Projected Gradient Methods for Non-negative
Matrix Factorization

Chih-Jen Lin
Department of Computer Science
National Taiwan University, Taipei 106, Taiwan
cjlin@csie.ntu.edu.tw

Abstract

Non-negative matrix factorization (NMF') minimizes a bound-constrained prob-
lem. While in both theory and practice bound-constrained optimization is well
studied, so far no study formally applies its techniques to NMF. In this paper,
we propose two projected-gradient methods for NMF. The new methods have
sound optimization properties. We discuss efficient implementations and show
that one proposed method converges faster than the popular multiplicative up-

date approach. A simple MATLAB code is provided.

1 Introduction

Non-negative matrix factorization (NMF) (Paatero and Tapper, [1994; Lee and
Seung}, |1999) is useful to find a representation of non-negative data. Given an nxm
data matrix V' with V;; > 0 and a pre-specified positive integer r < min(n,m),

NMF finds two non-negative matrices W € R"*" and H € R™™ so that
V~WH.

If each column of V' represents an object, NMF approximates it by a linear com-
bination of r “basis” columns in W. NMF has been applied to many areas such as
finding basis vectors of images (Lee and Seung, |1999), document clustering (Xu
et al. 2003), and molecular pattern discovery (Brunet et all 2004), etc. [Donoho
and Stodden| (2004)) addressed theoretical issues of the NMF approach.

The usual approach to find W and H is by minimizing the difference between
V and WH:

min (W, H) ——ZZ L — (WH),)®

=1 j=1

subject to W;, >0, Hy; >0, Vi,a,b,j. (1)

In optimization, inequalities upper- and lower-bounding variables are referred to
as bound constraints. Hence (1)) is a standard bound-constrained optimization
problem. We also note that

n m

ZZ iy — (WH) w) :||V—WHH%,

=1 j=1

where || - || is the Frobenius norm.

The most popular approach to solve is a multiplicative update algorithm
by |[Lee and Seung| (2001). It is simple to implement and often gives good re-
sults. At each iteration this method multiplies elements of W and H by some
factors. As zero elements are not updated, all components in W and H are kept
strictly positive throughout iterations. Such a strategy is contrary to traditional
bound-constrained optimization methods, which usually allow iterations to have
bounded elements (i.e., zero elements here). Up to now no study has formally
applied bound-constrained optimization techniques to NMF. This paper will in-
vestigate such methods in detail. Some earlier NMF work requires W’s column
sums are all ones: Y . W;, = 1,Va = 1,...,r. The function value does not
change as f(WD,D™*H) = f(W, H) for any r x r positive diagonal matrix D.
With such additional constraints, is not a bounded problem. As adding them
may complicate the optimization procedures, here we do not consider this modi-
fication.

Among existing bound-constrained optimization techniques, projected gradi-
ents are a simple and effective one. Though several papers used this method for
NMF (Hoyer} 2002; |(Chu et al., 2004; |[Shepherd, [2004)), there is neither a system-
atic study nor an easy implementation competitive with the multiplicative update.
This paper gives a comprehensive study on using projected gradient methods for

NME. Several useful modifications lead to efficient implementations. While the

multiplicative update method still lacks convergence results, our proposed meth-
ods have sound optimization properties. We experimentally show that one pro-
posed method converges faster than the multiplicative update. This new method
is thus an appealing approach to solve NMF. We provide a complete MATLAB
implementation.

Another NMF optimization formula minimizes the (generalized) Kullback-

Leibler divergence between V and W H (Lee and Seung}, [1999):

min ZZ <VU log —————) = Vi + (WH)z‘j>

=1 j5=1
subject to ~ W, > 0, Hy; > O,Viaa,baj'

Strictly speaking, this formula is not a bound-constrained problem, which requires
the objective function to be well-defined at any point of the bounded region. Now
the log function is not well-defined if V;; = 0 or (WH);; = 0. Hence we do not
consider this formulation.

This paper is organized as follows. Section [2| discusses existing approaches
for NMF problem (1)), and presents several new properties not mentioned be-
fore. Section [3] introduces projected gradient methods in bound-constrained op-
timization. Section [4] investigates specific but essential modifications on apply-
ing projected gradients to NMF. Stopping conditions in an NMF code are dis-
cussed in Section 5] Experiments on synthetic and real data sets are in Section
[6l Discussion and conclusions are in Section [7] Appendix [B] gives the MATLAB
code of one proposed approach. All sources used in this paper are available at

http://www.csie.ntu.edu.tw/~cjlin/nmf.

2 Existing Methods and New Properties

Many methods are available for NMF. Earlier |Paatero| (1999) had some discus-
sions, but bound constraints are not rigorously handled. A more recent and
complete survey is |Chu et al.| (2004). This section briefly discusses some existing
methods and presents several observations not mentioned before.

To begin, we need certain properties of the NMF problem . The gradient

http://www.csie.ntu.edu.tw/~cjlin/nmf

of the function f(W, H) consists of two parts:
Viwf(W,H) = (WH —V)H" and Vg f(W,H) =W (WH - V), (2)

which are respectively partial derivatives to elements in W and H. From the
Karush-Kuhn-Tucker (KKT) optimality condition (e.g., (Bertsekas, 1999)), (W, H)
is a stationary point of (1)) if and only if

Wiq > 0, Hy; > 0,

Vi f(W,H)ia >0,V f(W,H)y >0, (3)

Wia - Vi f(W,H);o =0, and Hy; - Vg f(W, H)p; = 0,Vi,a,b, .
Optimization methods for NMF produce a sequence {W* H*}? | of iterations.
Now is non-convex and may possess several local minima. A common misun-
derstanding is that easily limit points of the sequence are local minima. In fact,
most non-convex optimization methods guarantee only the stationarity of limit

points. Such a property is still useful as any local minimum must be a stationary

point.

