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Abstract. We consider the problem min {f(x)\x 201,  and propose algorithms of the form xk+, = 

[xt -akDkvf(xk)]+, where [ . I+  denotes projection on  the positive orthant, ak is a stepsize chosen by an 
Armijo-like rule and D k  is a positive definite symmetric matrix which is partly diagonal. We show that D k  
can be calculated simply on the basis of second derivatives o f f  so that the resulting Newton-like algorithm 
has a typically superlinear rate of convergence. With other choices of D k  convergence at a typically linear 
rate is obtained. The algorithms are almost as simple as their unconstrained counterparts. They are well 
suited for problems of large dimension such as those arising in optimal control while being competitive 
with existing methods for low-dimensional problems. The effectiveness of the Newton-like algorithm is 
demonstrated via computational examples involving as many as 10,000 variables. Extensions to general 
linearly constrained problems are also provided. These extensions utilize a notion of an active generalized 
rectangle patterned after the notion of an active manifold used in manifold suboptimization methods. By 
contrast with these methods, many constraints can be added or  subtracted from the binding set at each 
iteration without the need to solve a quadratic programming problem. 

1. Introduction. We consider the problem 

minimize f ( x )  

subject to x 2 0, 

where f :  R n  -, R is a continuously differentiable function, and the vector inequality 
x Z O  is meant to be componentwise (i.e., for x = ( X I ,  xZ ,  . - . , x n )  E R n ,  we write x LO 
if xi 20 for all i = 1, . . . , n ) .  This type of problem arises very often in applications; 
for example, when f is a dual functional relative to an original inequality constrained 
primal problem and x represents a vector of nonnegative Lagrange multipliers corres- 
ponding to the inequality constraints, and when f represents an augmented Lagrangian 
or exact penalty function taking into account other possibly nonlinear equality and 
inequality constraints. The analysis and algorithms that follow apply also with minor 
modifications to problems with rectangle constraints such as 

minimize f ( x )  

subject to b1 S x S 62, 

where b1 and b2 are given vectors. Problems ( 1 )  and ( 2 )  are referred to as simply 
constrainedproblems, and their algorithmic solution is the primary subject of this paper. 

In view of the simplicity of the constraints, one would expect that solution of 
problem (1) is almost as easy as unconstrained minimization of f. This expectation is 
partly justified in that the first order necessary condition for a vector f = ( f  I ,  . . . , f " )  
to be a local minimum of problem ( 1 )  takes the simple form 
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Furthermore the direct analog of the method of steepest descent takes the simple form 

where a k  is a positive scalar stepsize and for any vector z = ( z  ' ,  . , z n )  E R n  we denote 

The stepwise a k  may be chosen in a number of ways. In the original proposal of 
Goldstein [ I ]  and Levitin and Poljak [ 2 ] ,  a k  is taken to be a constant a (i.e., a k  =a, 
for all k ) ,  and a convergence result is shown under the assumption that a is sufficiently 
small and Vf is Lipschitz continuous. In general a proper value for 6 can be found 
only through experimentation. An alternative suggested by McCormick [ 3 ]  is to choose 
a k  by function minimization along the arc of points x k ( a ) ,  a Z O ,  where 

Thus a k  is chosen so that 

(6) f l ~ k ( f f k ) I  = p; f l x l , ( a ) I .  

Unfortunately the minimization above is very difficult to carry out, particularly for 
problems of large dimension, since f [ x k ( a ) ]  need not be differentiable, convex, or 
unimodal as a function of a even if f is convex. For most problems we prefer the 
Armijo-like stepsize rule, first proposed in Bertsekas [ 4 ] ,  whereby a k  is given by 

where mk is the first nonnegative integer m satisfying 

(7b) f ( x k )  - f [ x k ( P r n s ) l  2 g v f ( x k ) ' [ ~ k  - ~ k ( / . ? ~ s ) ] .  

Here the scalars s ,  p and a are fixed and are chosen so that s  > O ,  p E ( 0 , l )  and 
U E  ( 0 ,  k) .  In addition to being easily implementable and convergent, the algorithm 
( 4 ) ,  ( 7 )  has the advantage that when it converges to a local minimum x *  satisfying 
the standard second order sufficiency conditions for optimality (including strict com- 
plementarity) it identifies the binding constraints at x*  in a finite number of iterations 
in the sense that there exists such that 

(8) B ( x * )  = B ( x k )  V k  > k; 
where, for every x  E Rm,  B ( x )  denotes the set of indices of binding constraints at x ,  

Minor modifications of the proofs given in [ 4 ]  show that the results stated above 
hold also for the algorithm 

where Dk is a diagonal positive definite matrix, and ak is chosen by ( 7 )  where now 
x k  ( a )  is given by 
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For this it is necessary to assume that the diagonal elements d:,  i = 1, . . - , n of the 
matrices Dk satisfy 

where d and d are some positive scalars. 
While it is often possible to achieve substantial computational savings by proper 

diagonal scaling of Vf as in ( lo) ,  the resulting algorithm is typically characterized by 
linear convergence rate [4], [22]. Any attempt to construct a superlinearly convergent 
algorithm must by necessity involve a nondiagonal scaling matrix Dk which is an 
adequate approximation of the inverse Hessian v2f(xk)-', at least along a suitable 
subspace. At this point we find that the algorithms available at present are far more 
complicated than their unconstrained counterparts, particularly when the problem has 
large dimension. Thus the most straightforward extension of Newton's method is given 
by 

[I  2) xk+1 = ~ k  +ak(-fk -xk), 

where fk  is a solution of the quadratic program 

minimize Vf(xk)' ( X  - xk) +$(x - x ~ ) ' v ~ ~ ( x ~ ) ( x  -xk)  
(13) 

subject to x 2 0, 

and ak is a stepsize parameter. There are convergence and superlinear rate of conver- 
gence results in the literature regarding this type of method (Levitin and Poljak [2], 
Dunn [5]) and its quasi-Newton versions (Garcia-Palomares and Mangasarian [6]); 
however, its effectiveness is strongly dependent upon the computational requirements 
of solving the quadratic program (13). For problems of small dimension problem (13) 
can be solved rather quickly by standard pivoting or manifold suboptimization 
methods, but for large-dimensional problems the solution of the quadratic program 
(13) by standard methods can be very time consuming. Indeed there are large-scale 
quadratic programming problems arising in optimal control, the solution of which by 
pivoting methods is unthinkable. In any case the facility or lack thereof of solving the 
quadratic program (13) must be accounted for when comparing method (12) against 
other alternatives. 

