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ABSTRACT

This study investigates likely changes in mean and extreme precipitation over southern Africa in response

to changes in radiative forcing using an ensemble of global climate models prepared for the Intergovern-

mental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Extreme seasonal precipitation

is defined in terms of 10-yr return levels obtained by inverting a generalized Pareto distribution fitted to

excesses above a predefined high threshold. Both present (control) and future climate precipitation extremes

are estimated. The future-to-control climate ratio of 10-yr return levels is then used as an indicator for the

likely changes in extreme seasonal precipitation.

A Bayesian approach to multimodel ensembling is adopted. The relative weights assigned to each of the

model simulations is determined from bias, convergence, and correlation. Using this method, the probable

limits of the changes in mean and extreme precipitation are estimated from their posterior distribution.

Over the western parts of southern Africa, an increase in the severity of dry extremes parallels a statis-

tically significant decrease in mean precipitation during austral summer months. A notable delay in the onset

of the rainy season is found in almost the entire region. An early cessation is found in many parts. This implies

a statistically significant shortening of the rainy season.

A substantial reduction in moisture influx from the southwestern Indian Ocean during austral spring is

projected. This and the preaustral spring moisture deficits are possible mechanisms delaying the rainfall onset

in southern Africa. A possible offshore (northeasterly) shift of the tropical–temperate cloud band is con-

sistent with more severe droughts in the southwest of southern Africa and enhanced precipitation farther

north in Zambia, Malawi, and northern Mozambique.

This study shows that changes in the mean vary on relatively small spatial scales in southern Africa and

differ between seasons. Changes in extremes often, but not always, parallel changes in themean precipitation.

1. Introduction

Changes in the mean state of the earth’s climate sys-

tem due to anthropogenic modifications in the chemical

composition of the earth’s atmosphere have become a

topical issue in recent years (Houghton et al. 2001;

Solomon et al. 2007). Direct consequences of positive

radiative forcing resulting from an enhanced green-

house effect are changes in global surface and
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atmospheric temperatures, precipitation patterns, and

other climate variables (Solomon et al. 2007).

Owing to their great impact on human activity and

wide application, potential future changes in precipita-

tion deserve much attention. A number of studies have

sought the possible changes in long-term mean precip-

itation in many parts of the globe (Giorgi and Mearns

2002, 2003; Trenberth et al. 2003; Tebaldi et al. 2004).

Less attention has been paid to changes in extreme

precipitation. Pronounced increases in heavy precipi-

tation events might be expected to occur where mean

total seasonal or annual precipitation increases. On the

other hand, dry extremes might be expected to become

severe where mean precipitation decreases. However, in

cases where the interannual rainfall variance increases, it

is possible that changes in the probability of extreme

precipitation events may not parallel that of mean sea-

sonal or annual precipitation. For instance, the severity

of heavy precipitation events may increase in regions

where the total precipitation decreases or remains con-

stant. Since precipitation extremes often have bigger

impacts on society than small changes in average pre-

cipitation, an investigation of extreme behavior under

changing climatic conditions is warranted.

Several studies have investigated the likely changes

in mean and extreme precipitation in many parts of

the globe, including Africa (Kharin and Zwiers 2000;

Groisman et al. 2005; Meehl et al. 2005; Kharin et al.

2007). Most of these studies have focused on likely

patterns of change over large regions of Africa despite

the high degree of spatial variability exhibited by pre-

cipitation. Regionally specific studies have been carried

out in other parts of the globe (e.g., van Ulden and van

Oldenborgh 2006; van den Hurk et al. 2006), but few for

Africa and even fewer for southern Africa.

Hulme et al. (2001) reviewed previous African cli-

mate change studies and report on observed (twentieth

century) and likely future (twenty-first century) mean

annual temperature and precipitation patterns in Africa.

Using seven global climate models (GCMs), significant

decreases in mean December–February (DJF) precipi-

tation were found in the interior southern Africa south

of about 108S (most of South Africa, Botswana, and

Namibia) in the A2-high scenario. These projected de-

creases are substantial after 2050 (their Fig. 10). Sources

of uncertainty in African climate change scenario stud-

ies are also discussed (Hulme et al. 2001). Previous

southern African climate change studies investigating

extreme events (e.g., Joubert et al. 1996; Mason et al.

1999) used either simulations by a single climate model

or earlier version(s) of a few climate models. Using

an earlier version of the Commonwealth Scientific and

Industrial Research Organisation (CSIRO) coupled gen-

eral circulation model (CGCM), Joubert et al. (1996)

found an increase in the probability of dry years over the

southwestern parts of southern Africa and southern

Mozambique under 2 3 CO2 experiments. However,

southern African mean annual precipitation was not

found to change significantly. Mason et al. (1999) found

an increase in the frequency of extremely wet daily

events. Consistent with Joubert et al., no significant

trend in mean annual precipitation was reported. Here,

we conduct a detailed regional analysis by combin-

ing results from an ensemble of objectively selected

state-of-the-art climate models to investigate likely long-

term (up to 2200) changes in mean and extreme precip-

itation.

Over the past decades, climate-related extremes have

been the dominant trigger of natural disasters in southern

Africa (here defined as Botswana, Lesotho, Malawi,

Mozambique, Namibia, South Africa, Swaziland, Zam-

bia, and Zimbabwe). New et al. (2006) identified signifi-

cant trends in southern Africa temperature extremes and

some precipitation indices. In particular, a spatially co-

herent increase in consecutive dry days was found over

much of southern Africa in the last decades of the

twentieth century. Upward trends in intense precipita-

tion were found to the southeast with trends of the op-

posite sign in northern Namibia, Botswana, and Zambia.

Concurrently, the number of disasters is on the rise.

According to the International Emergency Disasters

Database (EM-DAT; http://www.em-dat.net/), the av-

erage annual number of reported natural disasters in the

region has risen from about 5 reported disasters a year

in the 1980s to over 18 a year from 2000 to 2006. Hy-

drometeorological disasters make up the bulk of those

(the others are mostly epidemics such as malaria, chol-

era, and meningitis, which are also affected by climatic

conditions). Reported drought-related disasters have

risen from an average of about 1.5 per year in the 1980s

to about 2 per year since 2000, while those related to

floods have risen from 1.2 a year to almost 7 per year

since 2000 (the rest of the reported increase is mainly

due to wind storms). In the past years, these events have

affected the lives and livelihoods of over six million

people annually and had severe impacts on economic

performance and poverty alleviation (e.g., Hellmuth

et al. 2007). While part of the trend is due to better

reporting, it also reflects a rising vulnerability to natural

hazards, and potentially an underlying trend in climate

variability and extremes. Operational disaster man-

agers, for instance from the Red Cross and Red Cres-

cent, also report an increasing pressure on humanitarian

assistance and express concern that trends in weather

extremes due to climate change increasingly affect their

work (e.g., van Aalst et al. 2007). Among others, they
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are looking for better analyses on how extreme weather

events may be changing so as to enhance disaster pre-

paredness among poor rural communities and help

integrate climate risk management into development

planning. These concerns and questions have provided

the motivation for the present study.

