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Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly

correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the

system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock

theory captures the essential physics of many kinds of strong correlations via symmetry breaking and

restoration. In this work, we combine and try to retain the merits of these two methods by applying

symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature

of states resulting from the application of symmetry projection operators furnishes particle-hole

excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we

provide a solution via a disentanglement framework theory that can be approximated rigorously

and systematically. Results of projected coupled cluster theory are presented for molecules and the

Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster

theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces

to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-

Fock. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4991020]

I. INTRODUCTION

Single-reference coupled cluster (CC) theory1–5 is often

considered the gold standard of quantum chemistry. While

relatively expensive, coupled cluster with single and dou-

ble excitations (CCSD) is affordable on systems of moderate

to large size, and adding a perturbative correction for triple

excitations leads to results which, for a weakly correlated sys-

tem, are generally within chemical accuracy at polynomial

cost—O(N6) for CCSD and O(N7) with perturbative triple

excitation corrections, where N is some measure of system

size.

Unfortunately, single-reference coupled cluster’s reputa-

tion is tarnished somewhat by its inability to describe strongly

correlated problems with more than a few strongly correlated

electrons. Active space coupled cluster methods are of some

help here, but are not a panacea, and in general, systems with

many strongly correlated electrons cannot readily be described

by symmetry-adapted coupled cluster techniques.

To remedy this problem, we are often forced to use a

broken-symmetry mean-field reference such as unrestricted

Hartree-Fock (UHF) so that both the reference determinant

and indeed the coupled cluster wave function lack some or

perhaps all of the symmetries of the exact wave function. In

the thermodynamic limit, this symmetry breaking is in fact

real and physical, but for finite systems, it is artificial and

should be avoided. The practical result is that while symmetry-

broken coupled cluster may be energetically accurate, the loss

of symmetry can yield poor results for properties other than

total energies.

At the mean-field level, one can obtain the energetic ben-

efits of symmetry breaking in a symmetry-adapted picture by

using the projected Hartree-Fock (PHF) method.6–10 The idea

of PHF is simple enough. One allows symmetry breaking in

the mean-field and then projects the broken-symmetry deter-

minant back onto the correct symmetry. This can be accom-

plished by writing the PHF wave function as a relatively short

linear combination of degenerate and non-orthogonal broken

symmetry determinants obtainable from one another by a sym-

metry rotation operator. PHF is a black-box technique without

the necessity of picking active orbitals. Furthermore, it pos-

sesses an underlying reference determinant—in fact, a whole

manifold of them—which in principle allows for combination

with single-reference coupled cluster theory.

Ideally, we would like to combine PHF and coupled clus-

ter, and we have made several attempts to do so.11–16 In our

previous work, we have written the projected Hartree-Fock

wave function in terms of particle-hole excitations acting on

a symmetry-adapted reference, in which form we can readily

combine PHF with fairly traditional symmetry-adapted cou-

pled cluster theory. In this work, we take a complementary

approach and work in the symmetry-broken picture. The idea

is to simply carry out the symmetry projection of a broken-

symmetry coupled cluster wave function. We will focus on

spin symmetry in this manuscript because it is the symme-

try that spontaneously breaks in molecular systems, but the

basic framework is more general. The main challenge for our

projected coupled cluster theory is the non-orthogonality to

which we have previously alluded. Orthogonal determinants,

differing by particle-hole excitations, lose their orthogonality

after the symmetry rotation, but many of the simplifications

of traditional coupled cluster theory rely on this orthogo-

nality. Practical approximations require some way of either

evaluating or truncating the overlaps between non-orthogonal

states. In this manuscript, we do so by what we call disen-

tangled cluster operators. This formalism permits us to work
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with orthogonal particle-hole excitations and thereby trun-

cate projected coupled cluster in a systematic way due to

the decay of the disentangled cluster operators with excitation

rank.

The projected coupled cluster (PCC) theory introduced in

this manuscript has some good features. If the cluster opera-

tors are set to zero, it reduces to PHF. If the projection operator

is disregarded, it reduces to broken symmetry coupled clus-

ter theory. In between, we have a theory with particle-hole

excitations to all orders; this is the result of disentangling the

action of symmetry projection and broken-symmetry coupled

cluster but is a model that can be rigorously approximated

by truncation, very much in the spirit of traditional coupled

cluster theory. Just as the size-extensive component of the

PHF energy is that of the symmetry-broken mean-field, the

size-extensive component of the PCC energy is that of the

symmetry-broken coupled cluster. However, PCC reduces to

broken symmetry coupled cluster at a much slower rate than

PHF reduces to broken symmetry Hartree-Fock. Moreover, it

should not be forgotten that the PCC wave function has cor-

rect symmetry. While the size-extensive energetic component

of PHF is the same as broken-symmetry mean field (though

there is also a size-intensive component independent of sys-

tem size in the thermodynamic limit10), the wave functions are

different.

Previously, Duguet proposed a symmetry broken and

restored coupled cluster theory.17 We have borrowed some

concepts and nomenclature from his paper, but these two

approaches are very different, as we shall examine below in

more detail. Schlegel18 pointed out that unrestricted CCSD

(UCCSD) eliminates the first spin contaminant and He and

Cremer19 eliminated the next spin contaminant from UCCSD

using Löwdin’s spin projection operator;6 here, we eliminate

all contaminants at once by using the more convenient inte-

gral representation of the spin projection. Earlier this year,

Tsuchimochi and Ten-no20 provided results for projected lin-

earized coupled cluster doubles in a variation after projection

scheme, while here we tackle projecting the entire coupled

cluster doubles theory.

II. BACKGROUND

Before we can discuss the basic formulation of our

symmetry-projected coupled cluster theory, we briefly review

both traditional coupled cluster theory and symmetry projec-

tion to establish some basic concepts. Readers familiar with

these ideas may freely skip Secs. II A and II B, though we do

use them to establish our notation.

A. Traditional coupled cluster theory

In coupled cluster theory, the ground-state wave function

|Ψ〉 is approximated by the exponential ansatz

|Ψ〉 = eU |φ〉 , (1)

where |φ〉 is a single determinant and where U is an exci-

tation operator. Inserting this wave function ansatz into the

Schrödinger equation yields

H eU |φ〉 = E eU |φ〉 (2)

and leads to energy and amplitude equations

E = 〈φ|H eU |φ〉 , (3a)

0 = 〈µ| (H − E) eU |φ〉 , (3b)

where |µ〉 is an excited determinant. So-called unlinked terms

appear in the foregoing equations but cancel out.21

Coupled cluster theory is not conventionally described

as we have done. More commonly, one multiplies both

sides of Eq. (2) by exp(−U) to get a similarity-transformed

Schrödinger equation

e−U H eU |φ〉 = H̄ |φ = E|φ〉 , (4)

where generically the operator Ō means

Ō = e−U O eU . (5)

Now the energy and amplitudes defining U are obtained from

E = 〈φ| H̄ |φ〉 , (6a)

0 = 〈µ| H̄ |φ〉 . (6b)

The energy and amplitude equations, Eqs. (6), together

imply that |φ〉 is a right-hand eigenstate of H̄. Since H̄ is

non-Hermitian, its left-hand eigenstate 〈L | is not the adjoint

of its right-hand eigenstate, and we can parametrize it in a

configuration interaction-like way, as

〈L | = 〈φ| (1 + Z) , (7)

where Z is an excitation operator acting to the left and thus

a de-excitation operator acting to the right. As the left-hand

eigenstate, we can solve for Z by demanding that

〈φ| (1 + Z) H̄ = E 〈φ| (1 + Z) . (8)

With a little effort, one can show that Eqs. (6) and (8) together

can be summarized as

E = 〈φ| (1 + Z) H̄ |φ〉 =
〈φ| (1 + Z) H̄ |φ〉

〈φ| 1 + Z |φ〉
, (9a)

0 =
∂E

∂Zµ

, (9b)

0 =
∂E

∂Uµ

, (9c)

where Zµ and Uµ are individual amplitudes in the operators

Z and U. If the amplitudes defining U satisfy Eq. (9b), then

for any amplitude Z, the two energies E and E are identical;

otherwise, they may differ significantly. We would argue that

E is the more correct definition of the coupled cluster energy

in general.