Another possible approach for constructing superlinearly convergent algorithms 
for solving problem (1) stems from the original gradient projection proposal of Rosen 
[7] and is based on manifold suboptimization and active set strategies as in Gill and 
Murray [8], Goldfarb [9], Luenberger [lo] and other sources, (see Lenard [ l l ]  for 
up-to-date performance evaluation of various alternatives). Methods of this type 
are quite efficient for problems of relatively small dimension, but are typically unattrac- 
tive for large-scale problems with a large number of constraints binding at a solution. 
The main reason is that typically at most one constraint can be added to the active 
set at each iteration, so if, for example, 1,000 constraints are binding at the point of 
convergence and an interior starting point is selected, then the method will require 
at least 1,000 iterations (and possibly many more) to converge. While several authors 
[8], [lo] have alluded to the possibility of bending the direction of search along the 
constraint boundary, the only specific proposal known to the author that has been 
made in the context of the manifold suboptimization approach is the one of McCormick 
[12] and it does not seem particularly attractive for large-scale problems. (The 
quasi-Newton methods proposed by Brayton and Cullum [13] incorporate bending 
but simultaneously require the solution of quadratic programming subproblems.) 
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Manifold suboptimization methods require also additional computation overhead in 
deciding which constraint to drop from the currently active set. For the apparently 
most successful strategies (Lenard [ l l ] )  which attempt to drop as many constraints 
as possible this overhead can be significant and must be taken into account when 
comparing the manifold suboptimization approach with other alternatives. 

The algorithms proposed in this paper attempt to combine the basic simplicity 
of the steepest descent iteration (4), (7) with the sophistication and fast convergence 
of the constrained Newton's method (12), (13). They do not involve solution of a 
quadratic program thereby avoiding the associated computational overhead, and there 
is no bound to the number of constraints that can be added to the currently active 
set thereby bypassing a serious inherent limitation of manifold suboptimization 
methods. The basic form of the method is 

where 

Di, is a positive definite symmetric matrix which is partly diagonal, and ak is a stepsize 
determined by an Armijo-like rule similar to (1) that will be described later. The 
convergence and rate of convergence properties of this method are discussed in 3: 2. 
A key property of the method is that under mild assumptions it identifies the manifold 
of binding constraints at a solution in a finite number of iterations in the sence of (8). 
This means that eventually the method is reduced to an unconstrained method on 
this manifold and brings to bear the extensive methodology and analysis relating to 
unconstrained minimization algorithms. 

In 3: 3 we discuss how the method (14), (15) can form the basis for constructing 
algorithms for general linearly constrained problems of the form 

minimize f (x) 

subject to bl  5 Ax S bz. 

The main idea here is to view problem (16) locally as a simply constrained problem 
via a transformation of variables. For example, if the matrix A is square and invertible 
problem (16) is equivalent to the problem 

minimize h ( y ) A  f ( ~ - ' ~ )  

subject to bl d y 5 b2, 

via the transformation 

y = Ax. 

A similar approach based on an active set strategy is employed when A is not square 
and invertible. The ideas are similar to those involved in manifold suboptimization 
methods where a linear manifold is selected as a "local universe" for the purposes of 
the current iteration. In our algorithms we take a suitably chosen rectangle (i.e., a set 
described by upper and lower bounds on the variables) as a "local universe" instead 
of a manifold. 

Finally in 3: 4 we provide results of computational experiments with large scale 
optimal control problems some of which involve several thousand variables. 

Throughout the paper we emphasize Newton-like methods as prototypes for 
broad classes of superlinearly converging algorithms that fit the framework of the 
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paper. We often make positive definiteness assumptions on the Hessian matrix of f 
in order to avoid getting bogged down in technical details relating to modifications 
of Newton's method such as those employed in unconstrained minimization [14]-[16] 
to account for the possibility that v2f is not positive definite. Quasi-Newton, approxi- 
mate Newton and conjugate gradient versions of the Newton-like methods presented 
are possible but the discussion of specific implementations is beyond the scope of the 
paper. More generally it may be said that the nature of the algorithms proposed is such 
that almost every useful idea from unconstrained minimization can be fruitfully adapted 
within the constrained minimization framework considered here; however, the precise 
details of how this should be done may involve considerable further research and 
experimentation. 

The notation employed throughout the paper is as follows. All vectors are 
considered to be column vectors. A prime denotes transposition. The standard norm 

i 2 1 / 2  in Rn is denoted by 1 . 1 ,  i.e., for x = ( x l ,  . . , x n )  we write 1x1 = [ ~ ~ - , ( x  ) ] . The 
gradient and Hessian of a function f : R n  + R  are denoted by Vf and v2f respectively. 