2.1 Multiplicative Update

The most used approach to minimize (|1]) is a simple multiplicative update by Lee

and Seung| (2001):

Algorithm 1 Multiplicative Update

1. Initialize W) > 0, Hblj > 0,Vi,a,b,7.

2. For k=1,2,...
kL e (V(H)7 ia .
a a (IIYka(Hk)T),La’ VZJCl/? ()
E+1 k ((” kH)TV)bj .
™ = Hbj((mfk-i-l)TWfk—i—l H)y, vb, j. (5)

This algorithm is a fixed-point type method: If (W*H*(H*)T);, # 0 and
WEHL = Wk > 0, then

(V(H,, = WrEHF(HMT),, implies Vy f(WF H*),, =0,

which is part of the KKT condition (3)). [Lee and Seung| (2001) shown that the

function value is non-increasing after every update:
FOVECLHY) < FWEHY)and fWRLHR) < PV ER).(6)

They claimed that the limit of the sequence {W* H*}% is a stationary point
(i.e., a point satisfying the KKT condition) However, |Gonzales and Zhang
(2005)) indicated that this claim is wrong as having @ may not imply the conver-
gence. Therefore, this multiplicative update method still lacks sound optimization
properties.

To have Algorithm [I| well-defined, one must ensure that denominators in ({4)
and (B are strictly positive. Moreover, if W} = 0 at the kth iteration, then
Wiq = 0 at all subsequent iterations. Thus one should keep W% > 0 and H zf} > 0,
Vk. The following theorem discusses when this property holds:

Theorem 1 If V has neither zero column nor row, and W7 > 0 and Hblj >
0,Yi,a,b, 7, then
Wi >0 and Hy; > 0,Vi,a,b,j,Vk > 1. (7)

The proof is straightforward, and is left in Appendix [A]

If V has zero columns or rows, a division by zero may occur. Even if Theorem
holds, denominators close to zero may still cause numerical problems. Some
work such as (Piper et al., [2004)) proposed adding a small positive number in the
denominators of —. We observed numerical difficulties in few situations and
give more discussions in Section [6.3]

Regarding the computational complexity, V (H*)T and (W*)TV in (4)) and
are both O(nmr) operations. One can calculate the denominator in by
either

(WH)H” or W(HH"). (8)

The former takes O(nmr) operations, but the latter costs O(mr?). As r < n,
the latter is better. Similarly for (5)), (W7W)H should be used. This discussion
indicates the importance of having fewer O(nmr) operations (i.e., WH, WTV or

VHT) in any NMF code.

In summary, the overall cost of Algorithm [I] is
#iterations x O(nmr).

All time complexity analysis in this paper assumes that V, W, and H are imple-

mented as dense matrices.

2.2 Alternating Non-negative Least Squares

From the non-increasing property @, Algorithm |1 is a special case of a general

framework, which alternatively fixes one matrix and improves the other:

Find W*™ such that f(W*™ H*) < f(W* H"), and
Find H**! such that f(W*H H*) < f(WFH HY).

The extreme situation is to obtain the best point (Paatero|, [1999; Chu et al., 2004):

Algorithm 2 Alternating non-negative least squares

1. Initialize Wl >0, Hblj >0,Vi,a,b, ;.

2. Fork=1,2,...
R+l _ . k
W = argmin f(W, H"), (9)
k1 _ : k+1
H = argrgllé%f(w JH). (10)

This approach is the “block coordinate descent” method in bound-constrained
optimization (Bertsekas| 1999), where sequentially one block of variables is mini-
mized under corresponding constraints and the remaining blocks are fixed. Here
we have the simplest case of only two block variables W and H.

We refer to (9] or as a sub-problem in Algorithm 2l When one block of
variables is fixed, a sub-problem is indeed the collection of several non-negative

least square problems: From ([10)),
H*™’s jth column = %1;51 |v — W h||?, (11)

where v is the jth column of V' and h is a vector variable. |Chu et al.| (2004)

suggest projected Newton’s methods such as |Lawson and Hanson| (1974)) to solve

6

each problem . Clearly, solving sub-problems @D and per iteration could
be more expensive than the simple update in Algorithm [} Then Algorithm [2] may
be slower even though we expect it better decreases the function value at each
iteration. Efficient methods to solve sub-problems are thus essential. Section [4.1
proposes using project gradients and discusses why they are suitable for solving
sub-problems in Algorithm [2]

Regarding the convergence, one may think that it is a trivial result. For ex-
ample, [Paatero (1999) directly stated that for the alternating non-negative least
square approach, no matter how many blocks of variables we have, the convergence
is guaranteed. However, this issue deserves some attention. Past convergence anal-
ysis for “block coordinate descent” methods requires sub-problems to have unique
solutions (Powell, [1973; Bertsekas|, 1999), but this property does not hold here:
Sub-problems @D and are convex, but not strictly convex. Hence they may
have multiple optimal solutions. For example, when H* is the zero matrix, any
W is optimal for @D Fortunately, for the case of two blocks, (Grippo and Scian-
drone| (2000) showed that this uniqueness condition is not needed. Directly from
(Grippo and Sciandrone, 2000, Corollary 2), we have the following convergence

result:

Theorem 2 Any limit point of the sequence {W*, H*} generated by Algorithm @
s a stationary point of .