We have already noted that Eqs. (6) and (9) yield equiva-

lent formulations of coupled cluster theory. Both are equivalent

to the non-similarity-transformed approach of Eqs. (3), as can

be shown by making use of the facts that

〈φ| e−U
= 〈φ| , (10a)

〈µ| e−U
=

∑

cµν 〈ν | , (10b)

where the coefficients cµν depend on the amplitudes defining U

and where the sum on ν includes determinants of equal or lower
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excitation level to 〈µ|, including the ground-state determinant

〈φ|.
Thus far, we have made no approximations; when U con-

tains all possible excitations, the theory as we have outlined

it is exact. In practical calculations, U and Z must be trun-

cated, and the resultant theories are named according to the

excitation levels retained. For example, the simplest theory

is coupled cluster doubles (CCD) and retains only the double-

excitation parts of U and Z, where CCSD keeps both the single-

and double-excitation parts of U and Z. Typically we truncate

Z at the same level to which we truncate U.

B. Symmetry projection

The basic idea of symmetry projection is straightforward.

From a broken symmetry wave function |ψ〉, the symmetry-

adapted component is simply

|Ψ〉 = P |ψ〉 , (11)

where the projector P is Hermitian and idempotent and

commutes with the Hamiltonian.

Some important symmetries, such as number and spin, are

continuous. For these symmetries, perhaps the simplest way to

write the projector is as an integral over symmetry-generated

transformations,

P =
1

VΩ

∫
dΩ R(Ω) w(Ω), (12)

where R(Ω) is a one-body rotation operator, w(Ω) is the weight

which depends on the eigenvalue being projected onto, and

VΩ = ∫ dΩ is the volume of the space being integrated over.

If the symmetry is discrete, the integration is replaced by a

summation. In practice, the integral is replaced by a weighted

sum over a grid even for a continuous symmetry such as

spin.

Given a projected wave function, one has several options

for extracting the energy. In PHF we use a simple expectation

value, but here we generalize to a biorthogonal expectation

value as is used in coupled cluster theory [cf. Eq. (9a)] because

we will need this form for the projected coupled cluster energy.

In this kind of biorthogonal approach, one might write

E =
〈χ | P† H P |ψ〉

〈χ | P† P |ψ〉
=

〈χ | P H |ψ〉

〈χ | P |ψ〉
, (13)

where 〈χ | is some other broken symmetry wave function and

where we have used the properties of the projection operator. In

view of the integral form of the projection operator, the energy

can be expressed in terms of reduced norm and Hamiltonian

kernels N(Ω) and H(Ω),

N(Ω) = 〈χ | R(Ω) |ψ〉 , (14a)

H(Ω) =
〈χ | R(Ω) H |ψ〉

N(Ω)
, (14b)

E =
∫ dΩ w(Ω) H(Ω) N(Ω)

∫ dΩ w(Ω) N(Ω)
. (14c)

Note that 〈χ | R(Ω) H |ψ〉 is proportional to the norm kernel.

Our primary interest in this work is in spin projection.

While the general case of spin projection is slightly more com-

plicated than what we have outlined above,10 for the special

case of spin projection onto a singlet state, we can write a

projection-like operator as

PS =

∫ 2π

0

dα

2π

∫ π

0

sin(β) dβ

2

∫ 2π

0

dγ

2π
R(α, β, γ), (15)

where the rotation operator is

R(α, β, γ) = e−iα Sz e−i β Sy e−iγ Sz . (16)

This projector simplifies to

PS = Psz=0

∫ π

0

sin(β) dβ

2
e−i β Sy Psz=0, (17)

where Psz=0 is the projector onto eigenstates of Sz with

eigenvalue zero.

When working in the unrestricted framework in which

wave functions are eigenfunctions of Sz but not of S2, the

projector is somewhat simplified. In particular, we can use the

facts that

Psz=0 |ψ〉 = |ψ〉 , (18a)

〈χ | Psz=0 = 〈χ | (18b)

for spin unrestricted wave functions |ψ〉 and 〈χ | to write the

norm kernel, Hamiltonian kernel, and projected energy of

Eqs. (14) simply as

N(β) = 〈χ | e−i β Sy |ψ〉 , (19a)

H(β) =
〈χ | e−i β Sy H |ψ〉

〈χ | e−i β Sy |ψ〉
, (19b)

E =
∫
π

0 dβ sin(β)H(β)N(β)

∫
π

0 dβ sin(β)N(β)
. (19c)

III. PROJECTED COUPLED CLUSTER THEORY

Now that we have reviewed the background material, we

are in a position to introduce our projected coupled cluster

theory. In this section, we make no approximations other than

the truncation of the cluster operator. As we shall see, the

exact theory is computationally too cumbersome for practical

use, and we will introduce computationally tractable approxi-

mate versions in Sec. IV. These approximations are motivated

by the smallness of the cluster amplitudes in broken symme-

try coupled cluster and afford truncation in the same spirit as

traditional single-reference coupled cluster theory.

A. Theory

The basic idea of our projected coupled cluster (PCC)

theory is simple: the symmetry-adapted wave function |Ψ〉
is obtained by projecting a broken-symmetry coupled cluster

wave function as

|Ψ〉 = P eU |φ〉 . (20)
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Just as for traditional coupled cluster, the PCC energy and

amplitude equations are derived by inserting the wave function

ansatz into the Schrödinger equation to get

E =
〈φ| P H eU |φ〉

〈φ| P eU |φ〉
, (21a)

0 = 〈µ| P (H − E) eU |φ〉 , (21b)

where 〈µ| is an excited determinant. We have used the fact that

H and P commute.

Alternatively, one could set up a similarity-transformed

approach that requires similarity transformations of both the

Hamiltonian and the projection operator. Starting from the

Schrödinger equation

P H eU |φ〉 = E P eU |φ〉 , (22)

we multiply on the left by exp(−U) to obtain

e−U P H eU |φ〉 = E e−U P eU |φ〉 (23)

or equivalently

P̄ H̄ |φ〉 = E P̄ |φ〉 . (24)

Recall that H̄ is the similarity-transformed Hamiltonian [cf.

Eq. (5)], while P̄ is the similarity-transformed projection

operator. The energy and the amplitudes defining U are then

E =
〈φ| P̄ H̄ |φ〉

〈φ| P̄ |φ〉
, (25a)

0 = 〈µ| P̄
(

H̄ − E
)

|φ〉 . (25b)

Furthermore, by parameterizing the left-hand state as in tra-

ditional coupled cluster theory, one can introduce the PCC

analog of the traditional coupled cluster energy functional, in

terms of which the energy and amplitude equations are

E =
〈φ| (1 + Z) P̄ H̄ |φ〉

〈φ| (1 + Z) P̄ |φ〉
, (26a)

0 =
∂E

∂Zµ

, (26b)

0 =
∂E

∂Uµ

. (26c)

Just as in traditional coupled cluster, one can show that all three

formulations are equivalent, though it is important to note that,

also as in traditional coupled cluster, we have E = E only when

the cluster operator U satisfies the amplitude equations.