2. Algorithms for minimization subject to simple constraints. We consider first 
the problem min { f ( x ) l x  2 0 )  of ( 1 ) .  Any vector f 2 0  satisfying the first order 
necessary condition (3) will be referred to as a critical point with respect to problem 
( 1 ) .  We focus attention at iterations of the form 

x k + 1  = [ x k  -ffkDkvf(xk)l+, 

where Dk is a positive definite symmetric matrix and ak is chosen by search along the 
arc of points 

It is easy to construct examples (see Fig. 1) where an arbitrary positive definite choice 
of the matrix Dk leads to situations where it is impossible to reduce the value of the 
objective by suitable choice of the stepsize a  (i.e., f [ ~ k ( ( ~ ) ] Z f ( x k ) ,  b'ff 2 0 ) .  The 
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following proposition identifies a class of matrices Dk for which an objective function 
reduction is possible. Define for all x 2 0 ,  

We say that a symmetric n x n matrix D with elements dii is diagonal with respect to 
a subset of indices I c {1 ,2 ,  . , n )  if 

PROPOSITION 1. Let x 2 0 and D be a positive definite symmetric matrix which is 
diagonal with respect to I ' (x )  and denote 

(a) The vector x is a critical point with respect to problem (1)  if and only if 

(b) If x is not a critical point with respect to problem (1 )  there exists a scalar 6 > 0 
such that 

(20)  f [ x ( a : ~ ] < f ( x )  V a ~ ( 0 , ~ l .  

Proof. Assume without loss of generality that for some integer r we have 

I + ( x ) = { r + l ;  . - ,  n}.  

Then D has the form 

where fi is positive definite and d' > 0 ,  i = r + 1, . . . , n. Denote 

(22)  p = DVf ( x ) .  

(a) Assume x is a critical point. Then using (3), (17)  

These relations and the positivity of di ,  i = r + 1, . . . , n imply that 

p'=O V i = l ; - . , r ,  

 pi>^ V i = r + l ; . - , n .  

Since x i ( a )  = [x '  - ap i ]+  and x' = 0 for i = r+ 1, . . , n it follows that x i ( a )  = x i  for all 
i, and a 2 0. 

Conversely assume that x = x ( a )  for all a 20. Then we must have 
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Now by definition of Z+(x) we have that if x i  = 0 and ie! Z+(x) then af(x)/axi  5 0. This 
together with the relations above imply 

since by (21), (22), 

and is positive definite we have ~ ~ = , p i a f ( x ) / a x i  8 0 ,  and it follows that 

i a f (x )  
P =-= 0 V i = l ; . - , r .  

ax' 

Since for i = r + 1, . . , n, af(x)/axi > 0 and xi  = 0 ,  we obtain that x is a critical point. 
(b) For i = r + 1, . . , n we have af(x)/axi > 0 ,  x i  = 0 ,  and, from (21), (22), pi  > 0. 

Since x i (a )  = [ x i  -aPi]+ we obtain 

(23) x i=x i (a )=O VCYZO, i = r + l ; . . , n .  

Consider the sets of indices 

(24) 1 ~ = { i ~ x ~ > 0 o r x ~ = 0 a n d ~ ~ < O , i = 1 , ~ ~ ~ , r ) ,  

(25) 
i ~ ~ = { i ( x ~ = O a n d p  ~ O , i = l , . . - , r } .  

Let 

(26) 

Note that, in view of the definition of Zl, a1 is either positive or +m. Define the vector 
p with coordinates 

In view of (23)-(27), we have 

In view of (25) and the definition of Z'(x), we have 

and hence 

Now using (27) and (30), we have 
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Since x is not a critical point, by part (a) and (28), we must have x # x(a )  for some 
HHa > 0 and hence also, in view of (23), p' # 0 for some i E (1, . . . , r}. In view of the 
positive definiteness of and (21), (22) it follows that 

It follows from (31) that 

Combining this relation with (28) and the fact a, > 0 yields that P is a feasible descent 
direction at x and there exists a scalar CT > 0 for which the desired relation (20) is 
satisfied. Q.E.D. 

Based on Proposition 1 we are led to the conclusion that the matrix D k  in the 
iteration 

should be chosen diagonal with respect to a subset of indices that contains 

Unfortunately the set I+(xk) exhibits an undesirabie discontinuity at the boundary of 
the constraint set, whereby given a sequence {xk} of interior points that converges to 
a boundary point 2 the set I+(xk) may be strictly smaller than the set I+ ( f ) .  This 
causes difficulties in proving convergence of the algorithm and may have an adverse 
effect on its rate of convergence. (This phenomenon is quite common in feasible 
direction algorithms and is referred to as zigzagging or jamming.) For this reason we 
will employ certain enlargements of the sets I'(xk) with the aim of bypassing these 
difficulties. 

The algorithm that we describe utilizes a scalar E > O  (typically small), a fixed' 
diagonal positive definite matrix M (for example the identity), and two parameters 
p E ( 0 , l )  and a E (0, $) that will be used in connection with an Armijo-like stepsize 
rule. An initial vector x o z O  is chosen and at the kth iteration of the algorithm we 
have a vector xk 2 0. Denote 

(k + 1)st iteration of the Algorithm. We select a positive definite symmetric matrix 
Dk which is diagonal with respect to the set I; given by 

Denote 

Then xk+l is given by 

Actually the results that follow can be shown also for the case where M is changed from one iteration 
to the next in a way that its diagonal elements are bounded above and away from zero. 
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where 

and mk is the first nonnegative integer m such thatZ 

The stepsize rule (36), (37) (see Fig. 2) may be viewed as a combination of 
the Armijo-like rule (7) and the Armijo rule usually employed in unconstrained 
minimization (see, e.g., Polak [18]). When I; is empty the right-hand side of (37) 
becomes upmVf(xk)'pk and is identical to the corresponding expression of the Armijo 

UNSUCCESSFUL 
TRIAL STEP SIZES 

rule in unconstrained optimization, while if 1; = {1,2, . . . , n )  then inequality (37) is 
identical with (7). Note that for all k we have 

I: 3I+(xk)  

so the matrix Dk is diagonal with respect to I+(xk). It is possible to show that for all 
m 2 0 the right-hand side of (37) is nonnegative, and it is positive if and only if xk is 
not a critical point. Indeed since D k  is positive definite and diagonal with respect to 
1: we have 

while for all i E I:, in view of the fact af(xk)/axi >O, we have p i  > 0 and hence 

x ; -x ; ( ru)~0 VazO,  I ,  k = 0 , 1 , . . - ,  

This shows that the right side of (37) is nonnegative. If xk is not critical then it is 
easily seen (compare also with the proof of Proposition l(b)) that one of the inequalities 

