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THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 50,

NUMBER 3 1t FEBRUARY 1969

Projected Hartree Product Wavefunctions. II. General
Considerations of Young Operators*®

G. A. Garivet
Quantum Theory Project, University of Florida, Gainesville, Florida 32601
(Received 11 March 1968)

A discussion is given of the forms of two specific and one general Young operator for the irreducible
representations of S, important for fermion space functions. Comparisons are made of the projected Hartree
product version of Léwdon’s projected Hartree-Fock method with CI calculations.

I. INTRODUCTION

Although the connections between the symmetric
groups and antisymmetric eigenfunctions of the total
spin have been known many years,’™® it is only in
recent times that investigations using these methods
have been applied to spin-free problems®? and compu-
tation of matrix elements® In a previous article®
hereafter called I, the author has given a discussion
of the use of Young operators in a spin-free version of
the projected Hartree-Fock problem.® Goddard has
recently given a discussion of this problem using
methods of the symmetric groups,” and Poshusta and
Kramling? have given a discussion based on the
concept of immanents.!?

The interest in the independent-particle model arises
from the feeling that wavefunctions constructed from
single-particle orbitals will be of the simplest type as
far as physical interpretations are concerned. In spite
of the differences in the details of the computations,
all independent-particle model wavefunctions consist
of what is essentially a projected Hartree product of
spatial orbitals. In I it was shown that use of just
one Young operator from the symmetric group S, can
guarantee that the function represent a state of pure

* This work was supported by the Research Council of the
University of Nebraska and the National Science Foundation
through a Science Development Grant to the Chemistry Depart-
ment, University of Nebraska.

1 On leave during academic year 1967-1968 from Department of
Chemistry, University of Nebraska, Lincoln, Nebraska 68508.
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multiplicity for a system of » electrons, and these
functions can be used to compute matrix elements of
spin-free operators. A self-consistant field computation
based on these Young operators was also discussed
with some applications to simple systems.

In this article we give some detailed properties of the
Young operators needed for calculations of the type
given in I and indeed for any computations of matrix
elements of spin-free operators with respect to anti-
symmetric eigenfunctions of the spin. We also discuss
the relationship among some of the methods for writing
antisymmetric eigenfunctions of the spin, some com-
parisons of projected Hartree product wavefunctions
and CT computations, and the some effects of assumed
orthogonality between various spatial orbitals.

II. SPECIFIC YOUNG OPERATORS

In this section we shall examine two specific forms
for a Young operator corresponding to the irreducible
representations of the symmetric group for eigen-
functions of the total spin angular momentum. We are
interested, of course, in the idempotents appropriate
for the spatial part of the wavefunction but we may
analyze either the two-row tableaux (partitions) or
the two-column tableaux, since these cases are merely
conjugate. We shall choose as the basis for this article
the tableaux corresponding to (2®/2-5  1%25)  for
spatial functions appropriate to the spin quantum
number S.

Littlewood? shows that the idempotents P and N
each have an intersection of rank 1 with the (2%/2-5, 125)
subalgebra and no other parts in common. Hence
PNP and NPN are each proportional to a Hermitian
primitive characteristic unit of (2¢/»—=5, 125) as was
pointed out in I. It was also shown in I that a primitive
characteristic unit can be factored, and we wish to
calculate the factored form of 6NPN and ¢’PNP,

. If%l ES a(X) X (1)

=1

We will call the subgroup with elements in E the base
subgroup and denote it by Gs. From Eq. (1) we obtain
immediately

|G|

k
a(X) P= e
»‘z=:1|( )| | Gz | fe

(2)
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PROJECTED HARTREE PRODUCT WAVEFUNCTIONS. II

We may also make the general statement that the
necessary and sufficient condition that an element of
G be in Gp is that it commutes with . We take up the
computation of 8N PN first since it is a little simpler.

The factorization of a characteristic unit as in Eq.
(1) is very important, since it provides easy access of
some other results as we shall see later.

The coefficients of the permutations in the operators
NPN and PNP are very important for the computation
of matrix elements and also for the determination of
the general idempotent discussed in Sec. IV. Matsen®
has also discussed the operators NPN and PN P from a
somewhat different point of view.

