〈l̃

⊤
i , p̃∗

0〉, (B14)

where p̃∗
0 is the excess probability distribution p̃∗

0 = �−1p̃0.
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