The remaining issue is whether the sequence {W*, H*} possesses at least one
limit point (i.e., there is at least one convergent subsequence). In optimization
analysis, this property often comes from the boundedness of the feasible region,
but our region under constraints W;, > 0 and H; > 0 is unbounded. One can
easily add a large upper bound to all variables in . As the modification still
leads to a bound-constrained problem, Algorithm [2 can be applied and Theorem
holds. In contrast, it is unclear how to easily modify the multiplicative update
rules if there are upper bounds in ().

In summary, contrary to Algorithm [T, which still lacks convergence results,

Algorithm [2] possesses nice optimization properties.

2.3 Gradient Approaches

In (Chu et al., 2004, Section 3.3), several gradient-type approaches were men-
tioned. Here we briefly discuss those selecting the step size along the negative

gradient direction. By defining
Wia = E;, and H,; = F},

Chu et al. (2004) reformulate as an unconstrained optimization problem of
variables I, and Fj;. Then standard gradient descent methods can be applied.

The same authors also mention that [Shepherd (2004) uses

W = max(0, W" — ;. Vi f(WF, H¥)),
HFH — max (0, HY — Oékaf<Wk7 Hk))7

where oy, is the step size. This approach is already a projected gradient method.

However, in the above references, details are not discussed.

3 Projected Gradients for Bound-constrained Op-
timization

We consider the following standard form of bound-constrained optimization:

min f(x)
subject to [<z; <w;, 1=1,...,n,

where f(x) : R* — R is a continuously differentiable function, and 1 and u are
lower and upper bounds, respectively. Projected gradient methods update the

current solution x* to x**! by the following rule:

<h L — P[xk — Oéka(Xk)]a

where
T; if L <x; < Uy,
li ifx; <1,

maps a point back to the bounded feasible region. Variants of projected gradient

methods differ on selecting the step size a*. We consider a simple and effective

8

one called “Armijo rule along the projection arc” in Bertsekas (1999)), which is

originated from Bertsekas| (1976). It is illustrated in Algorithm

Algorithm 3 Projected gradient for bound-constrained optimization

1. Given 0 < 3 < 1,0 < ¢ < 1. Initialize any feasible x!.

2. Fork=1,2,...
xFH = P[Xk — Oéka(Xk)],

where oy, = %, and t;, is the first non-negative integer ¢ for which

FOMT) = f(x) < oV T -). (12)

The condition (|12]), used in most proofs of projected gradient methods, ensures
the sufficient decrease of the function value per iteration. By trying the step sizes
1, 8, £%, ..., Bertsekas (1976) proved that a; > 0 satisfying always exists
and every limit point of {x*}? is a stationary point. A common choice of o
is 0.01, and we consider = 1/10 in this paper. Searching «y is the most time
consuming operation in Algorithm [3| so one should check as few step sizes as
possible. Since aj_; and «a; may be similar, a trick in (Lin and Moré, 1999)
uses «y_1 as the initial guess and then either increases or decreases it in order to
find the largest 3% satisfying . Moreover, with non-negative t;, Algorithm
may be too conservative by restricting aj < 1. Sometimes, a larger step more
effectively projects variables to bounds at one iteration. Algorithm [4] implements

a better initial guess of o at each iteration and allows « to be larger than one.

Algorithm 4 An improved projected gradient method

1. Given 0 < 3 < 1,0 < ¢ < 1. Initialize any feasible x!. Set oy = 1.
2. Fork=1,2,...
(a) Assign ay «— ag_1
(b) If ay satisfies (12), repeatedly increase it by
ap — ay/f
until either «y, satisfies or x(ag/B) = x(ag).
Else repeatedly decrease ay by

g «— a3

until oy, satisfies ((12)).

(c) Set
x" = Plx" — V£ (x")],

The convergence was proved in, for example, Calamai and Mor¢| (1987). One
may think that finding a with the largest function reduction may lead to faster
convergence:

ap = arg Iolélzl{)lf(P[Xk — aV f(x")]). (13)

The convergence of selecting such ay, was proved in |[McCormick and Tapia; (1972).
However, is a piecewise function of «, which is difficult to be minimized.

A major obstacle for minimizing bounded problems is to identify free (i.e., [; <
x; < w;) and active (i.e., x; = [; or u;) components at the convergent stationary
point. Projected gradients are considered effective for doing so since they are able
to add several active variables at one single iteration. However, once these sets
have been (almost) identified, in a sense the problem reduces to unconstrained
and the slow convergence of gradient-type methods may occur. We will explain

in Section that for NMF problems, this issue may not be serious.

10

4 Projected Gradient Methods for NMF

We apply projected gradient methods to NMF in two situations. The first solves
non-negative least square problems discussed in Section [2.2] The second directly
minimizes . Both approaches possess convergence properties following from
Theorem [2] and |Calamai and Moré (1987), respectively. Several modifications
specific to NMF will be presented.

4.1 Alternating Non-negative Least Squares Using Pro-
jected Gradients

Section indicated that Algorithm [2] relies on efficiently solving sub-problems
@D and , each of which is a bound-constrained problem. We propose using
project gradients to solve them.