Of particular interest is examining likely changes from

the present to the late twenty-first and twenty-second

centuries (i.e., the 2051–2200 period) in the severity of

droughts and floods in specific regions of Africa and a

comparison with changes in mean precipitation. With the

vulnerable local communities and high spatial variation of

rainfall in mind, this study probes into simulated precip-

itation changes at spatial scales smaller than the com-

monly used Giorgi regions (Giorgi and Francisco 2000).

Here, we show that averaging over large areas can conceal

notable spatial variations in the modeled rainfall response

to an enhanced greenhouse effect. Likely changes in

large-scale atmospheric hydrodynamics are assessed and

related to changes in precipitation patterns. Results ob-

tained for southern Africa are presented in this paper. A

companion paper (Shongwe et al. 2008, manuscript sub-

mitted to J. Climate) presents the results for East Africa.

In spite of the associated uncertainties (e.g., Hulme et al.

2001), the results presented below can inform adaptation

strategies for governments, the private sector, and com-

munities in the regions covered in this study.

2. Data and methods

a. Model simulations and observations

This study uses the World Climate Research Pro-

gramme (WCRP) Coupled Model Intercomparison Pro-

ject phase 3 (CMIP3) multimodel dataset. The model

dataset formed input to the Intergovernmental Panel

on Climate Change (IPCC) Fourth Assessment Report

(AR4) (Solomon et al. 2007). Correlation between mod-

eled and Climate Research Unit (CRU) monthly pre-

cipitation and the rms error (RMSE) is used to assess

the degree of realism with which models available on

the Program for Climate Model Diagnosis and Inter-

comparison (PCMDI) archive simulate the observed

twentieth-century precipitation (the 20c3m runs). With

this first low-threshold selection, 12 models were se-

lected and are listed in Table 1. For details of each

model formulation, the reader is referred to the refer-

ences cited in the table. The model spatial resolutions

differ considerably. As the focus of this study is on

relatively small spatial scales, for ease of comparison,

the model simulations are linearly interpolated to a

common T95 (1.258 3 ;1.248 latitude–longitude) grid.
The availability of long integrations from the Spe-

cial Report on Emissions Scenarios (SRES) A1B

forced runs enable the assessment of possible long-

term climate change signals. In this scenario, CO2

concentration doubles by 2100 and remains constant

thereafter. These SRESA1b model data are sub-

divided into two subsamples: the 1901–2000 and the

2051–2200 periods, defining the control and future

climate, respectively. Considering the 2051–2200 pe-

riod is sensible because, in most cases, changes in

model predictions before and after 2100 (CO2 dou-

bling) are smaller than the internal variability. For

climate models with multiple integrations (n20c3m

and nSRESA1b; Table 1), each ensemble member is

considered an independent realization. The ensemble

members are then concatenated to form a larger

sample for each model from which further analyses

(see section 2c) are carried out.

To identify the atmospheric anomalies and/or mois-

ture attributes associated with precipitation changes,

other fields (e.g., wind and specific humidity) from the

model simulations are also used. The computation of

moisture transport, for example, requires data on finer

temporal resolution than the monthly simulations used

to estimate precipitation changes. Daily simulations

from the same CGCMs listed in Table 1 are used, except

for the third climate configuration of the Met Office

Unified Model (HadCM3) and Hadley Centre Global

EnvironmentalModel version 1 (HadGEM1), whose data

is not available on the PCMDI archive. The PCMDI

archive contains only daily data for shorter time slices

(e.g., 1961–2000, 2046–65, and 2081–2100) and, there-

fore, the analysis of these quantities will be based on

these shorter periods.

Observed twentieth-century precipitation data used in

this study comprise station observations obtained from

the Global Historical Climatology Network (GHCN)

(Peterson et al. 1997) and gridded data from the Climate

Research Unit (CRU TS2.1) (New et al. 2000) datasets.

The former is only used to define homogeneous rainfall

regions (see section 2b). The latter is used in all analyses

described in sections 2c and 2d. The biases inherent in

these datasets notwithstanding, their quality is sufficient

for the present study.

Prior to the analysis of precipitation changes, the data

have been screened for possible trends. Except for clear

patterns of low-frequency precipitation variability in

some regions, significant twentieth-century precipita-

tion trends are not discernible. Detrending the series

prior to the analysis is therefore deemed unnecessary.

The mean seasonal precipitation rates used here are

separated by 12 months. Clusters of extremes may only

reflect interdecadal variability rather than serial de-

pendence. For this reason, declustering the time series

has also been deemed unnecessary.
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Because of its geographical diversity, Africa is divided

into four subregions: southern Africa, East Africa,

northeast Africa, and West Africa. As aforementioned,

this paper present results obtained for southern Africa

(defined here as the area lying between ;358 and 108S,
208 and 428E; Fig. 1). Results for other regions are

presented online at http://www.knmi.nl/africa_scenarios/.

Because of sparsity of reliable observations in certain

parts of southern Africa (e.g., Angola and Democratic

Republic of Congo), these areas have been omitted

from the analysis.

Much of southern Africa has a well-defined rainy sea-

son during austral summer months and is characterized

by distinct atmospheric dynamics (Tyson and Preston-

Whyte 2000). In this study, future patterns of southern

Africa mean precipitation change in austral spring

[September–November (SON)], summer [December–

February (DJF)], autumn [March–May (MAM)], and

winter [June–August (JJA)] are investigated. Extreme

precipitation change analysis is only carried out for the

peak of summer (DJF), when most precipitation and

extreme events typically occur (Tyson and Preston-

Whyte 2000). Monthly CRU and CMIP3 precipitation is

accumulated into seasonal (3 month) totals from which

mean daily precipitation rates are calculated by dividing

by the number of days in that season. The climatologi-

cally wettest seasons have the highest mean precipita-

tion rates—from either a few very intense rainfall events

or prolonged wet spells within that season. On the other

hand, the driest seasons (drought events) have the

lowest mean precipitation rates.

b. Clustering stations

Mean precipitation and return levels (section 2c) ex-

hibit pronounced spatial variabilities. This is largely in

response to inhomogeneities in land surface features

(e.g., topography and land–sea–lake contrasts). Such

localized forcing features are expected to modulate the

precipitation response to changes in radiative forcing.