'The results that follow can also be proved if ~ i , , ; ( ~ f ( x ~ ) / ~ x ' ) p ~  is replaced in ( 3 7 )  by 
yk xi,r, ( a f ( ~ ~ ) l a x ~ ) ~ ; ,  where yk =min {I, d k ]  and al, =sup {aJx;  -ap; ZO, V i t  I ; } .  This modification 
makes ( 3 7 )  easier to satisfy. 
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(38) or (39) is strict for a > 0 so the right side of (37) is positive for all m 1 0 .  A siight 
modification of the proof of Proposition l ( b )  also shows that if xk is not a critical 
point then (37) will be satisfied for all m sufficiently large so the stepsize ak is well 
defined and can be determined via a finite number of arithmetic operations. If xk is 
a critical point then, by Proposition 1 (a), we have xk = xk ( a )  for all x 2 0. Furthermore 
the argument given in the proof of Proposition l(a) shows that 

so both terms in the right side of (37) are zero. Since also xk = xk(a)  for all a 2 0 it 
follows that (37) is satisfied for m = 0 thereby implying that 

xk+l = x k ( l )  = xk if xk is critical. 

In conclusion, the algorithm is well defined, decreases the value of the objective 
function at each iteration k for which xk is not a critical point, and essentially terminates 
if xk is critical. We proceed to analyze its convergence and rate of convergence 
properties. To this end we will make use of the following two assumptions: 

(A) The gradient Vf  is Lipschitz continuous on each bounded set of Rn; i-e., given 
any bounded set S c Rn there exists a scalar L (depending on S )  such that 

(40) I V f ( x ) - V f ( y ) l ~ L \ x - y I  Vx ,  Y E S .  

( B )  There exist positive scalars A l ,  A2 and nonnegative integers ql, q2 such that 

where 

wk = (xk -[xk - M V f ( ~ k ) l + l .  

Assumption (A) is not essential for the result of Proposition 2 that follows, but 
simplifies its proof. It is satisfied for just about every problem likely to appear in 
practice. For example it is satisfied when f is twice differentiable as well as when f is 
an augmented Lagrangian of the type used for inequality constrained problems 
involving twice differentiable functions. Assumption ( B )  is a condition of the type 
commonly utilized in connection with unconstrained minimization algorithms. When 
ql  = q2 = 0,  relation (41) takes the form 

and simply says that the eigenvalues of Dk are uniformly bounded above and away 
from zero. 

PROPOSITION 2. Under Assumptions (A) and ( B )  above, every limit point of a 
sequence {xk) generated by iteration (35) is a critical point with respect to problem (1). 

Proof. Assume the contrary, i.e., that there exists a subsequence {xk)K converging 
to a vector f which is not critical. Since { f ( x k ) )  is decreasing and f is continuous it 
follows that { f ( x k ) )  converges to f (2) and therefore 

Since each of the sums in the right-hand side of (37) is nonnegative (cf. (38),  (39)),  
we must have 
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Also since i is not critical and M is diagonal we have l i  -[f -MVf(f)]'(#O, so 
(41) implies that the eigenvalues of {Dk)K are uniformly bounded above and away 
from zero. In view of the fact that Dk is diagonal with respect to I:, it follows that 
there exist positive scalars XI, i2 such that for all k E K that are sufficiently large 

af (xk) 0<hl--s -pk SA2- - af(xk) Vi  E I:, 
ax' ax 

We will show that our hypotheses so far lead to the conclusion that 

lim inf a k  = 0. 
k-w 
k € K  

Indeed, since f is not a critical poirit there must exist an index i such that either 

af(f) , f i > O  and - 
ax ' 

f i = O  and 

If i& I: for an infinite number of indices k E K then (47) follows from (43), (46), (48) 
and (49). If i E I: for an infinite number of indices k E K then for all those indices 
we must have af(xk)/axi > 0 so (49) cannot hold. Therefore from (48) 

af(f)>o.  i i > O  and - 
ax ' 

Since we have [cf. (39)] for all k E K for which i E I: 

it follows from (44) and (50) that 

lim [ x ~ - x : ( ~ ~ : I ] = o .  
k-w 
k s K  

Using the above relation, (45) and (50), we obtain (47). 
We will complete the proof by showing that {akIK is bounded away from zero 

thereby contradicting (47). Indeed in view of (46) the subsequences {xk)~ ,  ( P ~ ) K  and 
{xk (a)}K, a E [O, 11 are uniformly bounded so by Assumption (A) there exists a scalar 
L > 0 such that for all t E [0, 11, a E [0, 11 and k E K we have 

We have for all k E K and a E [0, 11 

f [ x k ( a ) ] = f ( ~ k ) + V f ( ~ k ) ' [ ~ k ( a ) - ~ k I  
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and finally by using (5 1) 

For ~ E I :  we h a v e x : ( a ) = [ x : - a p : ] ' 2 x : - a p :  a n d p : > O , s o O S x : - x : ( a ) S a p : .  
It follows using (45) that 

Consider the sets 

For all i  E IlWk we must have x i  > & I ,  for otherwise we would have i E I:. Since 
( f  - [ f  - MVf( f ) ] ' (  # 0 we must have limk,o,kEKinf E~ > 0 and E~ > 0 for all k. Let 
I  > 0 be such that I S  E ,  for all k e K, and let B be such that l P : l  S B for all i  and 
k E K. Then for all a E [0, FIB] we have x: ( a )  = x: - apL for all i E IiSk so it follows that 

AISO for all a 2 o we have x: -x: (a)  5 ap:, and since af(xk)/axi  s o for all i  e 1 2 . k ~  we 
obtain 

(55) 
af(xk) . I w [ x ; - x ; ( a ) l z n  -p;. 

i c t 2 . k  axi  is^^.^ ax' 

Combining (54) and (55), we obtain 

For all a e 0 we also have 

(x:  - x : ( a ) ( ~ a J p : (  V i  = 1,. . a ,  n. 