A. The Operator 6NPN

For purposes of discussion we assume we have a
tableau for (2#/2-5, 125) with numbers inserted as shown
in Fig. 1.8 It is evident that all elements of N commute
with NPN and are part of Ga. If S0 then no other
element of S, commutes with NPN and Gy=Gg.
When S=0, # is an even integer, and one element
from P will commute with NPN. This element is
(1, n/241)(2, (n/2+2)+++(n/2, n) which we may
denote p and Gg= {Gw, pGn}. Thus we obtain

| Ge |=[(n/2)+S][(n/2)-S]; 50,
=2[(n/2)1F; S=0,
and Eq. (2) becomes
k , nt25+2
;la(Xi) [-—4S+2 ;o S=0
= (n+2)/4; S=0, (3)
where
n
k= ((n/2)+S)
or

If N and P are each normalized so that the coefficient
of I in each is 1, then

0=Fuw/| G|l G|
and a(X;) is the number of times X; appears in the

n+1

()

2541 (
T (1)t

=1

Lo (P v 2 (MPY o) 5o,

=1 (& O
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n
1 [g4sh

n
2 (24542

Il

F16. 1. Numbering for the general —_
tableau 7.

2—5+1

product VPN divided by | Gy | with the appropriate
sign affixed.

Consider an element of the class (1%, 2!) of S,
with 1< (n/2) — S. Such a permutation may have each
interchange (e, f) such that e is from the first column
and f is from the second column of the tableau 7. We
shall see that a complete set of right coset generators
may be obtained from the type of permutation under
consideration. For definiteness let 41, 4o, %3, <<+, 4;= (%)
be a set of / different entries from the first column of T,
such that #,<ép<+++ <i;. Let fy, f2, *+, 1=(J) be a
set from the second column similarly ordered. These 2/

numbers determine a permutation from the class
(12, 21,

L) (7) 1= (i) (GGaga) =+~ (daf2). (4)
It is easily seen that [ (3) ( 7) ] appears
W(n/2)+ S0 (n/2)—S]!
times in NPN, hence
o= (MUY

This result is true regardless of the value of S. There
are in all /! permutations of (1% 2!) connecting the
set (2) with the set (). However, it may be shown
that these all are in the same coset, hence the specific
permutation defined by Eq. (4) is the only one needed.
We may put these results together and obtain

(n/z)~s)N {” T > (2 +S)_1[<i><j>3}; 5520,

@ @

(6)

1B D. E. Rutherford, Substitutional Anolysis (Edinburgh University Press, London, 1948).
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117
2 |.8
319 F16. 2. Tableau for the triplet case of ten electrons.
4 110
5
6 |

where £ is n/4 or (n—2) /4, whichever is integral. It is
not difficult to see that we have found all the coset
generators and that Eq. (2) is satisfied.

As we shall see later 9N PN is a rather special form
for e®,

B. The Operator 'PNP

In this case it is seen that G contains all elements of
P, but it also contains all elements of N which commute
with P. Considering the same tableau T as before, all
permutations of the numbers (n/2)—S+1, (n/2)—
S$+2, +++, (#/2)+S do not involve any numbers in the
elements of P, hence these are part of Gp. There are
(25) ! such permutations. The other permutations of N
which are in Gp are products of the same permutation
of 1, 2, «++) (#/2)—S and (n/2)+S+1, (n/2)+
$+2, «++, n. Thus in this case we have

| Gp |=200—5[ (/2) — STH(2S) L.

The coset generators are somewhat more difficult to
characterize in this case although we still need only
elements from the class (172, 2!) for the singlet case.
To make the description simpler we define a few terms:
Let us call the first (#/2) —S rows of T the body and
the other part the fail. We shall call an element of
(1%2, 29 a simple chain if it may be written
(4 41) (42 J2) » + * (31 /1) and each of the pairs of numbers
J1y 95 Jo, 13, *+; fimty is taken from the same row
of the body. For example in the tableau in Fig. 2,
(72)(89)(35) and (91)(72)(84)(10, 6) are simple
chains. If 4; and j; are also in the same row we have a
loop. It is evident that a loop can contain no entries

TasirE I. Right coset generators and coefficients for
two-column partitions of S¢.*

(213 (2?9

X a(X) b'¢ a(X)

1 1 I 1

(12) -3 (12) -3

(13) —% (14) -3
(24) —3%
(34) -3
(12) (34) 0

® These regults are based on the numbering of Fig. 1.