Traditional coupled cluster theory finds it convenient to

work with the similarity-transformed approach because the

similarity transformation of the Hamiltonian naturally termi-

nates at O(U4), a consequence of the Hamiltonian being a

two-body operator. The projection operator, however, is an N-

body operator, and its similarity transformation therefore does

not terminate in a convenient way. Accordingly, we find it sim-

pler to work in the formalism of Eqs. (21). Of course one could

truncate the commutator expansion of P̄ manually, though so

far we have considered only the approximation P̄ ≈ P. This

approximation leads to results of significantly lower quality,

so we will not discuss them.

While the similarity transformation of P is cumbersome

and essentially precludes the use of the similarity-transformed

approach as it is traditionally expressed, we will find the need

to evaluate the biorthogonal energy E from time to time. To

facilitate this, we define

〈φ| (1 + Z) e−U
= 〈φ| Z̃ , (27)

where Z̃ is a modified excitation operator when acting to the

left and contains a component which creates no excitations.

This is essentially a consequence of Eqs. (10). To give a con-

crete example, when U and Z contain only single and double

excitation operators, we may write

Z̃2 = Z2, (28a)

Z̃1 = Z1 − (Z2 U1)cd, (28b)

Z̃0 = 1 − (Z1 U1)cs − (Z2 U2)cs +
1

2

(

Z2 U2
1

)

cs
, (28c)

where the subscripts “cd” and “cs,” respectively, mean the

connected de-excitation part and the connected scalar part. In

terms of Z̃ , we may write the biorthogonal energy as

E =
〈φ| Z̃ P H eU |φ〉

〈φ| Z̃ P eU |φ〉
=

∑

ν Z̃ν 〈ν | P H eU |φ〉
∑

ν Z̃ν 〈ν | P eU |φ〉
, (29)

where Z̃ν are the amplitudes defining the operator Z̃ and where

the summation over ν includes the reference determinant 〈φ|
as well as excited determinants.

Our basic formulation is agnostic as to the precise way

in which the symmetry projection is carried out. In practice,

we find it most convenient to use the integral representation

outlined in Sec. II B. To do so, we only need to define the

requisite integral kernels, which are

N(Ω) = 〈φ| R(Ω) eU |φ〉 , (30a)

H(Ω) =
〈φ| R(Ω) H eU |φ〉

N(Ω)
, (30b)

Nµ(Ω) =
〈µ| R(Ω) eU |φ〉

N(Ω)
, (30c)

Hµ(Ω) =
〈µ| R(Ω) H eU |φ〉

N(Ω)
. (30d)

From these kernels, we can obtain all quantities needed to

evaluate the projected energy and amplitude equations,

〈φ| P eU |φ〉 =
1

VΩ

∫
dΩ w(Ω)N(Ω), (31a)

〈φ| P H eU |φ〉 =
1

VΩ

∫
dΩ w(Ω)H(Ω)N(Ω), (31b)

〈µ| P eU |φ〉 =
1

VΩ

∫
dΩ w(Ω)Nµ(Ω)N(Ω), (31c)

〈µ| P H eU |φ〉 =
1

VΩ

∫
dΩ w(Ω)Hµ(Ω)N(Ω). (31d)

We should make an important caveat at this point. In tradi-

tional coupled cluster theory, the exponential can be truncated
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in a natural way. Thus, for example, the CCSD equations

require only up to the quadruple excitation part of exp(U).

This is so because we consider states 〈µ| which are no more

than doubly excited, and the Hamiltonian (as a two-body oper-

ator) cannot connect a doubly excited bra state with more

than a quadruply excited ket state. Unfortunately, in projected

coupled cluster, the exponential cannot be so conveniently

truncated due to the presence of the rotation operator R(Ω).

If we imagine defining rotated states as

〈µ(Ω)| = 〈µ| R(Ω), (32)

then even when 〈µ| = 〈µ(Ω= 0)| is doubly excited with respect

to the ground state, 〈µ(Ω , 0)| may have components which

are very highly excited indeed. Section IV discusses how we

circumvent this difficulty.

B. Results

Thus far we have been as general as possible. Our PCC

theory can be combined with any symmetry projection, and

if the cluster operator is not truncated, it provides the exact

ground-state wave function. Here, we provide results for the

special case of spin-projected unrestricted coupled cluster with

single and double excitations (SUCCSD) and consider only

projection onto a spin singlet. We have adapted a full config-

uration interaction code to do SUCCSD calculations, which

limits our exact SUCCSD to small systems. A production ver-

sion of the theory requires additional approximations which

we introduce in Sec. IV and which allow for a computationally

efficient implementation; our exact results here thus provide

a benchmark to be compared against. To ensure accuracy, we

have used exact grids to integrate the various kernels where

we have as many grid points as basis functions. In practice,

the number of grid points needed for spin-projected UHF

(SUHF) scales roughly as the square root of the number of

basis functions and we expect fewer grid points are needed for

SUCCSD.

In this section, we also wish to address the importance

of obtaining the amplitudes Uµ and potentially Zµ from our

PCC equations rather than from traditional coupled cluster. In

analogy with the literature on projected Hartree-Fock theory,

we will refer to a variation after projection (VAP) approach in

which the amplitudes solve the SUCCSD equations, where a

projection after variation (PAV) approach means that we first

solve the traditional unrestricted CCSD (UCCSD) equations

and simply evaluate the projected energy. Without further qual-

ification, by the PAV energy we mean the energy expression

of Eq. (21a), but we may also refer to the linear response PAV

(LR-PAV) in which we use the biorthogonal expectation value

of Eq. (26a). Recall that these two energy expressions yield

different results when using UCCSD amplitudes but yield the

same result if one solves for the U amplitudes in the presence

of the projection operator. In other words, the VAP formula-

tion of SUCCSD yields the same energy from the two different

energy formulae.

Bearing all this in mind, let us first consider results in the

Hubbard model Hamiltonian.22 The Hubbard model describes

electrons on a lattice, and the Hamiltonian is simply

H = −t
∑

〈µν〉

(

c†µ↑ cν↑ + c†µ↓ cν↓

)

+ U
∑

µ

c†µ↑ c†µ↓ cµ↓ cµ↑ , (33)

where µ and ν are lattice sites and the notation 〈µν〉 means

that we include only sites connected in the lattice. As the rel-

ative interaction strength U/t increases, the system becomes

more and more strongly correlated. Our calculations use a one-

dimensional lattice in which adjacent sites are connected. We

impose periodic boundary conditions, which are of more gen-

eral interest and for which exact results are readily available

through the Lieb-Wu algorithm.23

Figure 1 shows results for the half-filled lattice with six

and ten sites. We obtain the reference determinant |φ〉 from a

variation after projection spin-projected UHF (SUHF) calcu-

lation so that |φ〉 is symmetry broken for all U/t. One can see

that the spin projection improves significantly upon UCCSD,

regardless of whether the amplitudes solve the SUCCSD

equations (VAP) or the UCCSD equations (PAV). Unsurpris-

ingly, our overall best results are obtained from the VAP

approach. In the strongly correlated limit, VAP and LR-PAV

are comparable, and LR-PAV is in general superior to PAV

without including the Z amplitudes. We do not know why

FIG. 1. Errors per electron with respect to the exact result in periodic half-filled Hubbard lattices. Left: 6-site Hubbard model. Right: 10-site Hubbard model.

We use the SUHF broken symmetry determinant as a reference.
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FIG. 2. Left: Schematic representation of the H4 ring. Right: Total energies for the H4 ring as a function of angle. While restricted coupled cluster has a cusp,

unrestricted coupled cluster and SUCCSD are smooth. We use the UHF determinant as a reference and the cc-pVDZ basis set. The left panel is reproduced with

permission from J. Chem. Phys. 146, 184105 (2017). Copyright 2017 AIP Publishing LLC.

the LR-PAV results have a relatively pronounced peak for

small U/t.