Furthermore it is easily seen using Assumption (B) that there exists A > 0 such that 

Combining the last two relations we obtain for all a 2 0 
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We now combine (52) ,  (53) ,  (56)  and (57)  to obtain for all a E [0, (FIB)]  and k E K 

Suppose a is chosen so that 

or equivalently 

Then we have from (58) ,  (59)  for all k E K 

This means that if (60)  is satisfied with p m  = a ,  then the inequality (37)  of the 
Armijo-like rule will be satisfied. It follows from the way the stepsize is reduced that 
ak satisfies 

This contradicts (47)  and proves the proposition. Q.E.D. 
It is interesting to note that the argument of the last part of the proof above shows 

that if the level set { x  ( f ( x )  5 f (xo), x 2 0) is bounded, then there exists a scalar ci > 0 such 
that, for every a E (0 ,  ci], the constant stepsize algorithm x k + ~  = x k ( a )  generates 
sequences { x k )  the limit points of which are critical points with respect to problem (1).  

We now focus attention at a local minimum x* satisfying the following second 
order sufficiency conditions. For all x 2 0  we denote by B ( x )  the set of indices of 
binding constraints at x, i.e., 

( C )  The local minimum x* of problem ( 1 )  is such that for some S >O, f is twice 
continuously differentiable in the open sphere {xllx -x*l<6),  and there exist positive 
scalars m l ,  m2 such that 

2 mllzl 5 z ' v 2 f ( x ) z  5 m2lzl 2 

(63)  
V x  such that lx -x*l<6 and r $ 0  such that z i  = 0 ,  V i  E ~ ( x * ) .  

Furthermore 

The following proposition demonstrates an important property of the algorithm, 
namely that under mild conditions it is attracted by a local minimum x* satisfying 
Assumption (C)  and identifies the set of active constraints at x* in a finite number of 
iterations. Thus if the algorithm converges to x* then after a finite number of iterations 
it is equivalent to an unconstrained optimization method restricted on the subspace of 
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binding constraints at x*. This property is instrumental in proving superlinear conver- 
gence of the algorithm when the portion of Dk corresponding to the indices i& 1: is 
chosen in a way that approximates the inverse of the portion of the Hessian of f 
corresponding to these same indices. 

PROPOSITION 3. Let x* be a local minimum of problem (1 )  satisfying Assumption 
(C).  Assume also that (B) holds in the stronger form whereby, in addition to (41),  the 
diagonal elements dk of the matrices Dk satisfy for some scalar > 0 

Then there exists a scalar t$>O such that if {xk} is a sequence generated by iteration 
(35) and for some index E we have 

(66) ( x c - x * ( s S ;  

then {xk) converges to x* and we have 

(67) I:  = B ( x k )  = B ( x * )  ~k 2 E+ 1. 

Proof. Since f is twice differentiable on {xlx -x*\ < S}, it follows that there exist 
scalars L>O and (0,  S ]  such that for all x, y with lx - x * l S S ,  ly - x * l s S l  we have 

I v f ( x ) - v f ( ~ ) l ~ L l x - ~ l .  

Also for xk sufficiently close to x* the scalar 

wk = lxk - [xk - M V f  (xk)I+\ 

is arbitrarily close to zero while, in view of (64), we have 

where is the ith diagonal element of M. It follows that for xk sufficiently close to 
x* we have 

x i  5 wk = E L  tli E B(x*) ,  

while 

x: > E~ Wig B(x*) .  

This implies that there exists Sz E (0,811 such that 

(68) B (x* )  = I: Wk such that lxk - x* (SS2 .  

Also there exist scalars E > 0 and 83 E (0,821 such that 

x: > T Wig B ( x * )  and k such that (xk -x*\ 5 83. 

By essentially repeating the argument in the proof of Proposition 2 that led to (61), 
we find that there exists a scalar 6 > 0 such that 

(69) ak 2 6 wk such that (xk - x * / s  S3. 

By using (65) and (68) it follows that 
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while there exists a scalar A > 0 such that 
2 

(71)  1 I P ; / ~ c A  2 I d n x r i /  yk S U C ~  that \ x ~ - x * \ L ~ ~ .  
i E B ( x * )  i E B ( x * )  axi 

Since af(x *) /ax i  > 0 for all i E ~ ( x * )  and af(x*)/axi  = 0 for all i &  B ( x * )  it follows from 
(68)-(71) that there exists a scalar S4 E (0,831 such that 

(72)  B (x* )  = B ( X ~ + ~ )  Vk such that lxk - x * ( s  S 4  

and 

(73)  - x * ( 5 S 3  Vk such that (xk - x * ( I s ~ .  

In view of (68) we obtain from (72) ,  (73)  

(74)  B (x* )  = B(xk+l) = I:+1 Vk such that Ixk - x * ~ s s ~ .  

Thus when ( x k - x * ( 5 S 4  we have ( X ~ + ~ - X * ~ S S ~ ,  B ( x * )  = B ( x ~ + ~ ) ,  and the (k +l)st  
iteration of the algorithm reduces to an iteration of an unconstrained minimization 
algorithm on the subspace of binding constraints at x*. From known results on 
unconstrained minimization algorithms (cf. [19, Proposition 1.121) and Assumption 
(C)  it follows that there exists an (open) neighborhood N ( x * )  of x* such that 
Ix -x*l< S4 for all x E N (x* )  and with the property that if xk+l E N ( x * )  and B ( X ~ + ~ )  = 

B(x*),  then xkt2€ N ( x * )  and, by (74), B(xk+z) = B(x*) .  This argument can be repeated 
and shows that if for some E we have 

x r ; ~  N(x* ) ,  B (xE)  = B(x*) ,  

then {xk )  + x * and 

x k e N ( x * ) ,  B ( x k ) = B ( x * )  V k z k :  