The sub-problem consists of m independent non-negative least square
problems , so one could solve them separately, a situation suitable for parallel
environments. However, in a serial setting, we think that treating them together

is better:

1. These problems are closely related as they share the same constant matrices

V and Wk in (11)).

2. Working on the whole H but not its individual columns implies all oper-
ations are matrix-based. Since finely tuned numerical linear algebra code
has better speed-up on matrix than on vector operations, we can thus save

computational time.
For an easier description of our method, we focus on ([10) and rewrite it as

. TR T | 2
min F(H) = L[V~ WHI}
subject to Hy; >0, Vb,j. (14)

Both V and W are constant matrices in . If we concatenate H’s columns to

11

a vector vec(H), then

F(H) = IV - W[}
| wtw
= ivec(H)T vec(H) + H’s linear terms.
WTw

The Hessian matrix (i.e., second derivative) of f(H) is block diagonal and each
block WTW is an r x r positive semi-definite matrix. As W € R™" and r < n,
WTW and hence the Hessian matrix tend to be well-conditioned, a good property
for optimization algorithms. Thus gradient-based methods may converge fast
enough. A further investigation of this conjecture is in the experiment section
0.2

The high cost of solving the two sub-problems @D and at each iteration
is a concern. It is thus essential to analyze the time complexity and find efficient
implementations. Each sub-problem now requires an iterative procedure, whose
iterations are referred to as sub-iterations. When using Algorithm [to solve ((14]),

we must maintain the gradient
VfH)=WYWH-V)

at each sub-iteration. Following the discussion near Eq. , one should calculate
it by (WITW)H — WTV. Constant matrices WTW and WTV can be computed
respectively in O(nr?) and O(nmr) before sub-iterations.

The main computational task per sub-iteration is to find a step size a such
that the sufficient decrease condition is satisfied. Assume H is the current
solution. To check if

H = P[H — oV f(H)],
satisfies (12), calculating f(H) takes O(nmr) operations. If there are ¢ such H’s,
the cost O(tnmr) is huge. We propose the following strategy to reduce the cost:

For a quadratic function f(x) and any vector d,
1
fx+d) = f(x)+Vf(x)'d+ 5clTv2f(x)ol. (15)
Hence for two consecutive iterations x and X, can be written as

(1 - o) V()" (&~ %) + 5 (% -)" V2f(R)(% ~ %) < 0.

N | =

12

Now f(H) defined in ((14) is quadratic, so (12)) becomes
1

(L= o) (VF(H), H — H) + S(H = H,(WW)(H — H)) <0, (16)

where (-, -) is the sum of the component-wise product of two matrices. The major
operation in (|16)) is the matrix product (W7W) - (H — H), which takes O(mr?).
Thus the cost O(tnmr) of checking is significantly reduced to O(tmr?). With

the cost O(nmr) for calculating W7V in the beginning, the complexity of using
Algorithm {4 to solve the sub-problem is

O(nmr) + #sub-iterations x O(tmr?),

where t is the average number of checking at each sub-iteration.
The pseudo code for optimizing is in Appendix We can use the same
procedure to obtain W**! by rewriting as a form similar to ([14)):

- 1
Fowy = SIvT - HTWR,

where VT and HT are constant matrices.

The overall cost to solve is
#iterations x (O(nmr) + #sub-iterations x O(tmr? + tnr?)).. (17)

At each iteration there are two O(nmr) operations: V(H*)T and (W*1)TV | the
same as those in the multiplicative update. If ¢ and #sub-iterations are small,
this method is competitive.

To reduce the number of sub-iterations, a simple but useful technique is to
warm start the solution procedure of each sub-problem. (W*, H*) may not change

much near the convergent point, so W* is an effective initial point for solving @

4.2 Directly Applying Projected Gradients to NMF

We may directly apply Algorithm [4] to solve . Similar to solving non-negative
least square problems in Section [4.1], the most expensive operation is on checking
the sufficient decrease condition . From the current solution (W, H), we
simultaneously update both matrices to (W, H):

(W,H)=P[W,H) —a(VwfW,H),Vuf(W,H))].

13

As f(W, H) is not a quadratic function, does not hold. Hence the trick
cannot be applied to save the computational time. Then calculating f (W, H) =

A\ W H |3 takes O(nmr) operations. The total computational cost is
#iterations x O(tnmr),

where t is the average number of checked per iteration.

Given any random initial (W?!, '), if ||V —W'H!||% > ||V||%, very often after
the first iteration W? = 0 and H? = 0 cause the algorithm to stop. The solution
(0,0) is a useless stationary point of . A simple remedy is to find a new initial
point (W H') so that f(W?' H') < £(0,0). By solving H' = argrlgli%f(Wl,H)
using the procedure described in Section [4.1], we have

IV =W < ||V =W 0[5 = V][5

In general the strict inequality holds, so f(W?' H') < £(0,0).

5 Stopping Conditions

In all algorithms mentioned so far, we did not specify when the procedure should
stop. Several implementations of the multiplicative update (e.g., (Hoyer, 2004))
have an infinite loop, which must be interrupted by users after a time or iteration
limit. Some (e.g., Brunet| (2004)) check the difference between recent iterations.
If the difference is small enough, then the procedure stops. However, such a
stopping condition does not reveal whether a solution is close to a stationary
point or not. In addition to a time or iteration limit, standard conditions to
check the stationarity should also be included in NMF software. Moreover, in
alternating least squares, each sub-problem involves an optimization procedure,
which needs a stopping condition as well.