For this reason, using the GHCN data, homogeneous

rainfall regions are identified within southern Africa

using cluster analysis (Mimmack et al. 2001). Rainfall

homogeneity is defined on the basis of the spatial co-

herence of interannual rainfall variations.

TABLE 1. Global coupled climate models used in this study. Model resolution is given as T (wavenumber of spectral truncation) and L

(number of vertical layers). The number of ensemble integration by each model in the twentieth century and future climate (2051–2200)

climate are shown in the columns with headings n20c3m and nSRESA1b, respectively.

Contributing center Model

Atmospheric

resolution n20c3m

nSRESA

1b References

Canadian Centre for Climate

Modelling and Analysis

(CCCMA)

General Circulation Model

version 3.1 (GCM3.1) (T47)

T47L31 5 5 Flato (2005)

Météo-France CNRM-CM3 T42L45 1 1 Salas-Mélia

et al. (2005)

CSIRO CSIRO Mark version 3.0

(Mk3.0)

T63L18 3 1 Gordon et al.

(2002)

Max Planck Institute (MPI) ECHAM5/MPI Ocean

Model (OM)

T63L31 3 3 Roeckner et al.

(2003)

Meteorological Institute of the

University of Bonn (MIUB)

ECHO-G T30L19 3 3 Min et al. (2005)

GFDL GFDL CM2.0 28 3 2.58 L24 3 1 Delworth et al.

(2006)

GFDL GFDL CM2.1 28 3 2.58 L24 3 1 Delworth et al.

(2006)

L’Institut Pierre-Simon Laplace

(IPSL)

IPSL Coupled Model,

version 4 (CM4)

2.58 3 3.758 L30 1 1 Le Clainche et al.

(2001)

Center for Climate System

Research/National Institute for

Environmental Studies/Frontier

Research Center for Global

Change (CCSR/NIES/ FRCGC)

Model for Interdisciplinary

Research on Climate 3.2,

medium-resolution version

[MIROC3.2 (medres)]

T42L20 3 1 Hasumi et al.

(2004)

MRI MRI CGCM2.3.2 T42L30 5 1 Yukimoto and

Noda (2001)

Met Office (UKMO) UKMO HadCM3 2.58 3 3.758 L19 2 1 Gordon et al.

(2000)

UKMO UKMO HadGEM1 1.258 3 1.8758 L38 2 1 Johns et al.

(2004)
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Prior to the clustering, annual precipitation totals are

first calculated using the July–June year. The annual

totals are then clustered using single linkage, average

linkage, complete linkage, and Ward’s agglomerative

hierarchical algorithms (Johnson and Wichern 2002).

Each hierarchical procedure is based on Euclidean

distances between station rainfall data, standardized by

removing the mean and dividing by the mean absolute

deviations.

Of the clustering methods used, the Ward minimum

error sum of squares procedure yielded the most sen-

sible results. The results from average linkage and

complete linkage methods are broadly similar to those

from Ward’s method. Poorly separated clusters repre-

senting less distinct regions are merged if the regions

are contiguous. In addition, transitions between regions

have been smoothed and straight lines used to delineate

region boundaries. For these reasons, the resulting cli-

mate regions shown in Fig. 1 differ from those identified

by Shongwe et al. (2006). Here we used 212 stations

spanning the period 1941–97 in contrast to the 255 sta-

tions and shorter period (1961–2000) used previously

(Shongwe et al. 2006). Furthermore, in Shongwe et al.,

the clustering was based on Euclidean distances calcu-

lated from unstandardized principal component scores

of individual monthly rainfall data, as recommended by

Mimmack et al. (2001).

Observed seasonal precipitation for each homoge-

neous zone is calculated from the CRU datasets by

averaging grid points that fall within it. Gridded CRU

precipitation data, which is based on the GHCN station

data and automatically gives equal weight to equal

areas, is preferred for further analysis (see sections 2c

and 2d below). CGCM grids falling within each climatic

zone were similarly averaged. In this way, the spatial

noise inherent in precipitation has been filtered out.

c. Extreme value analysis

The analysis of changes of extreme precipitation

events is based on the peak-over-threshold method or

generalized Pareto distribution (GPD). In contrast to

using the raw (model) data, fitting a GPD allows in-

terpolation, extrapolation, and intermodel comparison.

A comprehensive introduction to GPD and its appli-

cations can be found in Coles (2001). Details of the

extreme value model applied here are presented in

appendix A.

Conventionally, most extreme value studies in cli-

mate science (e.g., Kharin and Zwiers 2000; Meehl et al.

2005; Kharin et al. 2007) evaluate return levels or

quantiles of a GPD. In this study, 10-, 20-, 50-, and 100-yr

return levels have been estimated. However, given the

small sample size of threshold excesses, only the 10-yr

return levels are shown. These estimates are interpo-

lated from the data, rather than extrapolated, and hence

are least biased. Results for longer return levels are

available online at http://www.knmi.nl/africa_scenarios/.

Ten-year return levels (mm day21) are computed in

both control and future climate. These levels express

the average intensity of precipitation in an extremely

wet or dry season that occurs on average once every

10 years (corresponding to 10% probability that a given

season is wetter or drier than this).

Anderson–Darling goodness-of-fit tests (Laio 2004)

have been used to assess the suitability of the GPD as a

model of excesses above the predefined threshold. The

mathematical formulation of this test is shown in ap-

pendix B. The test statistics and critical values are de-

termined from the National Institute of Standards and

Technology software available online at http://www.itl.

nist.gov/div898/software/dataplot.html/.

d. Multimodel ensembling

Uncertainties in long-term climate model simulations

can be classified as those due to natural climate varia-

bility, model different responses to a given forcing (such

as increases in greenhouse gas concentration), model

imperfections under the control forcing, and those as-

sociated with the emission scenarios used to force the

climate models. For these reasons, no single model is

FIG. 1. Location map of the southern Africa climatic zones

identified using Ward’s minimum variance clustering method.
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considered accurate. Many climate studies utilize results

from a range of climate models (e.g., Kharin et al. 2007).