To complete the proof it is sufficient to show that there exists &>O such that if 
Ixk -x*I 5 8  then xk+l E N ( x * )  and B(xk+l )  = B(x*);Indeed by repeating the argument 
that led to (73) and (74), we find that given any S >O there exists a 8>0 such that 
if Ixk -x*lS 8 then 

By taking sufficiently small so that 

the proof is complete. Q.E.D 
Under the assumptions of Proposition 3 we see that if the algorithm converges 

to a local minimum x* satisfying Assumption ( C )  then it reduces eventually to an 
unconstrained minimization method restricted to the subspace 

Furthermore, as shown in Proposition 3, for some index E we will have 

This shows that if the portion of the matrix Dk corresponding to the indices i& I: is 
chosen to be the inverse of the Hessian of f with respect to these indices then the 
algorithm eventually reduces to Newton's method restricted on the subspace T. 
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More specifically, by rearranging indices if necessary, assume without loss of 
generality that 

where rk is some integer. Then Dk has the form 

where d ;  >0, i = rk + 1, . . . , n and Dk can be an arbitrary positive definite matrix. 
Suppose we choose Dk to be the inverse of the Hessian of f  with respect to the indices 
i = 1, . , rk, i.e., the elements [D;'Iii are 

By Assumption (C ) ,  v 2 f ( x * )  is positive definite on T so it follows from (76)  that this 
choice is well defined and satisfies the assumption of Proposition 3 for k sufficiently 
large. Since the conclusion of this proposition asserts that the method eventually 
reduces to Newton's method restricted on the subspace T a superlinear convergence 
rate result follows. This type of argument can be used to construct a number of 
Newton-like and quasilNewton methods and prove corresponding convergence and 
rate of convergence results. We state one of the simplest such results regarding a 
Newton-like algorithm which is well suited for problems where f is strictly convex 
and twice differentiable. Its proof follows simply from the preceding discussion and 
standard results on the unconstrained form of Newton's method so it is left to the 
reader. 

PROPOSIT~ON 4. Let f be convex and twice continuously differentiable. Assume 
that problem ( 1 )  has a unique optimal solution x* satisfying Assumption (C) ,  and that 
there exist positive scalars m l ,  m 2  such that 

Assume also that in the algorithm (32)-(37),  the matrix Dk is given by 

Dk  = H i 1 ,  

where Hk is the matrix with elements H f  given by 

~f = a2f (xk)  
otherwise. 

ax'ax' i- 
Then the sequence {xk} generated by iteration (35)  converges to x* and the rate of 
convergence of { ( xk  -x*I} is superlinear (at  least quadratic if v2f is Lipschitz continuous 
in a neighborhood of x*).  

Note that by making use of the result of Proposition 3 it follows that when f is 
a positive definite quadratic function, the algorithm of Proposition 4 solves problem ( 1 )  
in a finite number of iterations provided the unique solution x* satisfies Assumption (C) .  

The algorithm of Proposition 4 also has the property that, for all k sufficiently 
large, the initial unity stepsize will be accepted by the Armijo rule. Our computational 
experience suggests that the unity stepsize is also acceptable for the great majority 
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of iterations even before the binding constraints at the solution are identified. We did 
observe however some cases where it was necessary to reduce the initial unity stepsize 
several times before a sufficient reduction in the objective function value was effected. 
The most typical situation where such a phenomenon can occur is when the scalar qk 
defined by 

= m i n { l  G k = s u P { a ~ x ~ - a p ~ ~ 0 , x ~ > 0 , i ~ ~ ; )  

is small relative to unity. Under these circumstances some nonbinding constraint, that 
was not taken into account when forming the index set I;, is encountered after a 
small movement along the arc {xk(a) /a  > 0). As a result it may occur that the objective 
function value increases as a is increased from qk. A reasonable heuristic device to 
avoid a large number of function evaluations in such cases is to modify the line search 
so that if at any iteration a fixed number r of trial stepsizes 1, P, . . - , P'-' fail to pass 
the Armijo rule test then ?I, is computed and used as the next trial stepsize. 

There is another (infrequent) situation where a unity initial stepsize may be 
inappropriate when far from convergence, and the Armijo rule may need a large 
number of stepsize reductions before determining an acceptable stepsize. This situation 
can arise when the sets of indices {ilx: = 0, i$ I t }  and {ilx: = 0, <O, i$ 1;) are not 
equal, and as a result the initial direction of motion along the arc {xk(a)la 2 0 )  is not 
a Newton direction along any subspace. A difficulty of this type can be easily detected 
and can be typically corrected by combining the Armijo rule with some form of a line 
minimization rule. 

Extension to upper and lower bounds. The algorithm (32)-(37) described so far in 
this section can be easily extended to handle problems of the form 

minimize f (x) 

subject to bl 5 x 5 bz, 

where bl and bz are given vectors of lower and upper bounds with bl 5 bl. The set 
I; is replaced by 

and the definition of xk(a) is changed to 

where for all z E R" we denote by [z]" the vector with coordinates 

The scalar sk is given by ck = min {E, (xk - [xk - ~ V f ( x k ) ] # ( ) .  The matrix D k  is positive 
definite and diagonal with respect to I:, and M is a fixed diagonal positive definite 
matrix. The iteration is given by 

where ak is chosen by the Armijo rule (36), (37), with [xi -xi(/3")IC replaced by 
[xi -x:(pm)]". 