G. A. GALLUP

from the tail and a simple chain can contain no more
than two entries from the tail. A composite chain is
made up of two or more disconnected simple chains.
We shall consider only the singlet case (S=0) here.

We use the normalization of P and N as before and
again ¢(X;) is the number of times X; appears in
PNP divided by 2¢/2—5 with the appropriate sign.
It is not too difficult to see that for S=0, any composite
or simple chain in the class (17~%, 2!) has a coefficient
(—=2)"%. I a composite chain K; is made up
of simple chains of lengths [, «+-,l;, we denote
it Ki(hles+<l); h+lp+-++«+L=1. In each coset there

TasLEe II. Right coset generators and coefficients for
two-column partitions of Ss.*

2 1) (2: 1)

X a(X) X a(X)

I 1 I 1
(12) -3 (12) -3
(13) -4 (15) -3
(14) —% (13) —%
(25) —% (23) —4
(35) - (34) -3
(45) -3 (35) —%
(12) (35) 0 (12) (34) 1
(12) (45) 0 (12) (35) 1
(13) (45) 0 (13) (45) 1
(23) (45) 1

(15) (23) )

(15) (34) 1

(13)(24) i

(24) (35) H

& These results are based on the numbering of Fig. 1.

are (h+1)(L+1)---(li+1) such chains. We obtain
for §=0

eW=[(n+1)1T" 1(’:}_21 ) Gs

X+ 3 [=0Y2] T K1), (D)

where the D’ indicates the sum is over only the chains
generating distinct cosets. Tables I-III give the coef-
ficients and right coset generators of 8’PNP for two
column partitions of .Sy, S5, and Se.

III. THE PROJECTED SLATER DETERMINANT

The primitive characteristic unit in the form 6NPN
has a rather special form which is connected with the

Downloaded 29 Nov 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TasLE ITI. Right coset generators and coefficients for two-column partitions of Se.*

(219 (2219 (2%
X a(X) X a(X) X a(X)

~
—t
]
~
|

o~
(YN
>
e st
Ll
—~—
.
W
N e’
|1

A
€0 N b b et
O\ O\ U v W

Nt Nt Ssmat? gt et st
P
e~~~
W GO DO N
b
N vt s
Ll

o~~~
QI B = DN
B O\ RN
Nt Nt N
P

.

wn

Ao
|

(16)
(12) (35) (13) (45)
(12) (45) (16) (45)
(12) (36) (13) (24)
(12) (46) i (15)(34)

|
OO OO O Or e dhssiads =t
o~
3 (N
[=)
S N
W
—~—
ot
NN
g
RN
£8
e s e A )

(14) (56)

(14) (36)
(23) (45)
(24) (35)
(13) (24)
(14) (23)
(35) (46)
(36) (45)
(13) (45)
(13) (245)
(13) (456)
(123) (45)
(163) (45)
(23) (46)
(23) (146)
(23) (465)
(132) (46)
(253) (46)

QCOOOCODOO O

8 These results are based on the numbering of Fig. 1.

irreducible representations of S, obtained from the known that
spin basis functions produced by any spin projection

operators which commutes with all permutations. il
Let us assume that we have a product spin function n+1

25+1 ( n+1 ) 1
(n/2)~S
v(n, S)=a(l)a(2)--al(n/2)+S5] other spin functions may be constructed orthogonal
to ¢1(S, S) and to each other, ¢2(S, S), <=+, ¢/(S, S).
XBL(n/2)+S8+1]---B(n). We assume that the functions are all normalized. The

f functions form a basis for an irreducible representa-

If we have a projection operator Os which satisfies tion of Sy;

[0s, #]=0 for every permutation of S, we may
construct a spin function for the principle case M=.51" T0:(S, S)= D DO (1) jups(S, S),
5

@i(S, §)=Cosp(n, 5). (8) .
and we want to obtain
We label the function defined by Eq. (8) 1. It is well
en®=(f/g) 2 D (x)un, 9

14 P..0. Lowdin, Rev. Mod. Phys. 36, 966 (1964).

Downloaded 29 Nov 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where
DO (m)u={au(S, $) | 7| ei(S, S)).