In bound-constrained optimization, the following common condition checks if

a point x* is close to a stationary point (Lin and Moré, [1999):

IV < el VAL (18)

14

where V¥ f(x*) is the projected gradient defined as

Vf(X)l if Li<x < Uy,
VP f(x); = { min(0, Vf(x);) if 2; =1, (19)
max (0, Vf(x);) if x; =u;.

This condition follows from an equivalent form of the KK'T condition for bounded

problems: [; < z; < u;, Vi, and

IVZf(x)] =o.
For NMF, becomes
IVZF W, H) | < e VW HY) 5. (20)

For alternating least squares, each sub-problem @D or requires a stopping
condition as well. Ideally, the condition for them should be related to the “global”
one for , but a suitable condition is not obvious. For example, we cannot use
the same stopping tolerance in for sub-problems: A user may specify ¢ = 0
and terminate the code after a certain time or iteration limit. Then the same € = 0
in solving the first sub-problem will cause Algorithm [2|to keep running at the first
iteration. We thus use the following stopping conditions for sub-problems: The
returned matrices W*! and H**! from the iterative procedures of solving @ and

should respectively satisfy

Vi f(WHE HY)|[p < &w, and
IVESWHL B lp < én,

where we set

éw = ey = max(107%,¢) [|[Vf (W', HY) ||,

in the beginning and € is the tolerance in . If the projected gradient method

for solving @D stops without any iterations, we decrease the stopping tolerance by

For , €y is reduced by a similar way.

15

Table 1: Results of running synthetic data sets (from small to large) under var-
ious stopping tolerances. We present the average time (in seconds), number of
iterations, and objective values of using 30 initial points. Approaches with the
smallest time or objective values are bold-faced. Note that when ¢ = 107°, mult
and pgrad often exceed the iteration limit of 8,000.

Time #iterations Objective values

€ 1073 107* 107° 10791073 10~* 107° 10~ 10~ 10=* 10=° 107©
mult 0.10 1.22 2.60 698 4651 7639 390.4 389.3 389.3
alspgrad [0.03 0.10 0.45 0.97 6 26 100 203412.9 392.8 389.2 389.1

pgrad 0.05 0.24 0.68 53 351 1082 401.6 389.9 389.1
Isqnonneg 6.32 27.76 57.57 23 96 198 391.1 389.1 389.0
(a) m=25,7r =5,n = 125.
Time #iterations Objective values

€ 1072 107* 107° 1079102 10~* 10=° 109 10=* 10=* 107 1076
mult 0.16 14.73 21.53 349 6508 8000 1562.1 1545.7 1545.6
alspgrad0.03 0.13 0.99 5.51 4 14 76 3521866.6 1597.1 1547.8 1543.5
pgrad [0.38 3.17 10.29 47 1331 4686 1789.4 1558.4 1545.5

(b) m = 50,r = 10, n = 250.

Time #iterations Objective values
€ 1072107 107 10791072 10-* 1075 107¢ 107* 107* 10=°> 10°°
mult |0.41 8.28 175.55 170 2687 8000 6535.2 6355.7 6342.3
alspgrad0.02 0.21 1.09 10.02 2 8 31 234/9198.7 6958.6 6436.7 6332.9
pgrad |0.60 2.88 35.20 2200 3061 8141.1 6838.7 6375.0

(¢) m =100, r = 20,n = 500.

6 Experiments

We compare four methods discussed in this paper and refer to them as the fol-

lowing
1. mult: the multiplicative update method described in Section [2.1]

2. alspgrad: alternating non-negative least squares using projected gradients
for each sub-problem (Section [4.1)).

3. pgrad: a direct use of projected gradients on (Section .

4. Isgnonneg: Using MATLAB command Isqnonneg to solve m problems

in alternating least squares.

16

All implementations were in MATLAB (http://www.mathworks.com). Ex-
periments were conducted on an Intel Xeon 2.8GHz computer. Results of using
synthetic and real data are in the following subsections. All sources for experi-

ments are available at http://www.csie.ntu.edu.tw/~cjlin/nmf.

6.1 Synthetic Data

We consider three problem sizes:
(m,r,n) = (25,5,25), (50, 10, 250), and (100, 20, 500).

The matrix V' is randomly generated by the normal distribution (mean 0 and

standard deviation 1)

The initial (W', H') is constructed by the same way, and all four methods share
the same initial point. These methods may converge to different points due to the
non-convexity. To have a fair comparison, for the same V' we try 30 different initial
(W1, H'), and report the average results. As synthetic data may not resemble
practical problems, we leave detailed analysis of the proposed algorithms in Section
[6.2] which considers real data.

We set € in to be 1073, 107%, 107°, and 107° in order to investigate the
convergence speed to a stationary point. We also impose a time limit of 1,000
seconds and a maximal number of 8,000 iterations on each method. As Isqnonneg
takes long computing time, we run it only on the smallest data. Due to the slow
convergence of mult and pgrad, for € = 107¢ we run only alspgrad.