Considerable research is devoted to methods for com-

bining simulations from climate models (e.g., Giorgi and

Mearns 2002, 2003; Tebaldi et al. 2004, 2005). This paper

adopts the Bayesian method defined by Tebaldi et al.

(2005). The inherent advantage of this method is that

uncertainties of the measures of interest can be inferred

from their posterior distributions, which combines sim-

ulation information from all climate models. This method

uses model bias, convergence between model projec-

tions, and correlation to determine the relative weights

given to each member in the multimodel ensemble.

Model bias is defined with respect to the twentieth-

century climate, whereas convergence measures the

distance of the individual model projection from the

location of the multimodel ensemble. Models that sim-

ulate the observed climate with some skill and agree

with the rest in their future projections receive more

weight. On the other hand, outliers, which show large

biases with respect to the observed climate, are weighted

least. Correlation between the individual model’s devia-

tions from the multimodel ensemble mean in the present

and future climate is also incorporated in the weighting

criteria. In this way, models with systematic biases are

further downweighted. The bias and convergence criteria

for determining weights assigned to each member in the

ensemble has been applied previously (Giorgi and

Mearns 2002, 2003). No specific criteria for assigning

weights to model predictions can be considered optimal.

For instance, it is quite possible that several models that

exhibit similar performance in simulating the observed

twentieth-century climate still produce quite different

projections for the future climate. The risk of discounting

the best model when it is an outlier with respect to the

rest is inevitable from the convergence criterion. Not-

withstanding, these weighting criteria bear enough the-

oretical and statistical basis to justify their use.

Fuller details of the statistical treatment of the prob-

lemmay be found in Tebaldi et al. (2005). Here, adopting

their notation, it suffices to show the measure of per-

centage precipitation change as

DP5 100
n

m
& 1

1 0
, (1)

where n and m are used to designate the mean of the

multimodel ensemble in the future and control climate,

respectively. For mean precipitation rates and 10-yr

wettest events, DP . 0 is indicative of an increase in

their intensity, while an increase in the severity of 10-yr

driest events is indicated by DP , 0.

3. Projected precipitation changes

Mean precipitation in each month computed from

the twentieth-century (1901–2000) CRU gridded data,

spatially averaged over each zone, is shown in Fig. 2.

Almost everywhere in the region, seasonal rainfall

commences around austral spring months (SON) and

ceases around autumn months (MAM). DJF is the peak

of the rainfall season, while JJA is typically dry (less

than 1 mm day21).

This section begins by presenting likely changes in

mean precipitation during transition seasons. We then

discuss the projected changes in mean and extreme

precipitation during the peak summer months (DJF).

Projected changes in winter precipitation, which are of

little social and economical significance, are shown in

section 4a.

To allow a concise visual interpretation, we present

the results for the percentage change in precipitation

[DP, Eq. (1)] for each climatic zone (Fig. 1) as the mean

change with the corresponding 95% confidence interval

derived from the Bayesian method. In each case, sta-

tistical significance at the 5% level (i.e., p , 0.05) is

FIG. 2. Annual cycle of southern Africa precipitation derived from the 1901–2000 CRU gridded data. Zone labels are as

indicated in Fig. 1.
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found whenever the 95% confidence region excludes

zero (i.e., the null hypothesis of no change). Significance

at the 1% level (p , 0.01) is also tested. Whenever

statistical significance in the projected changes is ach-

ieved, the number of CGCMs (out of the 12) projecting

a change of the same sign as the mean change is shown.

This is to demonstrate that the Bayesian weighting

procedure is not doing anything weird.

a. Changes in the transition season mean
precipitation

A spatially coherent and significant reduction (p ,
0.05) in austral spring (SON) mean precipitation is

found everywhere in southern Africa (Fig. 3a). Reduc-

tions in SON precipitation have implications for sea-

sonal rainfall onset in southern Africa. To the west

(zone I) and over Zimbabwe and central Mozambique,

a reduction exceeding 20% is simulated with the lower

bound of the 95% posterior interval of DP , 235%.

Almost everywhere in the region, the entire range of

percentage reduction in SON precipitation excludes

zero, indicative of a considerable consensus across the

models. This, together with spatial coherence of this

pattern of change, strengthens the belief that this is a

consistently modeled climate change signal. Tadross

et al. (2005) present the climatology of rainfall onset in

southern Africa. Areas to the south experience an ear-

lier rainfall onset from extratropical circulation systems

such as frontal depressions and cold-core cutoff lows

(Tyson and Preston-Whyte 2000). Albeit relatively

small (;10%), the simulated SON precipitation de-

crease over eastern South Africa (zone II) is significant.

To the north and west, where precipitation is predom-

inantly of tropical origin (Tyson and Preston-Whyte

2000), reduction in spring precipitation attains signifi-

cance at the 1% level.

Projected changes in mean autumn (MAM) precipi-

tation rates are displayed in Fig. 3b. Over zones I and III

(much of Botswana and southern Zimbabwe), the sim-

ulated mean reduction of ;15% attains statistical signifi-

cance at the 1% level. In zone IV (northern Zimbabwe

and central Mozambique), the mean reduction (;10%)

is barely significant at the 5% level. Considering that

a notable delay in rainfall onset is simulated in these

areas, projections for an early cessation of seasonal

rains suggest a contraction of the rainfall season. Far-

ther north, in zone V (northern Mozambique, Zambia,

and Malawi), MAM precipitation is expected to increase

by ;10%. A shift in the rainfall season to later months

is implied. Little or no change in MAM precipitation

FIG. 3. Projected changes (%) in austral (a) spring (Sep–Nov) and (b) autumn (Mar–May) mean daily precipitation rates

in each climatic zone. In each case, three values are plotted. The middle number gives the mean projected change preceded

by its sign (1ve for increase and2ve for decrease). The number above (below) the mean change, preceded by a1ve (2ve)

sign, gives the distance to the upper (lower) critical value at the 5% level of significance. Projected changes significant at the

5% (1%) level are shaded in gray (shown by two asterisks). For statistically significant changes, the number of CGCMs (out

of 12) projecting a change of the same sign as the mean change is enclosed in parentheses.
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is projected in eastern South Africa, which implies a

shortening of the rainy season.

b. Changes in mean and extreme summer
precipitation rates

Figure 4 displays probable changes in summer (DJF)

precipitation rates. There is evidence for a dipole pat-

tern of change in mean precipitation rates (Fig. 4a).

The negative pole is found to the western parts fea-

turing the arid Kalahari and its boundaries (zone I).