The preceding algorithm also makes sense if some of the upper bounds b; equal 
+a and some of the lower bounds b'l equal -a. This covers the case where only 
some of the variables xi are simply constrained by upper and/or lower bounds. 
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3. Extensions to general linear constraints. In this section we discuss briefly how 
the algorithms of the previous section can form the basis for constructing methods 
for solving the problem 

minimize f (x) 

subject to bl I Ax S 62, 

where f :  R n  -, R is a continuously differentiable function, A is an m x n matrix and 
61, b2 are given vectors. We denote by a: ,  j = 1 ,  . , m the rows of A and by b ~ , ~ ,  
b2,i, j = 1 ,  , m the coordinates of b1 and 62, respectively, so the constraint set is 
represented by the m inequality constraints 

By slight abuse of standard mathematical notation we allow the possibilities bl , ,  = -a 
and b2,, = +a. In this way each of the inequalities (86) may represent a two-sided 
inequality constraint ( - a < b 1 , ,  S b2,, < +a), a one-sided inequality constraint 
( - a = b l . ,  < b2,, < + a  or - a < b l , ,  < b2., = + a )  or no constraint at all ( 6 1 , ~  = -a, 
b2,, = + a ) .  When blSj = b2,, then (86) represents an equality constraint. We assume that 
problem (85) has at least one feasible solution. We denote for every feasible x 

We assume that for every feasible x the set of vectors 

is linearly independent. This is essentially a nondegeneracy assumption. It can be 
dispensed with at the expense of technical complications which are beyond the scope 
of the paper. In order to simplify the statement of the algorithm that follows we 
assume that the set of inequality constraints (86) includes the trivial inequalities 

for which ai is a unit coordinate vector and b l , ,  = -a, b2,, = + a .  The value of this 
somewhat unorthodox device will become apparent shortly. 

In the algorithm to be described, given a feasible vector xk obtained at iteration 
k, we select a subset Bk c { I ,  . . , m )  containing exactly n indices and satisfying the 
following two conditions 

(a) B (xk) c Bk. 
(b) The set of vectors { a j /  j E Bk} is linearly independent. 

Such a choice is always possible since the set of vectors {aj l jE B(xk)) is linearly 
independent by earlier assumption, and it is always possible to supplement the set 
B ( X ~  j k t h  a suitable subset of indices corresponding to the trivial constraints (89) so 
as to form a set Bk satisfying (a) and (b) above. However this may not be the only 
possibility and the manner in which the set Bk is formed is left open at this point. 
The set 

is referred to as the active generalized rectangle at iteration k. It plays a role similar 
to the one of the manifold of active constraints in manifold suboptimization methods. 
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By rearranging indices if necessary, we assume without loss of generality that Bk 
consists of the first n indices, i.e. Bk ={I, 2, . . n). Then A is written as 

where A: is the n x n  invertible matrix having a;,  j E Bk, as its rows. We partition 
similarly the vectors b,, b2; 

The idea of the algorithm is to consider at the (k + 1)st iteration the transformation 
of variables 

(91) y = A:x, 
by means of which the active generalized rectangle Xk of (90) is transformed into the 
(ordinary) rectangle 

while problem (85) is transformed into the problem 

minimize hk(y) Ifl(A:)-ly] 
(93) 

subject to y E yk, b t k  SA;(A:)-'~ 9 bi,k. 

Let yk = A:xk. By construction we have that the constraints 

are not binding at yk, so we temporarily ignore them and carry out an iteration of 
the method of the previous section in the space of variables y. It takes the form (d. 
(8 1 )-(84)) 

(954 Y k + l  = ~ k ( a k ) ,  

where 

(933) yk(a) = [yk - aDkVhk (yk)lr tla 2 0; 

Dk is a positive definite matrix which is diagonal with respect to the appropriate set 
of indices, and [ . I r  denotes projection on the rectangle Yk of (92). The stepsize a k  

is selected by means of the Armijo-like rule of the previous section subject, however, 
to the additional restriction that it belongs to the set of stepsizes 

that do  not lead to violation of the nonbinding constraints (94). Since this set contains 
an interval of the form [0, ti], where C? >O,  it is clear that the Armijo-like rule will 
yield a stepsize after a finite number of arithmetic operations. Taking into account 
the fact that the gradient of the transformed objective function is 

and making use of (91) we can finally write iteration (95) in terms of the original 
variables as 

(96) xk+i = (A: )-'[A :xk - a k ~ k  [ ( ~ t ) ' l - ' ~ f  (xk )I#, 
where xk+l= (A:)-lyk+1. The algorithmic process by means of which xk+l is obtained 
is illustrated in Fig. 3. 
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It may appear that iteration (96)  involves excessive computational overhead in 
view of the presence of the inverse (A:)-' .  However in many problems with special 
structure it is possible to compute this inverse very efficiently. For other problems we 
note that it is possible to organize the algorithm so that most of the indices in the 
sets Bk and Bk+ ,  are common. In fact at each iteration k typically at most one 
nonbinding inequality not belonging to the current active rectangle Bk will become 
binding at the next iteration, the exception being the unlikely situation where more than 
one of the constraints (94)  will become simultaneously binding at yk+'. In this case the 
matrices A :  and A:+, need only differ by at most one row and as a result the inverse 
(A:+l)-'  can beobtainedfrom (A:)-' by theHouseholdermodification ruleinvolvingonly 
0 ( n 2 )  arithmetic operations (see Gill and Murray [8 ,  p. 591). Note also that if a number 
(say nk)  of the trivial constraints (89)  participate in the formation of the active rectangle 
(90)  then the inverse (A:)-' can be formed by matrix inversion of order (n - nk) .  

The reader who is familiar with manifold suboptimization methods, as described 
for example in Gill and Murray [8 ] ,  will notice a strong similarity between the 
transformation process involved in these methods and the one employed above. The 
only essential difference is that in our method we use the active generalized rectangle 
Xk in place of the manifold of active constraints. The main advantage that algorithm 
(96)  offers over manifold suboptimization alternatives is that as many as n new 
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constraints may become binding in a single iteration while considerable flexibility is 
afforded in changing the active set of constraints. By contrast, in manifold suboptimiz- 
ation methods, barring exceptional circumstances, at most one new constraint will 
become binding in any single iteration while dropping currently active constraints 
must be carefully controlled. Thus a fundamental limitation of these methods is 
substantially overcome, the capability of attaining superlinear convergence is maintained 
and there is no need to solve a quadratic programming subproblem at each iteration. 