Results of average time, number of iterations, and objective values are in
Tables For small problems, Table [2a] shows that all four methods give
similar objective values as ¢ — 0. The method Isqnonneg is rather slow, a result
supporting our argument in Section that a matrix-based approach is better
than a vector-based one. For larger problems, when ¢ = 107°, mult and pgrad
often exceed the maximal number of iterations. Clearly, mult quickly decreases
the objective value in the beginning, but slows down in the end. In contrast,
alspgrad has the fastest final convergence. For the two larger problems, it gives

the smallest objective value under ¢ = 1075, but takes less time than that by mult

17

http://www.mathworks.com
http://www.csie.ntu.edu.tw/~cjlin/nmf

under € = 10~°. Due to the poor performance of pgrad and Isqnonneg, subsequently

we focus on comparing mult and alspgrad.

6.2 Image Data

We consider three image problems used in Hoyer| (2004):

1. CBCL face image database.
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.htmll

2. ORL face image database.

http://www.uk.research.att.com/facedatabase.html.
3. Natural image data set (Hoyer, 2002).

All settings are the same as those in |[Hoyer| (2004). We compare objective values
and project-gradient norms of mult and alspgrad after running 25 and 50 seconds.
Table [2| presents average results of using 30 random initial points. For all three
problems, alspgrad gives smaller objective values. While mult may quickly lower
the objective value in the beginning, alspgrad catches up very soon and has faster
final convergence. Results here are consistent with the findings in Section Re-
garding the projected-gradient norms, those by alspgrad are much smaller. Hence
solutions by alspgrad are closer to stationary points.

To further illustrate the slow final convergence of mult, Figure [1| checks the
relation between the running time and the objective value. The CBCL set with
the first of the 30 initial (W?, H') is used. The figure clearly demonstrates that
mult very slowly decreases the objective value at final iterations.

The number of sub-iterations for solving @ and in alspgrad is an impor-
tant issue. First, it is related to the time complexity analysis. Second, Section
conjectures that the number should be small as WTW and HH?' are generally
well-conditioned. Table [3| presents the number of sub-iterations and the condition
numbers of WTW and HH”. Compared to usual gradient-based methods, the
number of sub-iterations is relatively small. Another projected gradient method
pgrad discussed in Table [0] easily takes hundreds or thousands of iterations. For

condition numbers, both CBCL and Natural sets have r < n < m, so HH" tends

18

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
http://www.uk.research.att.com/facedatabase.html

Table 2: Image data: Average objective values and projected-gradient norms of
using 30 initial points under specified time limits. Smaller values are bold-faced.

Problem CBCL ORL Natural
Size (n r m) 361 49 2,429/10,304 25 400| 288 72 10,000
Time limit (in seconds) 25 50| 25 50 25 50

Objective Value mult [963.81 914.09|16.14 14.31[370797.31 353709.28
alspgrad |923.77 870.18|14.34 13.82|377167.27 352355.64
IVFP(W, H)||p mult |488.72 327.28|19.37 9.30| 54534.09 21985.99
alspgrad [230.67 142.13| 4.82 4.33| 19357.03 4974.84

1300

1200

-y
-y
o
o

Objective value
o
o
=3
s

900

10° 10’ 107 10°
Time in seconds (logged scale)

Figure 1: Time (seconds in log scale) vs. objective values for mult (dashed line)
and alspgrad (solid line).

to be better conditioned than WZW. ORL has the opposite as r < m < n. All
condition numbers are small, and this result confirms our earlier conjecture. For
ORL, cond(WTW) > cond(HH?), but the number of sub-iterations on solving

W is more. One possible reason is the different stopping tolerances for solving (9)

and ((10)).

6.3 Text Data

NMF is useful for document clustering, so we next consider a text set RCV1 (Lewis
et al.| 2004). This set is an archive of manually categorized newswire stories from
Reuters Ltd. The collection has been fully pre-processed, including removing stop
words, stemming, and transforming into vector space models. Each vector, cosine
normalized, contains features of logged TF-IDF (term frequency, inverse document

frequency). Training/testing splits have been defined. We remove documents in

19

Table 3: Number of sub-iterations and condition numbers in solving @ and
of alspgrad. For sub-iterations, we calculate (total sub-iterations)/(total itera-
tions) under each initial point, and report the average of 30 values. For condition
numbers, we find the median at all iterations, and report the average. Note that
HHT (WTW) corresponds to the Hessian of minimizing W (H).

Problem CBCL ORL Natural

Time limit (in seconds) 25 50 25 50 25 50
W: # sub-iterations 34.51 47.81 993 11.27 | 21.94 27.54
cond(HHT) 224.88 231.33 | 76.44 71.75] 93.88 103.64
H: # sub-iterations 11.93 18.15 6.84 7.70 | 3.13 4.39
cond(WTW) 150.89 124.27 | 478.35 129.00 | 38.49 17.19

the training set which are associated with more than one class and obtain a set of
15,933 instances in 101 classes. We further remove classes which have less than five
documents. Using r = 3 and 6, we then randomly select r classes of documents to
construct the n x m matrix V', where n is the number of the vocabulary set and m
is the number of documents. Some words never appear in the selected documents
and cause zero rows in V. We remove them before experiments. The parameter
r is the number of clusters that we intend to assign documents to. Results of
running the two approaches by 25 and 50 seconds are in Table 4 We again have
that alspgrad gives smaller objective values. In addition, projected-gradient norms
by alspgrad are smaller.