Let us now turn to a few molecular examples. The first

example is four hydrogen atoms placed on a circle of radius

3.284 bohr,24 as depicted in Fig. 2. As the bond angle θ

approaches 90◦, the system becomes more strongly correlated

as the ground and first excited states become nearly degen-

erate (and exactly degenerate precisely at the high symmetry

point). Where restricted CCSD (RCCSD) has a cusp and incor-

rectly predicts the existence of a minimum at θ = 90◦, UCCSD

remedies these failures at the cost of correct spin symme-

try. Moreover, UCCSD undercorrelates somewhat. In contrast,

SUCCSD is virtually atop the exact result, though we have

been able to compute only the PAV result because the cc-pVDZ

basis set which we use is too large for our full configuration

interaction code. Incorporating linear response adds virtually

nothing in this case.

Finally we consider the dissociation of N2 in the cc-pVDZ

basis set, as shown in Fig. 3. Restricted CCSD overcorrelates

badly at the dissociation limit and has an unphysical bump

in the potential energy curve. Adding perturbative triples to

obtain RCCSD(T) makes the situation even worse (not shown).

If one uses an unrestricted reference, the results are much

improved. Results are better yet with SUCCSD, though again

we have not been able to carry out the VAP calculations.

For small R, the UHF reference does not break symmetry,

so symmetry projection has no effect. This causes the break in

the LR-PAV curve. The LR-PAV curve is smoothed by using

the SUHF reference instead (not shown), though overall the

reference-dependence is weak.

We should make one small caveat about our N2 results.

Because the system was beyond the scope of our full con-

figuration interaction code, we were unable to evaluate the

Hamiltonian and norm kernels exactly. Accordingly, we trun-

cated the exponential of the cluster operator in both and

retained terms only through O(U3
2
). While exact results would

require us to keep terms through O(U7
2
), we have found that

the energy is in practice converged at the truncation we have

shown, presumably because there are six strongly correlated

electrons. We have kept the U1 terms to infinite order, as they

FIG. 3. Energies of the N2 molecule using the cc-pVDZ basis set. Left: Total energies. Right: Errors with respect to full configuration interaction (FCI).
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can be absorbed into transforming the Hamiltonian, discussed

in detail in Appendix B.

Nonetheless, the inability to exactly compute the Hamil-

tonian and norm kernels is a serious limitation, and simply

truncating the exponential is not always practical. Accordingly,

we now introduce our disentangled cluster formalism, which

allows us to circumvent this limitation.

IV. THE DISENTANGLED CLUSTER FORMALISM

As we have seen, the chief difficulty in evaluating the

kernels needed to do PCC calculations is that in principle

the exponential must be expanded to all powers of U, which

is not generally feasible. We now turn our attention to over-

coming this obstacle. We will need to make some preliminary

simplifications first.

We begin by replacing the rotation operator, which in

general is a unitary Thouless transformation,25 with a particle-

hole-style Thouless transformation applied to the bra,

〈φ| R(Ω) = 〈φ| R(Ω) |φ〉 〈φ| eV1(Ω), (34)

where V1(Ω) is a single de-excitation operator. Having done

so, the norm and Hamiltonian kernels become

N(Ω) = 〈φ| R(Ω) |φ〉 〈φ| eV1(Ω) eU |φ〉 , (35a)

H(Ω) =
〈φ| H̄V1

(Ω) eV1(Ω) eU |φ〉

〈φ| eV1(Ω) eU |φ〉
, (35b)

where we have introduced the similarity-transformed Hamil-

tonian

H̄V1
(Ω) = eV1(Ω) H e−V1(Ω). (36)

Since V1(Ω) is a one-body operator, H̄V1
(Ω) contains no more

than two-body operators (assuming that H itself had only one-

and two-body operators). Henceforth we will omit the explicit

Ω-dependence to reduce notational clutter.

In addition to the ground-state reduced kernels, we also

need excited kernels Nµ and Hµ. To obtain these, we first

write

〈µ| = 〈φ|Qµ, (37)

where Qµ is an excitation operator when acting to the left.

Having done so, we can then use

〈µ| R = 〈φ| R R−1 Qµ R (38a)

= 〈φ| R |φ〉 〈φ| eV1 R−1 Qµ R e−V1 eV1 (38b)

= 〈φ| R |φ〉 〈φ| Q̃µ eV1 , (38c)

where

Q̃µ = eV1 R−1 Qµ R e−V1 . (39)

The excited norm and Hamiltonian kernels are thus

Nµ =
〈φ| Q̃µ eV1 eU |φ〉

〈φ| eV1 eU |φ〉
, (40a)

Hµ =
〈φ| Q̃µ H̄V1

eV1 eU |φ〉

〈φ| eV1 eU |φ〉
. (40b)

We can evaluate the action of Q̃µ straightforwardly

because exp(V1) R−1 is just an orbital transformation operator,

given in the molecular orbital basis as

T = exp *
,

0 Vov

0 0

+
-

R
−1
=
*
,

1 Vov

0 1

+
-

R
−1, (41)

where Vov contains the amplitudes v i
a defining V1 and where R

is the matrix representation of the rotation operator. For exam-

ple, the rotation operator R for unrestricted spin projection is

exp(−i β Sy), so the matrix R
☞1 is exp(i β Sy), where Sy is the

matrix representation of the Sy operator.

As concrete examples, the singly and doubly excited

kernels are

Na
i =

〈

φa
i

���R eU |φ〉

N
= (T−1)

a

p T
q

i
Ñ

p
q , (42a)

Nab
ij =

〈

φab
ij

���R eU |φ〉

N
= (T−1)

a

p (T−1)
b

r T
q

i
T s

j Ñ
pr
qs , (42b)

Ha
i =

〈

φa
i

���R H eU |φ〉

N
= (T−1)

a

p T
q

i
H̃

p
q , (42c)

Hab
ij =

〈

φab
ij

���R H eU |φ〉

N
= (T−1)

a

p (T−1)
b

r T
q

i
T s

j H̃
pr
qs . (42d)

We must make several comments to clarify the foregoing.

First, we have followed the usual notation that indices i and j

denote orbitals occupied in |φ〉, while a and b denote orbitals

unoccupied in |φ〉 and p, q, r, and s are general. Determinants
〈

φa
i

��� and
〈

φab
ij

��� are singly and doubly excited, respectively. Our

convention for matrices is that row (column) indices of the

matrix T correspond to upper (lower) indices of T
q
p . Finally,

we have introduced auxiliary quantities such as Ñ
q

p. Those

are

Ñ
p

q =
〈φ| c†q cp eV1 eU |φ〉

N
, (43a)

Ñ
pr

qs =
〈φ| c†q c

†
s cr cp eV1 eU |φ〉

N
, (43b)

H̃
p

q =
〈φ| c†q cp H̄V1

eV1 eU |φ〉

N
, (43c)

H̃
pr

qs =
〈φ| c†q c

†
s cr cp H̄V1

eV1 eU |φ〉

N
. (43d)

These objects are sparse, and their non-zero elements can be

worked out by considering the action of the fermionic creation

and annihilation operators on the reference bra determinant

〈φ|. We include the non-zero components in Appendix A.