Here, the projected reduction in DJF mean precipi-

tation rates (;11%) is significant at the 1% level. Far-

ther north, in the positive pole (zone V), the simulated

changes, albeit subtle (;4%), are significant at the

5% level. Separating the dipole is a large area to the

east (zones II, III, and IV) with no significant changes

in mean DJF precipitation rates. The presence of a

dipole precipitation response to large-scale forcing

(e.g., El Niño; Ropelewski and Halpert 1987) has been

found at interannual time scales. Its appearance here

suggests that the climate change signal propagates into

the southern Africa precipitation field through similar

pathways (e.g., the tropical Indian Ocean SST pathway,

Goddard and Graham 1999; Washington and Preston

2006).

Over the western parts of the subregion, 10-yr driest

seasons are projected to increase their severity by more

than 10% (Fig. 4b). These projections are significant at

the 5% level. More severe droughts are also projected

to the south of Zimbabwe and Mozambique. Albeit

high in magnitude (averaging ;20%), these projections

are not statistically significant. Elsewhere in the region,

the models give little or no indications for a possible

change in 10-yr driest events. Anomalous westerly cir-

culations over the southeast Atlantic Ocean have

been blamed for past droughts in much of southwest-

ern Africa (Mulenga et al. 2003). The anomalous cir-

culation patterns are related to the structure of the

tropical–temperate cloud bands (Todd and Washington

1999). We postulate that these mechanisms might be

present with similar consequences in the future climate.

We shall return to this point in section 4b.

Subtle but generally significant increases in 10-yr wet-

test events are found in eastern South Africa and farther

north in northern Zambia, Malawi, and Mozambique

(Fig. 4c). In the north, the magnitude of these changes

average ;10%. A slight and insignificant decrease in

the intensity of 10-yr wettest events is projected in the

western parts of southern Africa (Botswana and west-

ern South Africa: zone I). Elsewhere in the east (zones

III and IV), subtle and insignificant increases are found.

In the southern and eastern parts of the study area,

flooding has often occurred from short-duration meso-

scale events such as depressions (e.g., Rouault et al.

2002) and cutoff lows and by landfalling west Indian

Ocean tropical cyclones (e.g., Reason and Keibel 2004;

Reason 2007). While there are indications of possible

changes in the intensity of the 10-yr wettest events, poor

representation of small-scale systems (e.g., tropical cy-

clone activity) in CGCMs limit the confidence we have

in these projected changes. The northern areas (zone V)

are least affected by west Indian Ocean tropical storms.

In these regions, wettest seasons are associated with

prolonged sequences of wet days, which are dependent

on the mean location and strength of large-scale con-

vection. The projected changes in these regions are

therefore more reliable.

The observed (1901–2000) and simulated (1901–2100)

DJF precipitation time series for each zone are displayed

FIG. 4. As in Fig. 3, but for austral summer (Dec–Feb): (a) mean precipitation rates, (b) 10-yr driest events, and (c) 10-yr wettest events.
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in Fig. 5. In these plots, high frequency variability has

been filtered out using a 10-yr running mean. Without

exception, low frequency modes of variability have

dominated southern African rainfall during the last

century. Such low-frequency rainfall fluctuations char-

acterized by ;18 yr cycle have long been noted in

southern African climate variability (Tyson et al. 1975).

Decadal variability is seen to continue in the future al-

though the spread in the model projections increases.

Unlike here, where the models are equally weighted,

the outliers [e.g., the GCM3.1 (T47) and Centre Na-

tional de Recherches Météorologiques Coupled Global

Climate Model, version 3 (CNRM-CM3) models for

DJF] causing the observed large spread are down-

weighted by the Bayesian method in Figs. 3, 4, and 7. In

most cases, the Bayesian weighting reduces the spread

by more than a factor 2. Notwithstanding the large

spread, some future patterns emerge. A notable upward

trend is projected by a large fraction of the multimodel

ensemble over northern Zambia, Mozambique, and

Malawi (Fig. 5e). This upward trend is steeper after 2050.

A similar albeit weaker trend is simulated in eastern

South Africa (Fig. 5b). On the other hand, a tendency

for drier seasons is projected in western Botswana and

South Africa (Fig. 5a), particularly toward the end of

the present century. In this subregion, the drying is

stronger in the twenty-second century (not shown).

Apart from the late onset and early cessation sig-

nals (Fig. 3), internal decadal variability of rainfall in

southern Africa remains large and is likely to mask any

systematic changes in the total rainfall up to at least

2050.

FIG. 5. Southern Africa 10-yr running mean filtered DJF pre-

cipitation anomalies (standard deviations; s) based on the 1961–

90 observed and individual model climatologies. The series spans

the 1901–2100 period. Vertical lines terminated by circles show

the observed twentieth-century anomalies calculated from CRU

datasets. The white line shows the multimodel ensemble mean

simulation, with the darker and lighter gray shadings indicating

50% ([q0.25, q0.75]) and 95% ([q0.025, q0.975]) of the distribution,

respectively.
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4. Projected changes in atmospheric
large-scale features

Given the statistical significance of the projected

precipitation changes presented in foregoing sections,

an important question is whether associated atmo-

spheric anomalies can be identified. Previous studies

that have reported on atmospheric (Mulenga et al. 2003)

and oceanic anomalies (e.g., Rocha and Simmonds

1997a) associated with southern African precipitation

anomalies. Motivated by these findings, we expect that

atmospheric adjustments to perturbed radiative forcing

will set up anomalous circulation, hence precipitation,

patterns.

In a vast majority of studies, sea surface temperature

(SST) anomalies in the tropical oceans (remote and

adjacent) have been blamed for southern African sea-

sonal rainfall anomalies by generally locking atmo-

spheric flow patterns into particular regimes (Rocha

and Simmonds 1997b; Cook 2001). SST anomalies in the

subtropical oceans are also very important for southern

Africa (Reason and Mulenga 1999; Behera and Yama-

gata 2001; Reason 2002). However, the correlation of

African rainfall with SST is less than 0.4 almost every-

where, implying that a large percentage of rainfall var-

iance is due to other sources. There is growing evidence

that the land surface can also exert an influence (op-

posing or reinforcing), mainly through feedback mech-

anisms (Douville et al. 2001; Douville 2002; Cook et al.

2006).

We postulate that the climate change signal will be

communicated to the precipitation field through other

components of the climate system (e.g., the ocean or land

surface) and/or through an alteration in spatial structure

and strength of atmospheric circulation regimes. These

would in turn influence atmospheric moisture charac-

teristics. Our hypothesis therefore is that future climate

shifts will resemble interannual and decadal variability.