Section [2.1] stated that mult is well-defined if Theorem [holds. Now V is a
sparse matrix with many zero elements since words appeared in a document are
only a small subset of the whole vocabulary set. Thus some columns of V' are close
to zero vectors, and for few situations, numerical difficulties occur. In contrast,

projected gradient methods do not have such problems.

7 Discussion and Conclusions

We discuss some future issues and draw conclusions.

20

Table 4: Text data: Average objective values and projected-gradient norms of
using 30 initial points under specified time limits. Smaller values are bold-faced.
Due to the unbalanced class distribution, interestingly the random selection of six
classes results in less documents (i.e., m) than that of selecting three classes.

Size (n r m) 5,412 3 1,588 5,737 6 1,401
Time limit (in seconds) 25 50 25 50
Objective Value mult 710.160 710.135 | 595.245 594.869
alspgrad | 710.128 710.128 | 594.631 594.520
IVfEW, H)||r mult 4.646 1.963 | 13.633 11.268
alspgrad 0.016 0.000 2.250 0.328

7.1 Future Issues

As resulting W and H usually have many zero components, NMF is said to pro-
duce a sparse representation of the data. To achieve better sparseness, some work
such as (Hoyer| 2002; [Piper et al., [2004)) added penalty terms to the NMF objective

function:

1 n m
5 22 (Vi = WH))" +al Wik + B HIE (22)

i=1 j=1
where o and [are positive numbers. Besides the Frobenius norm, which is

quadratic, we can also use a linear penalty function
QY Wi+ 8 Hy. (23)
i,a b,j

Our proposed methods can be used for such formulations. As penalty parameters
a and 3 only indirectly control the sparseness, Hoyer (2004) proposes a scheme
to directly specify the desired sparsity. It is interesting to investigate how to

incorporate projected gradient methods in such frameworks.

7.2 Conclusions

This paper proposes two projected gradient methods for NMF. The one solving
least square sub-problems in Algorithm [2] leads to faster convergence than the

popular multiplicative update method. Its success is due to our following findings:

1. Sub-problems in Algorithm [2| for NMF generally have well-conditioned Hes-

sian matrices (i.e., second derivative) due to the property r < min(n,m).

21

Hence projected gradients converge quickly though they use only the first

order information.

2. The cost on step size selection in projected gradients is significantly reduced

by some reformulations which again use the property r < min(n,m).

Therefore, taking special NMF properties is crucial when applying an optimization
method to NMF.
Roughly speaking, optimization methods have the following two extremes:

Low cost per iteration High cost per iteration
“—
slow convergence fast convergence

For example, Newton’s methods are expensive per iteration, but have very fast
final convergence. Approaches with low cost per iteration usually decrease the
objective value more quickly in the beginning, a nice property enjoyed by the
multiplicative update method for NMF. Based on our analysis, we feel that the
multiplicative update is very close to the first extreme. The proposed method
of alternating least squares using projected gradients tends to be more in the
between. With faster convergence and sound optimization properties, it is an

appealing approach for NMF.

Acknowledgments

The author thanks Marco Sciandrone for pointing out the convergence of two-
block coordinate descent methods in (Grippo and Sciandronel 2000) and helpful

comments.

References

Dimitri P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection
method. IEEE Transations on Automatic Control, 21:174-184, 1976.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA

02178-9998, second edition, 1999.

Jean-Philippe Brunet. http://www.broad.mit.edu/mpr/publications/
projects/NMF/nmf .m, 2004.

22

http://www.broad.mit.edu/mpr/publications/projects/NMF/nmf.m
http://www.broad.mit.edu/mpr/publications/projects/NMF/nmf.m

Jean-Philippe Brunet, Pablo Tamayo, Todd R. Golub, and Jill P. Mesirov. Meta-
genes and molecular pattern discovery using matrix factorization. Proceedings

of the National Academy of Science, 101(12):4164-4169, 2004.

Paul H. Calamai and Jorge J. Moré. Projected gradient methods for linearly
constrained problems. Mathematical Programming, 39:93-116, 1987.

M. Chu, F. Diele, R. Plemmons, and S. Ragni. Theory, numerical methods and
applications of the nonnegative matrix factorization. 2004. Submitted to STAM

Journal on Matrix Analysis and Applications.

David Donoho and Victoria Stodden. When does non-negative matrix factoriza-
tion give a correct decomposition into parts? In Sebastian Thrun, Lawrence
Saul, and Bernhard Scholkopf, editors, Advances in Neural Information Pro-

cessing Systems 16. MIT Press, Cambridge, MA, 2004.

Edward F. Gonzales and Yin Zhang. Accelerating the Lee-Seung algorithm for
non-negative matrix factorization. Technical report, Department of Computa-

tional and Applied Mathematics, Rice University, 2005.

L. Grippo and M. Sciandrone. On the convergence of the block nonlinear Gauss-
Seidel method under convex constraints. Operations Research Letters, 26:127—

136, 2000.

Patrik O. Hoyer. Non-negative sparse coding. In Proceedings of IEEE Workshop
on Neural Networks for Signal Processing, pages 557565, 2002.

Patrik O. Hoyer. Non-negative matrix factorization with sparseness constraints.

Journal of Machine Learning Research, 5:1457-1469, 2004.

C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall,
1974.

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix fac-
torization. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors,
Advances in Neural Information Processing Systems 13, pages 556-562. MIT
Press, 2001.

23

Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401:788-791, 1999.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new bench-
mark collection for text categorization research. Journal of Machine Learning

Research, 5:361-397, 2004.