A. The disentangled cluster operator

The remaining difficulty in evaluating the various kernels

we need is handling the state eV1 eU |φ〉. If we cannot do so,

all of the foregoing is in vain. To accomplish this task, we now

introduce our disentangled cluster approximation. We will spe-

cialize to the case of coupled cluster doubles where U = U2,

with U2 as a double-excitation operator. Singles need not

be explicitly included because the single-excitation operator
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U1 can be absorbed into transforming the Hamiltonian and

symmetry operators, as we discuss in Appendix B. Higher

excitations could be included in principle, and the basic frame-

work generalizes to include them, but at increasing algebraic

and computational complexity.

The basic idea is to rewrite eV1 eU2 |φ〉 as an exponential of

cluster operators, denoted by W k , acting on |φ〉. That is, when

acting to the right, eU2 is an excitation operator and eV1 is a de-

excitation operator, and their product, acting on the reference

determinant, can be expressed purely in terms of excitations

together with a normalization constant. One simply has

eV1 eU2 |φ〉 = eW0+W1+W2+W3+· · · |φ〉 , (44)

where

Wk =

∑

n

1

(2n − k)!n!

(

V2n−k
1 Un

2

)

ce
(45a)

=

1

(k!)2

∑

W
a1...ak

i1...ik
c†a1

. . . c†ak
cik ci1 . (45b)

Here, the subscript “ce” means only the connected excitation

part is retained. The sum over n in defining W k must include

all possible excitation levels. Equation (45) is a rigorous result,

proven in Appendix C, and is central to the remainder of this

paper. We refer to it as the disentanglement equation and to

W k’s as the disentangled cluster operators. Equations (45a)

and (45b) define W k for k ≥ 1; W0 is a number, given by

eW0
= 〈φ| eV1 eU2 |φ〉 , (46)

and can be evaluated by our formula for W k with k = 0 but

by replacing the connected excitation part with the connected

scalar part.

Introducing the disentangled clusters makes it possible to

work in an orthogonal framework. The necessary kernels can

all be evaluated with low excitation rank W k ,

N = eW0 〈φ| R |φ〉 , (47a)

H = 〈φ| H̄V1
(W1 + W2 +

1

2
W2

1 ) |φ〉 , (47b)

Ñ
a

i = Wa
i , (47c)

Ñ
ab

ij = Wab
ij + Wa

i Wb
j −Wa

j Wb
i , (47d)

H̃
a

i =

〈

φa
i
��� H̄V1

(C1 + C2 + C3)
���φ

〉

, (47e)

H̃
ab

ij =

〈

φab
ij
��� H̄V1

(C1 + C2 + C3 + C4)
���φ

〉

. (47f)

Here, Ci is the i-fold excitation part of eW ,

C1 = W1, (48a)

C2 =
1

2
W2

1 + W2, (48b)

C3 =
1

3!
W3

1 + W1 W2 + W3, (48c)

C4 =
1

4!
W4

1 +
1

2
W2

1 W2 +
1

2
W2

2 + W1 W3 + W4. (48d)

We need only up to W2 to evaluate the energy without

linear response. Evaluating the energy with linear response or

solving the amplitude equations requires up to W4.

B. Evaluating the disentangled cluster operators

At this point, we have everything we need for projected

CCD or CCSD, provided only that we can obtain the disen-

tangled cluster amplitudes defining W. We will discuss several

strategies for doing so. We emphasize again that because W

depends on V1 and V1 depends on the integration variable Ω,

W isΩ dependent, though we have suppressed this dependence

for brevity.

1. Truncated disentangled cluster operators

The simplest approach is to presume that U2 is small and

truncate the summation defining W. If we truncate the sum

over U2 in Eqs. (45) to obtain amplitudes W from which the

kernels are extracted, however, we run into a problem: when

the rotated state 〈φ| R has a small overlap with |φ〉, then V1 is

large and the series defining W converges slowly, with terms

having large amplitudes and alternating signs. For example, in

the half-filled Hubbard Hamiltonian for large U/t, the mean-

field ground state has a Néel structure in which each site is

occupied by one electron and the electrons on neighboring sites

point in opposite directions. Spin projection at β = π amounts

to flipping each spin, so |φ〉 and 〈φ|R are strictly orthogonal;

thus V1(β = π) cannot even be defined, but the limit of V1 as

β approaches π is infinite.

We can do better by truncating the exponential itself. For

example, we could expand

eW0
= 1 + (W

(1)

0
) +

(

W
(2)

0
+

1

2
W

(1)

0
W

(1)

0

)

+ . . . , (49)

where W
(n)

0
is the component of W0 which has n powers of

U2. Note that except for the norm, all integrals in Eqs. (31)

are integrals of the product of the norm kernel and another

kernel; in these cases, the product is truncated as a whole. For

example, we would write

HN = H(0) N(0) +
(

H(1) N(0) + H(0) N(1)
)

+ · · · , (50)

where similarly H(n) and N(n) are portions of the kernel which

contain n powers of U2.

The process of expressing a certain order of kernel in terms

of U2 and V1 is tedious and error-prone. The derivation of

equations is facilitated by an in-home algebra manipulator,26

and this part of the code is generated by the accompanying

automatic code generator.27 For this work, the energy func-

tional without response is implemented up to fifth order in U2,

while the one with response is implemented up to third order.

For the energy functional without response, the energy can

be evaluated through U3
2

at O(N6) cost, through U4
2

at O(N7)

cost, and through U5
2

at O(N8) cost. The energy functional

with response can be evaluated through U2
2

at O(N6) cost and

through U3
2

at O(N8) cost. All of these costs are per grid point

in the numerical integration grid.

To assess the quality of this order-by-order expansion,

Fig. 4 shows the expansion of the norm kernel and the expan-

sion of the product of the norm and Hamiltonian kernels in

the half-filled 18-site Hubbard Hamiltonian at parameter U/t

= 20. One can see that both the norm kernel N and the prod-

uct HN converge reasonably well as we increase the power of

the cluster operator U2 retained in the expansion. This leads to
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FIG. 4. Order-by-order expansion for the norm kernel (left) and the product of the norm and Hamiltonian kernels (right) for the half-filled 18-site Hubbard

Hamiltonian at Hubbard parameter U/t = 20.

fairly rapid convergence of the energy, as seen in Fig. 5, despite

results in Fig. 8 and particularly in the analogous plot in the

supplementary material which show that the order-by-order

expansion does not, for large β, yield particularly accurate

disentangled cluster amplitudes. However, because this order-

by-order expansion requires relatively high powers of U2 to

converge and this is associated with high computational cost,

we prefer the alternative ideas discussed below.

2. Algebraic equations for disentangled
cluster operators

A second approach to obtaining the disentangled cluster

operators generalizes work of Jeziorski28 that we rediscovered

independently. Let us define the virtual occupation operator as

nV =
∑

a c
†
aca. It can be shown that for a kth level excitation

Uk or a kth level de-excitation V k ,

[nV , Uk] = k Uk , (51a)

[nV , Vk] = −k Vk . (51b)

FIG. 5. Energy error per electron in the half-filled 18-site Hubbard Hamilto-

nian. We show UCCSD and results using the order-by-order expansion of Eqs.

(49) and (50) together with results from the SDt differential equation approach

(see below). All calculations use the deformed determinant of SUHF as a ref-

erence and are done in the PAV sense where the U2 amplitudes are fixed at

their UCCSD values.