The product function ¢ (%, S) determines a two-row
tableau which may be taken as the conjugate of T, 7.
We see that the elements of P of T are such that
¥ (n, S)=y¢(n, §) and hence D®(xp)n=1, and
Gp for en™ is at least P of 7. But this is sufficient to
prove that en®=0PNP for T. Taking the conjugate

we obtain exactly
€W = ey =9NPN

or Eq. (1). For this reason use of the projector §N.PN
for T is equivalent to using a spin projection operator
on a single Slater determinant with M =S. McIntosh®®
has obtained an essentially equivalent result by a dif-
ferent method. The operator 8/ PNP gives no such
simple result, of course. It may be observed also that
¢’PNP and ONPN correspond to Goddard’s G1 and
GF methods, respectively.!

The operator 6N PN is interesting in another light,
since the result of its application to a product of spatial
functions is closely connected with a form of deter-
minantal wavefunction originated by Hartree!® and
used by Wigner.” The function

Y= Nuy(1)15(2) * + “t4n(m)

is just Hartree’s double determinantal function and it
is interesting that the further application of P gives a
function appropriate for a given spin.

IV. A GENERAL CHARACTERISTIC UNIT

In I it was mentioned that the most general function
of the correct symmetry that can be obtained from a
single product function is

V= 3 viXi| (), (10)
where X, are certain selected permutations from the
right coset generators of the Gp for e®. There are a
number of ways the X; in Eq. (10) may be chosen but
one of the simplest is by considering the various
standard tableaux [with or without repeated elements,
depending on (A)] and the permutation changing T
into the others. We may assume without loss of gen-
erality that if (A)#(u) the repeated functions are
in the first rows of T, then we have k={,,® standard
tableaux T3 (=T), Ty, +++, T and the permutations
oy such that
T10'1j= 0'1,'T,'.

If the tableaux are ordered in the standard fashion
(12), the relation

k
ONPN D yjo1;=0 (11)
=1

15 H, V. McIntosh, J. Math. Phys. 1, 453 (1960).
16 D, R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).
17 E, P, Wigner, Phys. Rev. 46, 1002 (1934).

G. A. GALLUP

implies v;=0. This result is shown in Appendix C.
Similar considerations apply to ¢’PNP. We may con-
struct an equivalence relation between the ¢y; and
certain of the right coset generators, since oy; is in some
coset of Gg and

GBO’]j=€GBXk,' l e|=1,

and it is evident that the X may be used in Eq. (11)
in place of the ¢1;.

The primitive characteristic unit ¢® has a rank 1.
This implies that any element of the algebra of the
form

pAC)
y=e 3 v;X;,

7=1

is essentially idempotent, i.e.,

¥=Ny,

in which y#£ %, in general. We may construct a form for
the most general Hermitian, primitive, characteristic
unit as yty/S(y), where f,S(v)/| G | is the coefficient
of the identity in

1 1w

2 1imXte®X,.
=1 k=1

S(v) can be written in matrix notation as

S(y) =+1Sv,

and it is easily shown that $ is a positive definite
matrix since the ¢*X; are linearly independent. We
shall denote y¥y/S(y) as E®(y), and examine more
closely its form. In general,

E9 () =(fw/|G) 2 P(r,m)m,  (12)
where P(vy, 7) is a rational expression involving
polynomials in ¢ in the numerator and S(y) in the
denominator. If we return to the our original idem-
potent ACK

eW=(fw/|G|) X a(m)m,

TaBLe IV, P(v, =) coefficients for general idempotent
for (2,1) of Ss.