On these premises, model results of flow patterns that

would potentially influence rainfall anomalies in south-

ern Africa are discussed. Smaller samples than in the

foregoing sections are dictated by availability and/or

quality of reanalysis fields used to make comparisons

with model output. For daily model output, only shorter

time slices (of about 20 years) are available on the

PCMDI archive.

a. Future moisture characteristics in spring

The reduction in spring precipitation is indicative of

a delay in the rainfall onset over almost the entire

southern African region. A trend toward a later onset

has been found in the late twentieth century over parts

of southern Africa (Tadross et al. 2005). Our results

show that these decreases are likely to continue in the

future climate (2051–2200).We have shown here that an

early cessation is likely in many parts of the study re-

gion. Motivated by the spatial coherence in the simu-

lated changes, and by similar reasons as Tadross et al.

(2005), the focus will be placed only on the SON season.

SON lower-tropospheric (below 500-mb pressure

level) horizontal moisture flux anomalies, Q9, across
southern Africa and the adjacent oceans have been

calculated using daily CGCM simulations of specific

humidity and the wind vector. This quantity is defined as

Q9 5
1

g

ðpb
pt

hqVi
f
& hqVi

c
dp, (2)

where g is acceleration due to gravity, q is specific hu-

midity, and V the wind vector. The integral is taken

from the 1000-mb (pb) to the 500-mb (pt) pressure level.

Angle brackets denote the time mean for future ( f ) and

current (c) climate, here defined as the 1961–80 period.

Positive SON precipitation anomalies (implying an

early onset) occur more frequently around the latter

years of the 1961–80 period, consistent with Tadross

et al. (2005). Using this reference period should give an

insight on the likely change in water vapor transport

across southern Africa. We also compute anomalous

moisture divergence, that is, $ %Q9.
Composite moisture transport fields for the driest

minus wettest SON seasons are computed for each

CGCM 1961–2000 simulation and displayed in the first

column of Fig. 6. A dry (wet) season is defined whenever

the amplitude of the first principal component stan-

dardized time score is less than (exceeds) one standard

deviation. The composites are compared with the future

(2046–65 and 2081–2100) moisture flux anomalies (sec-

ond and third column of Fig. 6, respectively).

Evident in the composites are strong anomalous fluxes

whereby moisture transported along the trades from the

west Indian Ocean (north of ;208S) is diverted north

toward East Africa or is divergent (gray shading). To the

south, the climatological onshore moisture transport is

weakened or reversed. The CGCM dry anomalies are

broadly similar with those computed from National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) reanalysis

fields (not shown).

A selection of projected moisture flux anomalies is

displayed in the last two columns of Fig. 6. The results

from other models are broadly similar. A pattern of

anomalousmoisture divergence is found over a large part

of the study region in most models. Furthermore, the

anomaly patterns are characterized by well-organized

anticyclonic anomalies over much of southeastern
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FIG. 6. SON lower-tropospheric horizontal moisture flux anomalies (kg m21 s21). For each model (name given in the title),

the first column displays composites of the driest minus wettest SON seasons during the 1961–2000 period. The middle and

right columns show the 2046–65 and 2081–2100moisture flux anomalies with respect to the 1961–80 period. Areas of moisture

anomalous moisture divergence are shaded gray. Southern Africa (Fig. 1) is the land area in the dashed rectangular box.
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Africa. Strong anomalous northwesterly moisture fluxes

are found over the southwestern flank of the subtropical

Indian Ocean anticyclone. This is indicative of a sub-

stantial weakening ofmoisture advection from the Indian

Ocean into the subcontinent along the southeastern coast

in future austral spring seasons, consistent with reduced

precipitation. Westerlies from the southeast Atlantic are

known to be cold and dry (due to cold waters and less

evaporation; Mulenga et al. 2003). These are similar to

the ones in the first column, showing that, indeed, the

patterns of climate change resemble those of interannual

and decadal variability in this respect.

It is quite likely that lower-tropospheric westerly

anomalies along the southern latitudes in the models

are dynamically coupled to a significant strengthening

and equatorward expansion of the climatological upper-

tropospheric westerlies associated with the Southern

Hemisphere subtropical jet (SHSTJ). A striking simi-

larity in the pattern of change in strength and latitudinal

extent of the spring SHSTJ across the models used here

has been found (not shown). Our results show that the

boundary of the climatological westerly flux is likely to

shift equatorward in future springs. In the western In-

dian Ocean north of ;108S, the easterly monsoonal

circulation carrying moisture gains a southerly compo-

nent that diverts moisture into East Africa close to the

equator. These are similar to the ones in the first column,

showing that climate change patterns resemble those of

interannual and decadal variability. From this one may

draw two conclusions: First, dry spring seasons in the

models (and in observations) are unambiguously gen-

erated by weaker lower-tropospheric moisture trans-

port inland. Second, large-scale circulation changes,

whereby moisture influx into southern Africa is sub-

stantially reduced (i.e., a decrease in moisture flux

convergence), are a possible cause for the late rainfall

onset in the future.

Surface and boundary layer processes would be an-

other potential forcing mechanism for delayed rainfall

onset. Evidence in support of drier winters in southern

Africa in the future climate is presented in Fig. 7, con-

sistent with previous findings (Solomon et al. 2007).

Everywhere in the southern African domain, a statisti-

cally significant (at the 1% level everywhere but 5%

level to the north) reduction in winter precipitation is

simulated. The mean reduction in winter precipitation

ranges from just under 20% to ;45%. Based on these

projections, the delay in rainfall onset could in part be

attributable to a drier land surface from the previous

winter. Preseason anomalously wet soils have been

identified to be a precursor to early seasonal rainfall

onset (Reason et al. 2005). Reduced local evaporation

and weaker lower-tropospheric moisture advection would

possibly work in concert to delay the rainfall onset

in southern Africa. However, moisture advection is a

more significant source over most of southern Africa in

spring as recycling ratios have been found to be low

(Trenberth 1999). We note that a negative feedback

mechanism whereby wetter soils would result in a con-

current net reduction in summer precipitation over

southern Africa has been presented (Cook et al. 2006).