As a result,

[nV , eU2 ] = 2 U2 eU2 , (52a)

[nV , eV1 ] = −V1 eV1 , (52b)

[nV , eW ] =
∑

k

k Wk eW . (52c)

Applying these results to both sides of Eq. (44) separately

leads us to

nV eV1 eU2 |φ〉 = [nV , eV1 eU2 ] |φ〉

= (−V1 eV1 eU2 + 2 eV1 U2 eU2 ) |φ〉

= (−V1 + 2eV1 U2 e−V1 ) eV1 eU2 |φ〉

= J eW |φ〉 , (53a)

J = −V1 + 2 eV1 U2 e−V1 . (53b)

On the other hand,

nV eW |φ〉 = [nV , eW ] |φ〉 =
∑

k Wk eW |φ〉 . (54)

Together, these equations show that

J eW |φ〉 =
∑

k Wk eW |φ〉 , (55)

which implies
∑

k Wk |φ〉 = e−W J eW |φ〉 = J̄ |φ〉 . (56)

Amplitudes of W k can be extracted through left-multiplication

with excited determinants. For example,

Wa
i =

〈

φa
i
��� J̄
���φ

〉

, (57a)

Wab
ij =

1

2

〈

φab
ij
��� J̄
���φ

〉

, (57b)

or, more abstractly,

Wk =
1

k
〈k | J̄ |φ〉 . (58)

Notice that J contains one- and two-body parts only. Thus,

the expressions for W look like the traditional coupled cluster

equations, with H replaced by J, and accordingly, W k is cou-

pled with up to W k+2. Note also that because W0 is simply a

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-040730
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number and these algebraic equations are derived from com-

mutators, we cannot use them to evaluate or even approximate

W0.

3. Differential equation for disentangled
cluster operators

For the special case of unrestricted spin projection, we

can solve for the disentangled cluster operators W by solv-

ing a set of differential equations with the spin rotation angle

β as the independent variable. By integrating this set of

ordinary differential equations (ODEs), we can in principle

obtain exact untruncated amplitudes, though in practice other

approximations must be made.

To proceed, we need the derivative of V1 with respect to

β. We define

d

dβ
V1 = (eV1 (−i Sy) e−V1 )

d
≡ X, (59)

where the subscript d means only the de-excitation part is

retained and where this defines X. We derive this equation in

Appendix D.

Now we note that

eW0
= 〈φ| eV1 eU2 |φ〉 . (60)

Differentiating with respect to β leads to

eW0
d

dβ
W0 = 〈φ| X eV1 eU2 |φ〉 = 〈φ| X eW0+W1+· · · |φ〉

= eW0 X i
a Wa

i , (61)

whence
d

dβ
W0 = X i

a Wa
i . (62)

Given W1, we can integrate this equation to obtain W0.

Similarly, we have

eW0 Wa
i =

〈

φa
i
��� e

V1 eU2 ���φ
〉

. (63)

Differentiating both sides leads to

d

dβ
eW0 Wa

i = eW0
d

dβ
Wa

i + Wa
i eW0

d

dβ
W0

=

〈

φa
i
���X eV1 eU2 ���φ

〉

=

〈

φa
i
���X eW0+W1+· · ·���φ

〉

= eW0 (Wa
i Xk

c W c
k −Wa

k Xk
c W c

i + Xk
c Wac

ik ). (64)

Here, summation over repeated indices is implied. Notice that

the first term on the right-hand side is

Wa
i Xk

c W c
k = Wa

i

d

dβ
W0. (65)

Then the disconnected parts on both sides cancel and we

simply have

d

dβ
Wa

i = Xk
c

(

Wac
ik −Wa

k W c
i

)

. (66)

We can obtain a similar result for double excitations.

Starting from

eW0 (Wab
ij + Wa

i Wb
j −Wa

j Wb
i ) =

〈

φab
ij
��� e

V1 eU2 ���φ
〉

, (67)

we obtain

d

dβ
Wab

ij = Xk
c

(

Wabc
ijk −Wab

kj W c
i −W cb

ij Wa
k

)

. (68)

Let us note a few important features of these differential

equations for the disentangled cluster operators. First, at β = 0

we have V1 = 0, so W0 = 0, W1 = 0, and W2 = U2. Second,

the derivative of W k contains W k+1 but no higher excitations.

We can thus approximate W k+1 for some excitation level k and

from there solve for the lower excitation levels. For this reason,

we prefer the differential equations to the algebraic equations

given in Sec. IV B 2, as the latter require both W k+1 and W k+2

to obtain W k ; moreover, the algebraic equations do not allow

us to compute W0.

Here, we consider several approximations. If we make the

approximation W3 = 0 and integrate to obtain W0 to W2, we call

the resulting method SUCCSD(SD) where SUCCSD stands

for spin-projected unrestricted CCSD and “(SD)” emphasizes

that we retain through W2 in the differential equation. Sim-

ilarly, SUCCSD(SDT) means we set W4 = 0 and solve for

W0 to W3. The cost per grid point of SUCCSD(SD) is O(N6)

and that of SUCCSD(SDT) is O(N7). A third approach we

consider is to solve for an approximate W3 from the alge-

braic equations, by setting W3 through W5 to zero in the

right-hand side of Eq. (58), thereby obtaining an approxi-

mation for W3 in terms of W1 and W2. We call the result-

ing method SUCCSD(SDt), and it scales as O(N6). Because

including linear response in the energy expression or solving

the amplitude equations would require through W4, in this

work, we use the ODE technique only to evaluate the energy

in a PAV approach without response. This allows us to focus

on assessing the error introduced by our approximations for

W k+1.

C. Results

The key objects of practical implementations of our spin-

projected coupled cluster theory are the disentangled cluster

operators W k . All our approximations are based on assuming

that W k for sufficiently high excitation levels are negligible or

at least readily approximated by W k for lower excitation levels.

It is thus critical to check that this is indeed the case. Figure 6

shows the behavior of W k for the ten-site half-filled peri-

odic Hubbard lattice at several values of interaction strength

U/t. As we have discussed, only W2 is non-zero at β = 0.

As β is increased, other amplitudes appear. In general,

W k indeed decays as the excitation level increases for all

β and for all interaction strengths. This justifies our var-

ious truncation schemes. Note, however, that W0 actually

increases as β increases. We will discuss this increase

later.

A different way of justifying our truncation schemes

is by comparison with the untruncated results. This is

done in Fig. 7. Unsurprisingly, SUCCSD(SDT) is closer to

the exact SUCCSD than is SUCCSD(SD). More interest-

ingly, SUCCSD(SDt) is closer to the exact result than is

SUCCSD(SDT). While this may seem counterintuitive, it ulti-

mately arises from the observation that the algebraic equations

lead to a more accurate approximation for W3 than does solv-

ing the differential equation assuming W4 = 0. We should note

that both SUCCSD(SD) and SUCCSD(SDt) scale the same as

UCCSD, and both are significantly more accurate.

To bear out our explanation for the superiority

of SUCCSD(SDt) over SUCCSD(SDT), Fig. 8 shows
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FIG. 6. Magnitudes of the disentangled amplitudes in the periodic half-filled 10-site Hubbard lattice. Upper left: Hubbard U/t = 2.2. Upper right: U/t = 4. Lower

left: U/t = 10. Lower right: U/t = 20.

that SUCCSD(SDt) produces more accurate disentangled

amplitudes (as a consequence of which it also produces more

accurate kernels, as shown in the supplementary material).

Figure 8 also shows the behavior of the order-by-order expan-

sion of the disentangled amplitudes. At small β where V1

is small, this expansion works exceptionally well, but as β

increases its quality deteriorates rapidly.

One might be concerned that approximating the disentan-

gled cluster operators spoils the symmetry projection. After all,

approximating W implies approximately handling V1, hence

approximately handling the rotation operator R and therefore

approximating the symmetry projection. Figure 9 shows that,

at least with our SUCCSD(SDt) approximation, this is not a

concern. Here, we plot the error in the expectation value of

FIG. 7. Comparison of various truncation schemes of the PAV energy functional without response on periodic half-filled Hubbard lattices. Left: 6-site Hubbard

model. Right: 10-site Hubbard model.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-040730
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FIG. 8. Root-mean-square errors of disentangled amplitudes from different approximation schemes tested in the periodic half-filled 6-site Hubbard lattice

with Hubbard U/t = 4. Left: Error of W0. Right: Error of W1. We also show the root-mean-square values of the disentangled amplitudes as |W0 | and |W1 |.