™ P(y,m)
1 1
(12) (—n'—nre+3v)/S(v)
(13) G2y i) /S ()
(23) Grv—vra—v)/S(v)
(123) —3%
(132) —%

S(y) =vi*+nretved

Downloaded 29 Nov 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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we may write P(y, =) in terms of the @’s as

P(y,m)

=L Zk v e (X =1X;) ]/ Zk vi*na(Xi'X;). (13)
I Ef

Table IV give an example of E®(y) for the (2, 1)
representation of S;. Appendix A gives a method for
evaluating a(wx) for 6NPN. Equation (13) is more
general than our purposes require, since we have chosen
our coset generators from the class (1%%, 2¢). Thus,
these elements are involuntary, and the inverses are
unnecessary.

It is evident from the foregoing that the four com-
mon ways in which the spin-degeneracy problem may be
handled are completely equivalent. For purposes of
illustration let us assume we have a set of # one-
electron, spatial orbitals. As was shown by Léwdin
the Slater determinantal functions constructed from
these orbitals and the spin functions and corresponding
to points in the upper half of a “path diagram” yield
linearly independent functions after being subjected to
a spin projection operator. Thus, if the determinants
are denoted Dy, Dy, «++, D,

k
Os 2 7' Di="¥s, (14)
=1
is most general spin eigenfunction that can be formed
from the spatial orbitals given.

Larsson® has used another procedure. Let 6,
O;, +++, 6; be the %k pure spin eigenfunctions for »
fermions and spin .S, and ®(1, 2, - - -, #) be the product
of our # spatial orbitals. The function

k
\I’s=ulq’(1, 2, ey, n) Z ’y.',e,', (15)
=1
is the same as that given by Eq. (14), where <A is the
antisymmetrizer. The numbers v/’ and v, are related
by a linear transformation, of course.

Pauncz®® and Harris® have pointed out that sums of
various permutations of the @ in Eq. (15) multiplied
by just one O will when antisymmetrized give ¥g, viz.,

k
Vs=A0 D vi"1:®(1,2, +++, n), (19)
=1
and the v,;” are linearly related to v, and /.

The fourth method here under discussion for spin-

free operator yields

TW=E®(y)®(1,2,+++,n), (17)

which for a set v; linearly related to v/, vi’/, or v/’
will give an energy equal to that calculated from ¥
in Egs. (14), (15), or (16) for (u)= (2025 128),

185, Larsson, ‘“Calculations on the %S Ground State of the
Lithium Atom Using Wavefunctions of the Hylleraas Type,”
Uppsala Quantum Chemistry Group Tech. Note No. 197 (1967).

18 R, Pauncz, J. Chem. Phys. 43, S69 (1965).

® F, E. Harris, Advan. Quantum Chem. 3, 61 (1966).
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The forms given in Eqs. (15)-(17) are more easily
generalized to nonproduct functions for ®, of course.
We may say that for a given ®(1, 2, ++-, n) thereis a
best spin function Y ;¥:/0; for form (15) or a best
E® () for form (17) to give the lowest calculated
value of the ground-state energy. As an example it is
seen from I that the E@V(y) giving the “full” con-
figuration function for the allyl radical is

E@D(y)=31{140.901(12) —0.074(13) —0.826(23)

—1(123)—3(132)}. (18)

V. COMPARISON TO CI CALCULATIONS

Under certain circumstances it is advantageous to
look upon projected Hartree product (PHP) methods
as restricted CI calculations, when a fixed basis is used
for expanding the orbitals. The question arises: When,
if ever, is the projected SCF wavefunction equivalent
to a full CI wavefunction? As was seen in I, there is
equivalence for the = system of the allyl radical when
the calculation is based on three p orbitals. We can
make considerable progress toward answering this
question by noting that a sufficient condition for non-
equivalence is that the effective number of adjustable
parameters in the PHP scheme be less than the number
of independent functions constructable from the fixed
basis. For a calculation involving » electrons, # basis
functions in the fixed basis, a spin of .S, and no spatial
symmetry the number of independent parameters
Ny in E@ () (1) us(2) » « cta(n) is

25+1/ w41
Np=n(m—1)+ 271 ((n/z)—s>‘ (19)
The second term on the right of (19) is just the dimen-
sion of the vector ¥. The number of independent func-
tions Np is given in Appendix B as

2S+1< m—+1 )( m+1
m+1 \(n/2)+S+1/\(n/2)—S

The smallest number of functions is had when m=n
and

F=

). @

2541 n+1
Ny—Np=n(n—1)+ —n+1 ((n/Z)—S)
n+1
X[l_ ((n/2)+s+1>] ’
=n(n—1); S=n/2,
<0; S<(n/2)—1.