A similar argument (negative feedback) whereby re-

duced local moisture recycling led to enhanced moisture

advection and precipitation in some parts of southern

Africa has been presented for the summer (November–

February) 1998/99 season (New et al. 2003).

b. The tropical–temperate trough system

A seasonal northwest–southeast-oriented cloud band

across southern Africa, stretching from the southeast

Atlantic to the southwest Indian Ocean, has been identi-

fied as the major rainfall-bearing system during austral

summer months (Kuhnel 1989). This feature, associated

with a tropical–temperate trough (TTT) coupling sys-

tem (Washington and Todd 1999), links tropical con-

vection to midlatitude transient eddies and provides a

mechanism for energy and moisture transport across

the southern African middle troposphere (Todd et al.

2004). Owing to the important implications for southern

Africa summer precipitation, using the daily model

FIG. 7. As in Fig. 3, but for austral winter (Jun–Aug) mean

precipitation rates.
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precipitation simulations for the 2046–65 and 2081–2100

time slices, the likely behavior of this system is investi-

gated.

The principal spatial mode of southern African DJF

precipitation variability in the model simulations is iden-

tified from their empirical orthogonal functions (EOFs)

(van den Dool 2007). The correlation matrix forms input

into the EOF analysis. Consistent with Washington and

Todd (1999), the spatial modes, while broadly similar in

each summer month, are not identical. In the interest of

brevity, we present the results for the leading January

(center of the principal rainy season) unrotated EOFs and

for a selection of models. Varimax-rotated EOFs have

also been calculated. However, contrary to what one

would expect from Buel patterns, the unrotated EOFs do

not show uniform centered loadings of the same sign.

The first EOF loadings, expressed as the correlation

(3 100) between their coefficient time series and the

CGCM time series for each grid, are shown in Fig. 8.

The EOF spatial fields are characterized by a north-

west–southeast orientated dipole or tripole pattern.

Evident in the spatial fields are loadings of opposite

signs between locations south of the latitudinal band

about 158–208S and those farther north and the south-

west Indian Ocean. As expected, intermodel differences

in the spatial extent and magnitudes of the EOF weights

exist. Notwithstanding, the spatial patterns of simulated

rainfall variability are broadly similar to those found in

observations and coincide with preferred locations of

the TTT (Washington and Todd 1999). The location of

TTT, related to the south Indian Ocean convergence

zone (SICZ), has been found to respond to ENSO-

related SST anomalies (Cook 2000), particularly to west

Indian Ocean SST forcing (Goddard and Graham

1999). The presence of this pattern of rainfall variability

in the CGCM simulations suggests that the climate

change signal might propagate into southern African

precipitation through similar pathways as those com-

municating the interannual variability forcing.

Having realized that the models adequately capture

the major rain-bearing system across southern Africa,

the most relevant question for the present study is how

frequent and persistent would the TTT be over the band

of preferred locations? This would attempt to explain

the dipole response in mean and extreme DJF precipi-

tation (cf. Fig. 4) between the southwestern and north-

ern areas of the domain (zones I and V, respectively).

We endeavor to answer this question using the first EOF

temporal coefficients displayed in Fig. 9. Positive stan-

dardized scores are indicative of periods when the TTT

relocates northeastward (positive EOF weights in

Fig. 8), and vice versa for negative scores (i.e., south-

westward relocation). In a majority of cases, within each

given January, the TTT propagates from the western

pole northeastward into the southwest Indian Ocean.

In a number of cases, the tropical–temperate rainband

maintains its eastern locations throughout the month

and in consecutive years. The presence of low frequency

variability notwithstanding, there are indications for a

higher frequency of positive scores in the Meteorolog-

ical Research Institute (MRI) Coupled General Circu-

lation Model, version 2.3.2 (CGCM2.3.2a) and Geo-

physical Fluid Dynamics Laboratory (GFDL) Climate

Model version 3.1 (CM3.1) CGCMs (histograms not

shown). However, the absence of a notably higher fre-

quency in the other models inhibits us from drawing

firm conclusions from our analysis.

5. Discussion and conclusions

The present study uses monthly data from the CMIP3

multimodel dataset to estimate likely changes in south-

ern Africa precipitation. We have chosen model pro-

jections driven by the intermediate SRES A1b scenario,

a standard emission scenario in which no drastic reduc-

tion of CO2 emissions up to 2100 exists, after which the

levels stay constant. This scenario has been chosen be-

cause it is realistic and offers 100 or 200 years of inte-

grations with constant greenhouse gas levels at twice the

preindustrial values. Based on the model projections, we

have been able to estimate the likely change in intensity

of mean and extreme precipitation at much smaller

spatial scales than in previous studies. Within southern

Africa, spatial inhomogeneities in the projected changes

exist. The inhomogeneities are explained by the highly

variable local forcing, modulating the large-scale signal.

This is despite the fact that accurate representation of

land surface features in the low-resolution models used

here has not been achieved yet.

The uncertainty associated with these projections has

been presented. Regions where and periods during which

the modeled changes in precipitation show notable sim-

ilarities between the GCMs have been identified, as well

as regions where (and seasons when) marked differences

are found. The similarity and spatial coherence of the

modeled response to enhanced greenhouse gas forcing

suggest a realistic and robust climate change signal. On

the other hand, uncertainties characterize those regions

where divergences in the modeled precipitation response

are found as well as where systematic biases in the

modeled twentieth-century climate exist. Such cases

manifest in the form of a wide range of the projected

changes.

A delay in rainy season onset has been found in

southern Africa. We have identified two factors that are

likely to contribute to this: First, a reduction in moisture
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influx into southern Africa. We have shown here that

projected patterns of moisture transport are anomalously

divergent over much of southern Africa. To the north

flank of the south Indian Ocean anticyclone moisture

is transported northwestward into East Africa. Over

the southeastern parts, a reduction in moisture flux from

the southwest Indian Ocean is found. Climate features

forcing the large-scale circulation, and hence water

FIG. 8. January CGCM simulated precipitation EOF weights for the leading mode. For each

model (name given in the title), the EOF weights for the 2046–65 and 2081–2100 January

precipitation are given in the first and second columns, respectively.
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vapor transport changes, deserve further research at-

tention. Second, preseason soil moisture deficits re-

sulting in reduced local evaporation. Despite the low

spring moisture recycling found in observations and

modeling results showing a negative feedback from the

land surface (soil moisture anomalies) in summer, drier

soils would potentially reinforce lack of moisture for

precipitation in future austral spring seasons.

In many parts of southern Africa, an early cessation of

the rainy season is found. Possible causes of the earlier

withdrawal of seasonal rains have not been investigated

in this paper. This is a subject for future research. Our

results point to a possible contraction in the rainfall

season in locations south of about 158S. To the north,

the rainy season is projected to shift to later months

(i.e., a late start and a delayed cessation).