Chih-Jen Lin and Jorge J. Moré. Newton’s method for large-scale bound con-
strained problems. SIAM Journal on Optimization, 9:1100-1127, 1999. URL

http://www.mcs.anl.gov/~more/tron.

G. P. McCormick and R. A. Tapia. The gradient projection method under mild
differentiability conditions. SIAM Journal on Control, 10:93-98, 1972.

Pentti Paatero. The multilinear engine—A table-driven, least squares program
for solving multilinear problems, including the n-way parallel factor analysis

model. J. of Computational and Graphical Statistics, 8(4):854-888, 1999.

Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative

factor model with optimal utilization of error. Environmetrics, 5:111-126, 1994.

Jon Piper, Paul Pauca, Robert Plemmons, and Maile Giffin. Object characteriza-
tion from spectral data using nonnegative factorization and information theory.

In Proceedings of AMOS Technical Conference, 2004.

Michael J. D. Powell. On search directions for minimization. Mathematical Pro-

grammang, 4:193-201, 1973.
Simon Shepherd. http://www.simonshepherd.supanet.com/nnmf.htm, 2004.

Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative
matrix factorization. In Proceedings of the 26th annual international ACM
SIGIR conference, pages 267-273. ACM Press, 2003. doi: http://doi.acm.org/
10.1145/860435.860485.

24

http://www.mcs.anl.gov/~more/tron
http://www.simonshepherd.supanet.com/nnmf.htm

A Proof of Theorem [1I

When k =1, @ holds by the assumption of this theorem. Using induction, if
is correct at k, then at (k + 1), clearly denominators of and are strictly
positive. Moreover, as V' has neither zero column nor row, both numerators are

strictly positive as well. Thus holds at (k + 1), and the proof is complete.

B MATLAB Code

B.1 Main Code for alspgrad (Alternating Non-negative Least
Squares Using Projected Gradients)

function [W,H] = nmf(V,Winit,Hinit,tol,timelimit,maxiter)

% NMF by alternative non-negative least squares using projected gradients
% Author: Chih-Jen Lin, National Taiwan University

% W,H: output solution

% Winit,Hinit: initial solution

% tol: tolerance for a relative stopping condition
% timelimit, maxiter: limit of time and iterations

W = Winit; H = Hinit; initt = cputime;

gradW = Wx(H¥H’) - V*H’; gradH = (W’ *W)*H - W’*V;
initgrad = norm([gradW; gradH’],’fro’);

fprintf (’Init gradient norm %f\n’, initgrad);
tolW = max(0.001,tol)*initgrad; tolH = tolW;

for iter=1:maxiter,
% stopping condition
projnorm = norm([gradW(gradw<0 | W>0); gradH(gradH<O | H>0)]);
if projnorm < tol*initgrad | cputime-initt > timelimit,
break;
end

[(W,gradW,iterW] = nlssubprob(V’,H’,W’,tolW,1000); W = W’; gradW = gradW’;
if iterW==1,

tolW = 0.1 *x tolW;
end

[H,gradH,iterH] = nlssubprob(V,W,H,tolH,1000);
if iterH==1,

tolH = 0.1 * tolH;
end

25

if rem(iter,10)==0, fprintf(’.’); end
end
fprintf (’\nIter = %d Final proj-grad norm %f\n’, iter, projnorm);

B.2 Solving the Sub-problem (14 by the Projected Gra-
dient Algorithm

function [H,grad,iter] = nlssubprob(V,W,Hinit,tol,maxiter)

% H, grad: output solution and gradient
% iter: #iterations used

% V, W: constant matrices

% Hinit: initial solution

% tol: stopping tolerance

% maxiter: limit of iterations

H = Hinit; WtV = W *V; WtW = W’ *W;

alpha = 1; beta = 0.1;
for iter=1:maxiter,
grad = WtW+xH - WtV;
projgrad = norm(grad(grad < 0 | H >0));
if projgrad < tol,
break
end

% search step size
for inner_iter=1:20,
Hn = max(H - alpha*grad, 0); d = Hn-H;
gradd=sum(sum(grad.*d)); dQd = sum(sum((WtW*d).*d));
suff_decr = 0.99*%gradd + 0.5*%dQd < O;
if inner_iter==1,
decr_alpha = “suff_decr; Hp = H;
end
if decr_alpha,
if suff_decr,
H = Hn; break;
else
alpha = alpha * beta;
end
else
if “suff_decr | Hp == Hn,
H = Hp; break;
else
alpha = alpha/beta; Hp = Hn;
end
end

26

end
end

if iter==maxiter,

fprintf(’Max iter in nlssubprob\n’);
end

27

	Introduction
	Existing Methods and New Properties
	Multiplicative Update
	Alternating Non-negative Least Squares
	Gradient Approaches

	Projected Gradients for Bound-constrained Optimization
	Projected Gradient Methods for NMF
	Alternating Non-negative Least Squares Using Projected Gradients
	Directly Applying Projected Gradients to NMF

	Stopping Conditions
	Experiments
	Synthetic Data
	Image Data
	Text Data

	Discussion and Conclusions
	Future Issues
	Conclusions

	Proof of Theorem 1
	MATLAB Code
	Main Code for alspgrad (Alternating Non-negative Least Squares Using Projected Gradients)
	Solving the Sub-problem (14) by the Projected Gradient Algorithm 4