Thus there can never be equivalence if m=#n and the
system is not in one of the two highest multiplicities.
Therefore, the result for allyl is somewhat exceptional,
since the lowest multiplicity is the next from the
highest in any three-electron system.
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In considering PHP methods using a fixed basis for
the orbitals it is possible to view the trial function as a
sum of configurations with coefficients which are re-
stricted by various relations among them.?! As can be
seen from Eq. (20) the number of independent eigen-
functions of the spin increases rapidly with »# and m.
It is necessary to choose configurations in the CI
method in some manner, and the real test of the PHP
methods will be their comparison with such CI compu-
tations and with multiconfigurational SCF methods.?#
Such a computation is underway on H,.

VI. ORTHOGONALITY PATTERNS

For n>5 the number of terms in E® () is very large,
and it seems necessary with present day computing
equipment to make some assumptions which will have
a simplifying effect on the energy expression. One way
of doing this is to require that certain of the spatial
orbitals are orthogonal to one another. There seems to
be no a priori method based on energy values for
deciding which pattern is best since any such require-
ment is a restriction which except for one case will in
general raise the calculated energy. Therefore, the
desideratum is simplication of the energy expression.
Let us assume our # spatial orbitals are divided into p
subsets the ith containing /; orbitals. One has the

equation
Do li=n. (21)

We denote the kth member of the ith subset uy;
i=1,2, «++, p; k=1, 2, +++, [; and it is assumed that

(ir | irkr )= 830 A (8) (22)
that is, each function is orthogonal to every function
not in the same subset.

Functions with the property (22) can be used to
determine a certain set of conjugate subgroups of S,
and we will procede to define one of these. Let us
arrange the #; in dictionary order
U, U1z,

Ty May; Uar, Usz, oo 0, Usly,

Xoreos thpay U,y o0 0, Uplys

(¢a | GEW (v) | ¢a)

iG— 3 X Py, ws) (| Gli)ma | 0a)+ 12

G. A. GALLUP

and let the jth one be a function of spatial coordinates
7 and form a single-product function by multiplying all
of these together,

$a(1,2, - oo, my=un(Dwz(2) + + r0upy, (). (23)

An element of S, denoted = may operate on ¢¢ and we
may compute the inner product {($s|w¢a)= (r)s. If
none of the A(2). are zero then the set of 7 such that
(w)a#0 form a subgroup of Sa, in fact, just S;X
S1, X+ ++ XSy, or at least one conjugate to it.

In the following we shall use w5 to denote an element
of §1,X«++X Sy, and m, ¢, » etc., for any elements of S

We wish to evaluate the energy expression for a
Hartree product function as given by (23), that is

&= {pa| HEW (v) | da)/{pa | E¥ (v) | ¢a). (24)

We shall look at the normalization integral first. Using
Egs. (12) and (22) it is seen that

(0] E¥(v)¢a)=(fw/lIG|) Zs: Py, ms){$a| 75 | da),
(25)

with only 4!,!--+1,! terms. The spin-free Hamiltonian
H will be assumed to have only one- and two-particle
operators,

H=F+G

= Lot 2 gm

m<n

(26)

and we have immediately that
(¢a | FE® (v) | ¢a)
=(fw/|G|) 22 P(v, 7s)(¢a| Frs | ¢a), (27)
T8

since only the same permutations are non zero as in
Eq. (25). The two-electron operator G is only a slightly
more complicated. It is observed that the terms of G
are of two kinds, those for which m and # in gu, refer
to coordinates within the same subset in ¢4 and those
for which m and # are in different subsets. We will
symbolize the sum of all g.. totally within the ith
subset as G(2) and we let g(mi, m;); mi=1, 2, ++-, l;;
m;=1,2, -+, I; be a particular term of the second kind.
We then have

fo > 2 APy, ms) {ba | g(miy mi)ws | $a)

i, 8

+P['Y) (mim'j) WS](d’d I g(mt': m}') (mi’ mi) s l ¢d>})

1 The same can be said for the restricted Hartree-Fock treatment, but with even greater restrictions of the coefficients.