Mean summer precipitation rates are projected to

decrease near the hyperarid and semiarid areas of

southern Africa (zone I). Over these areas, the severity

of future droughts is projected to increase. North of

about 158S, mean summer precipitation is projected to

increase. Although no causal relationship is implied,

more frequent west Indian Ocean positioned tropical–

temperate cloud bands are consistent with a reduction

in summer precipitation rates and more severe droughts

to the southwest.

Wet events are projected to become more intense to

the north and southeast. To the north, this is consistent

with more prolonged wet spells from persistent con-

vective activity related to the TTT. The increase in the

intensity of wettest events to the southeast is in quali-

tative agreement with Hewitson and Crane (2006).

These increases in wet extremes may exacerbate the rise

in reported flood disasters in the region. We note,

however, that future projections of wettest events are

less trustworthy owing to the inability to accurately

simulate small-scale disturbances such as west Indian

Ocean tropical cyclone activity in most models.

In general, the pattern of summer precipitation change,

in particular coupled with increasing temperatures, may

result in an eastward extension of desert areas in south-

ern Africa, water scarcity, reduced agricultural produc-

tivity, and increased risks of food insecurity and famine.

Not only is desertification a potential impact of global

warming in southern Africa, but shorter growing seasons

are possible consequences in a large area.
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APPENDIX A

Methodology Used in Extreme Value Analysis

The peak-over-thresholdmethod or generalized Pareto

distribution has been used as the extreme value model

in this study. We follow the approach described by

Coles (2001). In this approach, a threshold intensity u is

determined a priori. The data exceeding the threshold

(z: z . u) are then fitted to a GPD, defined as

G(z; s, j, u)5
1& 11

j(z&u)

s

1 0&1/j

, j 6¼ 0

1& e&(z&u)/s, j5 0,

8><>:
(A1)

where s. 0 and j are the scale and shape parameters of

the distribution, respectively, such that

11
j(z& u)

s
. 0.

This distribution gives the probability that a random

variable z is higher than a high value conditional on it

exceeding the predefined threshold u.

In this study, we set the threshold to the 80th per-

centile for the wet extremes to ensure an adequate

number of excesses and a sufficiently small variance in

the estimated model parameters. For dry extremes, the

data are subjected to a negative transformation, and the

excesses are defined analogously. For climate models

with m integrations, each ensemble member is con-

sidered as an independent realization. The ensemble

members are then concatenated to form a larger sam-

ple. This specification has allowed m 3 20 (m 3 30)

exceedances in the control (future) climate record of

100 (150) years. However, in certain cases, notably

when m . 1, the quality of the GPD fit, as assessed

using an Anderson-Darling test (see below), was poor.

Guided by the mean residual life plot (Coles 2001),

the threshold was then adjusted to improve the quality of

the fit.

The GPD parameters (i.e., a and j) have been esti-

mated using maximum likelihood. The estimated pa-

rameters are then used to in the quantile function used

to calculate the return level zp. The return level zp is

that level which has probability p of being exceeded in a

given year, or, defined differently, the level likely to be

exceeded once every 1/p years. Based on Eq. (A1), it is

given by

z
p
5

u1
s

j
[(pz

u
)j & 1], j 6¼ 0

u1slog(pz
u
), j5 0.

8<: (A2)

The quantity zu gives the probability of exceeding the

predefined threshold and has a variance approximately

zu(1 2 zu)/n. This follows from the argument that in a

sample of size n, the number of threshold exceedances

(nu) has a binomial distribution [i.e. nu ; bin(n, zu)].

The uncertainties in the estimates of zu ’ nu/n, s, and j

are incorporated in estimating the uncertainty associ-

ated with the estimate of zp. This is achieved using the

variance–covariance matrix for (zu, s, j), given by

V5

var(z
u
) 0 0

0
›2l(u)

›s2

›2l(u)

›s›j

0
›2l(u)

›s›j

›2l(u)

›j2

26666664

37777775. (A3)

Here y125 y21 5 cov(zu, s); y31 5 y13 5 cov(zu, j); y23 5
y32 5 cov(s, j); y22 5 var(s); y33 5 var(j). In each case,

the partial derivatives of the likelihood function [l(u)]

are evaluated at the estimated GPD parameters.

The standard error in the estimate of zp is obtained

from the square root of var(zp), given by

var(z
p
)5

›z
p

›z
u

,
›z

p

›s
,
›z

p

›j

/ .T var(z
u
) 0 0

0
›2l(u)

›s2

›2l(u)

›s›j

0
›2l(u)

›s›j

›2l(u)

›j2

2666664

3777775
›z

p

›z
u

,
›z

p

›s
,
›z

p

›j

/ .
. (A4)
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The 100(1 2 a)% confidence interval of zp is then

expressed as

z
p
6Z

a/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(z

p
)

q
, (A5)

where Za/2 is the (1 2 a/2)% point of the standard

normal distribution. The return levels estimated from

this approach have Gaussian likelihoods, which con-

forms with the requirement of the Bayesian multimodel

ensembling method used in this study (see Tebaldi et al.

2005).

APPENDIX B

Goodness-of-Fit Tests

Prior to estimating the return level zp, Anderson-

Darling goodness-of-fit tests have been performed. In

this test, a quadratic measure of the discrepancies be-

tween the fitted and empirical cumulative distribution

functions (CDF), weighted by [G(z)(1 2 G(z))]21 is

expressed as

A2 5n
u

ðz
n u

z:z.u

[G
n
u
(z)&G(z)]2[G(z)(1&G(z))]&1dG(z).

(B1)

In this way, discrepancies occurring at the tails are

weighted more than those in the central part of the

distribution. The empirical CDF G
nu
(z) is calculated

using

G
n
u
(z)5

0, z,u

i

n
u

, z
i
# z, z

i11
, i5 1, . . . ,n

u
& 1

1, z5 z
n
u
,

8>>>><>>>>:
(B2)

Conventionally, the test statistic is estimated by

A2 5&n
u
&!

n
u

i51

2i& 1

n
u

[logG(z)1 log(1&G(z
n
u
11&i

))].

(B3)

The null hypothesis—that the data exceeding the

predefined threshold (u) has a generalized Pareto

distribution—is rejected whenever the test statistic

value exceeds the critical value at the specified level of

significance (i.e., one-sided test).
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