There are many issues relating to convergence, rate of convergence, active 
rectangle selection and implementation of the algorithm described in this section but 
their discussion properly belongs to a separate paper. We provide instead a specific 
superlinearly convergent Newton-like implementation of algorithm (96)  for the case 
where the constraint set is a simplex. 

Example (minimization on a simplex). Consider the problem 

minimize f ( x )  

n 

subject to x 2 0, 1 xi  = 1, 
i = l  

where we assume that the function f : Rn -, R is convex, twice continuously differentiable 
with everywhere positive definite Hessian matrix. Given a feasible vector xk let 

We consider the transformation of variables defined by 

thus implicitly forming an active rectangle consisting of the equation ly='=lxi = 1 and 
the inequalities x i  2 0, i # i. The inverse transformation is 

If we write this transformation as x = Tky, where Tk is the appropriate matrix, the 
problem is transformed into 

minimize hk(y)  f ( ~ k ~ )  

subject to y i  2 0 V i  # i, 

The last constraint is (by construction) inactive at the point yk = Tkxk, so it will be 
ignored in the iteration of the Newton-like method of 5 2. 

The first and second derivatives of the transformed objective function hk with 
respect to the variables y i  at yk are given by 
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The Newton-like iteration to be performed in the space of variables y  is a slight 
variation of the one of 0 2 (cf. Proposition 3 )  to account for the presence of the 
constraint y i  = 1. It takes the form described below. Let 

i 2 -1  where pi  = [ a 2 h k ( y k ) / ( a y  ) 1 . Let also 

and form the matrix Hk with elements H Z  given by 

Let 

Then y t + l =  y k ( f f k ) ,  where for all a h 0 

The stepsize at is given by ak = P m k ,  where m k  is the first nonnegative integer m  such 
that 

and 

1 - 1 Y : ( p m ) 2 0 .  
i f i  

The vector xk+ l  is then given by 

x:+1 = y i + l  V i # i, x : + ~  = 1 - 1 y : + l .  
i f i  

Similarly as for Proposition 3 ,  it is easily shown that this algorithm converges 
superlinearly to the unique (global) minimum of problem ( 9 7 ) .  The algorithm can be 
extended trivially to the case where, in addition to the nonnegativity constraints, there 
is a single equality or inequality constraint, as well as to the case where the constraint 
set consists of a Cartesian product of simplices. Similar algorithms can be written in 
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explicit form for problems with a large number of nonnegativity (or upper and lower 
bound constraints) and a small number of additional equality o r  inequality constraints. 
Newton-like algorithms of this type are particularly effective when the problem has 
special structure that facilitates the solution of the linear system of equations involved 
in implementing the basic iteration (cf. (98)). 

4. Application in discrete-time optimal control-computational results. The 
algorithms of the paper are particularly well suited for discrete-time optimal control 
problems involving a discrete time system of the form 

a cost functional of the form 

and simple constraints on the control vectors of the form 

We assume that the functions f i  : Rn+" + Rn, gi : Rn+" + R and G : R n  + R are twice 
continuously differentiable and N is a positive integer. Problems of this type are 
discussed for example in Varaiya [17], Polak [18], and Cannon, Cullum and Polak 
[20]. They are often characterized by large dimension, particularly when they arise 
from discretization of continuous-time optimal control and calculus of variations 
problems. 

Each state vector xi can be uniquely represented in terms of the control sequence 
u = {uo, . . , u ~ - ~ )  via the system equation (99) in the form 

where c$~ are the appropriate functions. The problem is then equivalent to 

N-1 

minimize J ( u )  = G[c$,(u)] + gi[c$i(u), ui] 
(101) 

i = O  

- 
subject to  bi 5 ui S bi, i = 0, . . . , N - 1, 

It is well known (see Mitter [21], Polak [18]) that the unconstrained Newton direction 
-[v2J(u)]-'VJ(U) for this problem can be efficiently computed by means of the Riccati 
equation. An algorithm such as the one of Proposition 4 can also be similarly 
implemented via the Riccati equation. A t  each iteration k we first determine the set 
of indices 1% [cf. (81)l. We then compute the Newton direction with respect to the 
control vector coordinates corresponding to  indices i@ 1: via the Riccati equation, 
while we compute the (diagonally) scaled steepest descent direction for the remaining 
coordinates corresponding to indices i E I F .  The overall algorithm is thus very similar 
to the one used for the corresponding unconstrained problem. It is well suited for 
large scale linear-quadratic problems with simple control constraints for which pivoting 
methods are apparently very cumbersome and inefficient. Our  computational example 
is of this type. 
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Consider the two-dimensional linear system 

The initial state xo = ( x ~ , ~ ,  x ~ , ~ )  is given and the control constraints are 

(103)  - 1 u i l  i = O , l ; . . , N - 1 .  

The problem is to minimize 

where the matrix Q and the scalar R are given by 

This problem arises from discretization of the continuous-time problem of minimizing 

subject to 

and 

If the interval [0 ,  TI is discretized into N intervals of length 

and the approximation 

is used, then problem (102)-(105) is a discretized version of problem (106)-(110). 
We show in Table 1 for a variety of values of N and s the number of iterations 

required by the method of Proposition 4 to obtain the exact solution for two initial 
states xo= ( 1 5 , 5 )  and xo= (5 ,  -10) and two initial control trajectories U P  = O  and 
U P  = 1. In all runs we chose E = 0.01, p = 0.5 and cr = All computations were 
performed in double precision and this was found essential for large values of N. The 
results demonstrate the ability of the method to identify the set of binding constraints 
in very few iterations. It is worth noting that while the table gives results for N only 
up to 10,000, an incomplete set of experiments was run with N = 25,000, and a very 
similar performance was observed for the method. 
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