22T, L. Gilbert, J. Chem. Phys. 43, 5248 (1965).
% G, Das and A. C. Wabhl, J. Chenm. Phys. 44, 87 (1966).
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where (m., m;) is the permutation interchanging co-
ordinates m; and m; We now have

Il - oD (124 2— B2 I+ o o —12)

different permutations yielding nonzero integrals in
(28). This is less than »! in most cases of interest and
so the energy expression has been simplified as com-
pared to the general case.

The one case mentioned above for which assumed
orthogonality is not a restriction is for the operator
ONPN. The orthogonality pattern of the pairing
theorem®? may be assumed here with no effect on the
energy. For all other E®(y), assumed orthogonality
will effect the calculated energy.

APPENDIX A: EVALUATION OF a(r)

In this appendix we derive a formula for ¢(w) in the
idempotent §NVPN, based on the cycle structure of .
It is fairly evident that each cycle in = makes its own
contribution to the determination of a(7) independent
of the others, so we assume that « contains at least
one cycle of length I. We observe that a(r) is present
in the equation

ONPNxzNPN=a(r)NPN, (A1)

and e(r)=a(v'zv) where » is any element of N.
The cycle k= (41, 43, *++, %;) has one invariant under
transformations by ». We have the equation

(A2)

and it is observed that some of the interchanges may
contain entries from different columns of 7. We call
such an interchange a crossing, and it is obvious the
number of crossings is invariant to transformation by ».
We denote this number by #.(x). Some of the inter-
changes in (A2) may not be crossings so these are
elements of V. These may be permuted all to the left
(or right), and together form another element of N.
There exists an element of N, », which will bring «
to the form

vorvg t=2[1, (n/2) +S+1][(n/2)+S+1, 2]

where number of interchanges after » is #.(x) and » is
an element of N. Because of the formula

(%) (jk) = (ik) (3),
Eq. (A3) becomes
V(17 2)(2,3)°"

K= (111:2) (7'213) e (il—lil) ’

[1, (n/2)+S5+1]

X[2, (n/2)+S5+2]--+, (A4)
and « is equivalent to an element of N times one of the
AT, Amos and G. G. Hall, Proc. Roy. Soc. (London) A263,

483 (1961).
¥P.-0. Léwdin, J. Appl. Phys. Suppl. 33, 251 (1962).

Vo Kllo_l =

1213

1112

F16. 3. Tableau for the triplet case of 20 electrons.

2
3
4
5|16
-]
7
8
9

10

1

right coset generators. It is evident that the number
of independent crossings in « is 3#.(x) or 3[#.(x)H]
whichever is an integer, and this we denote by ¢.(x)
and let o(7) be the sum of ¢, for all cyclesin . If 7

has the cycle structure (121, 22, 398« ), then
a(1r) = (—1)”_"‘1_"‘3—'"1)(1-) ((n/2)+S)—1. (AS)
o(m)

As an example let us take the case where n=20,
S=1,

r=(1, 12, 2) (18, 19, 20) (3, 4, 16, 17, 11)
X (5,13, 6, 14, 7, 15),

and one has the tableau in Fig. 3. We need merely
count the number of times numbers for different
columns are adjacent in each cycle. Thus

S+1

o(m) = -+ + —I-———S

artagteee=3424+141=7,
11\
a(m)= +( )

APPENDIX B: NUMBER OF INDEPENDENT
FUNCTIONS FROM A FIXED BASIS

+Zﬁ

We give here a derivation of the formula for the
number of independent functions which can be con-
structed for » electrons from a fixed basis of m functions
which was used in Sec. V.