Corresponding figures for U/t = 20 and errors in W2 are shown in the supplementary material.

〈S2〉 per electron in the periodic half-filled eighteen-site Hub-

bard lattice. We use the reference determinant of SUHF as

our mean-field reference, so the mean-field breaks symmetry

everywhere.

To be clear about what we plot, the correct definition of

the coupled cluster expectation value of an operator O is

〈O〉CC = 〈φ| (1 + Z) e−U O eU |φ〉 . (69)

This is what we have plotted as “LR-UCCSD” where O = S2.

Neglecting Z gives us the curve we have plotted as “UCCSD.”

For projected coupled cluster, the expectation value would

similarly be

〈O〉PCC =
〈φ| (1 + Z) e−U P O eU |φ〉

〈φ| (1 + Z) e−U P eU |φ〉
. (70)

Evaluating this projected coupled cluster expectation value

in the presence of Z would require excited kernels which

we have not yet constructed, so we have plotted it without

FIG. 9. Error per electron in the expectation value of S2 for the periodic

half-filled 18-site Hubbard lattice. We use the broken-symmetry determinant

of SUHF as a reference so that the mean-field and the UCCSD break spin

symmetry everywhere. The error in the expectation value from the mean-field

reference is “MF.”

Z, as “SUCCSD(SDt).” If the projection is done exactly, the

expectation value of S2 would be exact even in the absence

of Z.

While the mean-field is badly symmetry broken for large

Hubbard parameter U/t, unrestricted CCSD greatly reduces the

degree of symmetry breaking. Interestingly, including linear

response has a minimal effect in this case. Our SUCCSD(SDt)

gives almost exact symmetry projection, with error per electron

in the expectation value of S2 on the order of 10☞3 (and very

slightly negative in places, which is possible because we do

not use a Hermitian expectation value).

D. The thermodynamic limit

It is known that spin-projected UHF is not size-extensive

or, more precisely, that its size-extensive energetic component

is the same as that of the broken symmetry mean-field.10

Here, we demonstrate numerically that SUCCSD likewise

has no size-extensive correction beyond UCCSD but that

the SUCCSD energy returns to the UCCSD value at a

much slower rate than the SUHF energy returns to UHF.

This bodes well for large finite systems, and we expect

SUCCSD to provide useful improvements to UCCSD even

when SUHF provides only marginal improvements upon UHF.

We should note that our results here are generated for the

SUCCSD(SDt) approximation to the exact SUCCSD, and in

the PAV sense, but we expect the exact VAP SUCCSD to dis-

play broadly similar features although we have not proven as

much.

From the differential equation, one can see that the deriva-

tives of W k contain only connected terms. At β = 0 where V1

= 0, W = U2 and is extensive. This suggests that W at every

β should be extensive and W should converge with respect

to system size at a rate similar to UCCSD. Since the reduced

Hamiltonian kernel contains only connected terms involving

W, it, too, should be size extensive. This is indeed the case,

as can be seen from Fig. 10. The Hamiltonian kernel per elec-

tron is already converged with respect to system size for the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-040730


064111-13 Qiu et al. J. Chem. Phys. 147, 064111 (2017)

FIG. 10. Norm and Hamiltonian kernels for the one-dimensional periodic half-filled Hubbard lattice at different system sizes. Left: Hamiltonian kernel at

Hubbard U/t = 4. Right: Norm kernel at U/t = 4. Corresponding figures for U/t = 20 are shown in the supplementary material.

22-site Hubbard ring for all interaction strengths, which is

where UCCSD also converges. The SUHF Hamiltonian kernel

also converges rapidly with respect to system size.

The problem, then, must be the norm kernel, which as we

see converges very slowly. In fact, in the thermodynamic limit,

the norm kernel for SUHF becomes a step function at β = 0;

thus, the energy only samples β = 0, and we therefore obtain

the UHF result.

In SUCC theory, the norm kernel is 〈φ| R(β) |φ〉 eW0 ,

where 〈φ| R(β)|φ〉 ≡ eS0 is the SUHF norm kernel. Figure 11

shows how W0 and S0 behave as a function of system size. It

is clear that

W0 ≈ w0 N , (71a)

S0 ≈ s0 N , (71b)

where w0 and s0 are constants so that the coupled cluster norm

kernel is

〈φ|R |φ〉 eW0 ≈ e(s0+w0) N . (72)

FIG. 11. Scaling of W0 and the mean-field norm kernel exponent S0 with

respect to system size at Hubbard U/t = 4. The corresponding figure for U/t

= 20 is shown in the supplementary material.

However, s0 and w0 have opposite signs; as the number of

electrons increases, the SUHF norm kernel goes to zero while

W0 goes to infinity. This makes it difficult to tell how the SUCC

norm kernel behaves, although clearly it decays less rapidly

than does the SUHF norm kernel. To help resolve this behavior,

Fig. 12 shows that s0 is negative for all β, while w0 is positive

and thus counteracts the decay of the mean-field kernel, but

their sum is always negative except at β = 0. This means that

the norm kernel in the thermodynamic limit vanishes except at

β = 0, just as it does for SUHF. Thus, SUCCSD approaches

UCCSD in the thermodynamic limit, but at a much slower

rate than SUHF approaches UHF (because s0 + w0 is less

negative than s0 alone). Figure 13 shows that SUCCSD adds

considerable correlation atop UCCSD even at large system

sizes (see results for the 46-site lattice).

We close with a brief discussion of how the kernels should

behave as the theory becomes even more complete. In the full

coupled cluster limit, the wave function, though written in the

language of symmetry-broken Hartree-Fock, has good quan-

tum numbers (for finite systems). Accordingly, the norm kernel

is one for allΩ and the Hamiltonian kernel is the exact ground

state energy. Our results here show that SUCCSD has flat-

ter norm and Hamiltonian kernels than does SUHF, and as

we continue to increase the level of correlation in the clus-

ter operator, we would expect to see the kernels become even

flatter.

V. DISCUSSION

A. Comparison with Duguet’s symmetry broken
and restored coupled cluster theory

Recently, Duguet proposed a symmetry broken and

restored coupled cluster theory.17 Here, we briefly discuss the

differences between our two approaches.

The biggest difference is that we begin with an explicit

wave function ansatz rather than with the kernels. As a result,

the linear response and optimization of the cluster operator

U force us to introduce excited Hamiltonian and norm ker-

nels that do not appear in Duguet’s theory. Second, Duguet’s

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-040730
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FIG. 12. Scaling factor of the mean-field kernel and W0 as a function of β for one-dimensional periodic half-filled Hubbard lattices. Left: Hubbard U/t = 4.

Right: U/t = 20. Corresponding figures for U/t = 8 and U/t = 12 are shown in the supplementary material.

FIG. 13. PAV energy errors per electron with respect to the exact result in

half-filled one-dimensional Hubbard rings.

approach includes solving a coupled cluster-like equation at

each Ω where we solve for the cluster operator U only once

and use these amplitudes to generate theΩ-dependent kernels.

Finally, we introduce the disentangled cluster operators W that

conveniently encapsulate all information from the various ker-

nels we require. We may solve a set of coupled differential

equations for the disentangled cluster operators. While Duguet

also proposes a differential equation, it is only used for the

norm kernel.

B. Conclusions

This work combines coupled cluster and symmetry pro-

jection into one tool which seems to have considerable

promise. The broken symmetry coupled cluster is already

fairly accurate for many cases, and the symmetry restored

coupled cluster is even better while retaining good symme-

tries. Even the simple projection after variation scheme is a

useful improvement on broken symmetry coupled cluster, and

results can be improved further by including linear response or

by reoptimizing the broken symmetry cluster operator in the

presence of the symmetry projector. For the small half-filled

Hubbard rings for which we have been able to carry out the

exact VAP SUCCSD calculations, errors are well under 0.001t

per electron.

Symmetry-projected coupled cluster reduces energeti-

cally to broken symmetry coupled cluster in the thermody-

namic limit, just as projected Hartree-Fock reduces to the bro-

ken symmetry mean field. However, the symmetry-projected

coupled cluster does so more slowly, and useful improvements

upon broken symmetry coupled cluster are possible even for

fairly sizable systems.

An important quantity introduced in this work is the disen-

tangled cluster operators W. These allow us to work in the same

orthogonal excitation framework as traditional coupled cluster

theory. The needed kernels can be evaluated from disentangled

cluster operators of low excitation rank. The disentangled clus-

ter operators decay as the excitation level increases and, for

unrestricted spin projection, satisfy a set of simple differen-

tial equations that couple W k of different excitation levels. We

have shown several truncation schemes for the approximate

construction of the disentangled cluster operators.

Much work, of course, remains. We have by no means

explored all possible ways of approximating the disentangled

cluster operators, nor have we used them in the construction

of excited kernels, which one must do if one wishes to make

linear response and VAP calculations practical. Neither have

we implemented the combination of spin-projected coupled

cluster based on a generalized Hartree-Fock reference which

breaks both S2 and Sz symmetries, which we expect it to be

significantly more accurate yet.29 Thus far we have considered

only the ground state energy, and naturally properties, gradi-

ents, and excited states can all in principle be accessed by

suitable modifications of traditional coupled cluster methods.

Nonetheless, we are greatly encouraged by this early foray into

the symmetry projection of broken symmetry coupled cluster

theory.

SUPPLEMENTARY MATERIAL

See supplementary material for data corresponding to

Figs. 8 and 10–12 at other values of Hubbard parame-

ters U/t. We also show errors in the disentangled cluster

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-040730
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-040730
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operator W2 and the norm and Hamiltonian kernels corre-

sponding to different approximations to SUCCSD.
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APPENDIX A: NON-ZERO COMPONENTS
OF AUXILIARY KERNELS

In Eqs. (43) we introduced the auxiliary kernels Ñ and H̃.

Here we list their non-zero elements for convenience. They are

Ñ
i

i = 1, (A1a)

Ñ
a

i =

〈

φa
i

��� e
V1 eU |φ〉

N
, (A1b)

Ñ
ij

ij = −Ñ
ji

ij = 1 − δij, (A1c)

Ñ
aj

ij = Ñ
ja

ji = −Ñ
ja

ij = −Ñ
aj

ji =

(

1 − δij

)

Ñ
a

i , (A1d)

Ñ
ab

ij =

〈

φab
ij

��� e
V1 eU |φ〉

N
, (A1e)

H̃
i

i = H, (A1f)

H̃
a

i =

〈

φa
i

��� H̄V1
eV1 eU |φ〉

N
, (A1g)

H̃
ij

ij = −H̃
ji

ij = H
(

1 − δij

)

, (A1h)

H̃
aj

ij = H̃
ja

ji = −H̃
ja

ij = −H̃
aj

ji =

(

1 − δij

)

H̃
a

i , (A1i)

H̃
ab

ij =

〈

φab
ij

��� H̄V1
eV1 eU |φ〉

N
. (A1j)

APPENDIX B: INCLUDING U1 IN THE DISENTANGLED
CLUSTER FORMALISM

In our disentangled cluster formalism, we incorporate U1

by using it to transform the Hamiltonian and symmetry pro-

jectors rather than explicitly including it in our equations.

Here, we show how we do this. We will use the singly excited

Hamiltonian kernel Ha
i to demonstrate the general idea.

The excited Hamiltonian kernel we need is

N Ha
i =

〈

φa
i
���R H eU1 eU2 |φ〉 (B1a)

= 〈φ| c†
i

ca R H eU1 eU2 |φ〉 (B1b)

= 〈φ| e−U1 c
†
i

ca eU1 R̄U1
H̄U1

eU2 |φ〉 (B1c)

= (τ−1)
a

p 〈φ| c
†
q cp R̄U1

H̄U1
eU2 |φ〉 τq

i
, (B1d)

where R̄U1
and H̄U1

are

R̄U1
= e−U1 R eU1 , (B2a)

H̄U1
= e−U1 H eU1 . (B2b)

The orbital transformation matrix τ is

τ =
*
,

1 0

−U vo 1

+
-

, (B3)

where Uvo is the matrix of U1 amplitudes. The practical result

is that the integrals defining the Hamiltonian and rotation oper-

ator should be replaced by the transformed ones and, this

having been done, the transformation matrix T of Eq. (41)

should be replaced by T τ.

APPENDIX C: PROOF OF THE DISENTANGLEMENT
EQUATION

Here we prove our formula for the disentangled cluster

operators given in Eq. (45a).

We begin by writing the wave function |ψ〉 = eV1 eU2 |φ〉
in two different ways as follows:

eV1 eU2 |φ〉 = eW0+W1+· · · |φ〉 (C1a)

= eW0 (1 + C1 + C2 + · · · ) |φ〉 . (C1b)

The excitation operators Ck are given by the linked excitation

components of

∑

n

1

(2n − k)!

1

n!
V2n−k

1 Un
2 |φ〉 , (C2)

where by “excitation components” we mean the maximally

contracted part (so that all indices on the V1 are contracted with

indices on U2). The cluster operator W k is the fully connected

part of Ck , which proves Eq. (45a) for k > 0. The case k = 0

needed for W0 is a special case of the linked diagram theorem.

APPENDIX D: PROOF OF THE DERIVATIVE OF V 1

In Eq. (59) we write the derivative of the operator V1 with

respect to β. Here we prove that result.

Recall that the matrix Vov contains the amplitudes defin-

ing V1. From Thouless’ theorem,

Vov = R
−1
oo R ov, (D1)

where Roo and Rov are, respectively, the occupied-occupied

and occupied-virtual blocks of R (and similarly, subscripts

“vv” and “vo” would denote the virtual-virtual and virtual-

occupied blocks). This means that

dVov

dβ
=

dR
−1
oo

dβ
Rov + R

−1
oo

dRov

dβ
(D2a)

= −R
−1
oo

dRoo

dβ
R
−1
oo R ov + R

−1
oo

dRov

dβ
(D2b)

= −R
−1
oo

dRoo

dβ
Vov + R

−1
oo

dRov

dβ
. (D2c)

The rotation matrix R is

R = e−i β Sy , (D3)

where we recall that Sy is the matrix representation of the

operator Sy. Its derivative with respect to β is therefore

dR

dβ
= −i R Sy ≡ R A, (D4)
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where for convenience we have defined

A = −i Sy. (D5)

Inserting the derivative of R into Eqs. (D2) gives us

dVov

dβ
= −R

−1
oo (R oo Aoo + Rov Avo) Vov

+ R
−1
oo (R oo Aov + Rov Avv) (D6a)

= −Aoo Vov − Vov Avo Vov

+ Aov + Vov Avv, (D6b)

which is the occupied-virtual block of the operator eV1 A e−V1 .

Accordingly,
d

dβ
V1 = −i

(

eV1 Sy e−V1

)

d
, (D7)

where the subscript “d” means that we only keep the de-

excitation part and where we have used that A = −i Sy.
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