If the multiplicity is 251 then all product functions
must contain at least (#/2)+.S different spatial or-
bitals since otherwise the tableaux with repeated ele-
ments vanish. Let us choose %2 of the m functions
with (n/2)4S<k<n. There is a k-part partition of
n, (2%, 1) which shows that #—% functions must
be repeated when placed in the tableau (2®/2—S, 128),
There are (,2;) ways the pairing may be done for
each of the (') ways the & functions may be chosen
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from the m. The number of standard tableaux is just j=1, 2, «--, i/—1 columns for the #'th row and then

25+1 (

2k—n+1 )
2%k—n+1 !

E—S—(n/2)
so we must multiply these three numbers together and

sum over k from (n/2)-+S to n. Thus the total number
of independent functions Np is

e 2541 (m\f k) 2k—ntl
_ (2S+1)( m+1 )( m+1 )
(m+1) \(n/2)+S+1\(n/2)—S/"

APPENDIX C: LINEAR INDEPENDENCE

OF 6ONPNoy;

We here prove the theorem merely stated in Sec. IV
of the article that the quantities

9NPN0'1k; k=1, 2, "'7f(u) (Cl)

are linearly independent in the group algebra. We here
again define the oy Let T4, Ty, «++, Ty be standard
tableaux for which the kth one has the symbol (%) ;;
in the ith row and jth column. The tableaux T} are
assumed ordered as follows:

a(k)g=a(k):;

for the rows ¢=1, 2, «++, ’—1, all columns, and for the
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a(kyip<a(k)op if k<E.

Also we let P; and N;; i=1, « -+, f be the positive and
negative projectors corresponding to T It is easily
seen that if (%) ;> a(k)ij then a(k)j=oa(k) iy,
where necessarily />4 and j”<j’, i.e., this element
appears in a later row and earlier column of T%. It is
also easily seen because of this that (see also Ref. 12)

Nin=PjN,'=O; ]>’L (CZ)

Equation (C2) is the basis of our proof. Thus we ex-
amine

S
Z 'yk0N1P1N10'1k = 0,

k=1

(C3)

where oy is the permutation oy Tou=T;. Multiply-
ing each term in (C3) on the right by I in the form
ow(ow) ™! and on the left by PN, we get

0=0 Y yeoulNiPiNiPiN,,
%

I
=0"viouV PN +0 Z YiouVe PN PN,

k=I1+1
=0"v,0u4NsPiNy;  I=f. (C4)
As we let I=f, f—1, f—2, »-+, 1 in turn we see that

Y4, Y1, *+, 71 are each zero since onlViPilNp70.
Thus the quantities are linearly independent.
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Projected Hartree Product Wavefunctions. III. Comparison with the CI Method for H.*

R. C. Morrisonf anp G. A. Garrup

Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68508
(Received 9 July 1968)

Calculations of the energy of H, have been performed using both the projected Hartree-Fock (PHF)
method and a full CI method in the same basis for comparison of the two methods. It is discovered that
PHF can account for 869 of the correlation energy, whereas CI will account for 88%, of the correlation

energy.

1. INTRODUCTION

In two recent articles’? Gallup has given a spin-
free version®* of the projected Hartree-Fock (PHF)

* This article is based in part on a thesis submitted by R. C. M.
to the Graduate Faculty in the University of Nebraska in partial
fulfillment of the requirements for the Ph.D. degree.

t NASA Trainee 1966-1968.

1 G. A. Gallup, J. Chem. Phys. 48, 1752 (1968).

2 G. A. Gallup, J. Chem. Phys. 50, 1206 (1969), preceding
article.

3T, A, Matsen, Advan. Quant. Chem. 1, 597 (1964).

(1‘9 58.) D. Poshusta and R. W, Kramling, Phys. Rev. 167, 139

method originally suggested by Lowdin.® This is an
extension of the independent-particle model in which
optimization of the orbital functions in a different
orbitals for different spins (DODS) trial function is
done after the application of all projections necessary
to insure the correct symmetry. Thus it has been
emphasized by Goddard® and in the first paper of
this series, hereinafter denoted as (I)! that the use
of single-particle orbitals with spatial dissymmetry
and what might be called identity dissymmetry can

8 P.-0. Lowdin, Phys. Rev. 97, 1509 (1955).
8 W, A, Goddard, Phys. Rev. 157, 73, 81 (1967).
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