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PROJECTED PRODUCTS OF POLYGONS
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(Communicated by Sergey Fomin)

Abstract. It is an open problem to characterize the cone of f -vectors of
4-dimensional convex polytopes. The question whether the “fatness” of the f -
vector of a 4-polytope can be arbitrarily large is a key problem in this context.

Here we construct a 2-parameter family of 4-dimensional polytopes π(P 2r
n )

with extreme combinatorial structure. In this family, the “fatness” of the f -

vector gets arbitrarily close to 9; an analogous invariant of the flag vector, the
“complexity,” gets arbitrarily close to 16.

The polytopes are obtained from suitable deformed products of even poly-
gons by a projection to R

4.

1. Introduction

1.1. f -vectors. The combinatorial structure of a d-dimensional convex polytope
is given by the incidences between its k-dimensional faces, for 0 ≤ k ≤ d − 1. In
particular one looks at the faces of dimensions 0, 1, d− 2, and d− 1, known as the
vertices, edges, ridges, and facets, respectively.

To get an overview over enumerative and extremal properties of the multitude
of combinatorial types of d-polytopes, one tries to classify their f -vectors, that is,
the d-tuples

f(P ) := (f0, f1, . . . , fd−2, fd−1) ∈ Z
d,

where fk denotes the number of k-dimensional faces of the d-polytope P . The
f -vector of any d-polytope is a point in R

d, but due to the Euler–Poincaré relation

f0 − f1 ± · · · + (−1)d−1fd−1 = 1 − (−1)d

the set of all f -vectors of d-polytopes

Fd :=
{
f = (f0, f1, . . . , fd−1) ∈ Z

d : f = f(P ) for a d-polytope P
}

has dimension d − 1 [7, Chapter 8].
The f -vector (and more so the flag vector of a d-polytope, as discussed below) not

only provides numerical data: it also encodes various extremal properties. So any
attempt to characterize the f -vectors of polytopes is closely linked to the analysis
and construction of extremal polytopes.
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For example, a d-polytope is simplicial if and only if its f -vector satisfies fd−2 =
d
2fd−1. Indeed, each facet of a d-polytope is bounded by at least d ridges, while every
ridge is in exactly 2 facets. Hence 2fd−2 ≤ d fd−1 is valid for all polytopes, and the
constraint is tight exactly if all facets are simplices. Thus simplicial polytopes are
extremal in the sense that they maximize a (linear) quantity among all f -vectors:
they maximize 2fd−2 − d fd−1.

In the study of f -vectors of d-polytopes, one tries to find all such linear inequal-
ities for the f -vectors, and to understand the extremal polytopes for which these
inequalities are tight.

My lecture notes [19] contain a more extensive discussion of the interplay between
f -vector theory and constructions of extremal polytopes that arises from this.

1.2. Flag vectors. Additional combinatorial information is contained in the flag
vector of a d-polytope, which in addition to the components fk of the f -vector also
records the numbers fk,� of incidences of k-faces with �-faces (that is, the numbers
of pairs (F, G) consisting of a k-face F contained in an �-face G, for k < �), the
numbers fk,�,m of chains of three faces F ⊂ G ⊂ H of dimensions k < � < m, etc.
The flag vector is an integral vector with 2d − 1 components; nevertheless, due to a
multitude of linear relations, the generalized Dehn-Sommerville relations [4], the set
of all flag-vectors has dimension only Fd − 1, where Fd denotes the d-th Fibonacci
number. In particular, for d ≤ 3 there is no additional information contained in
the flag vector, while for 4-polytopes the set of f -vectors is 3-dimensional, but the
set of flag vectors is 4-dimensional. So, there is indeed extra information contained
in, say, f03, while all the other components of the flag vector can be recovered from
f̃ = (f0, f1, f2, f3; f03).

It makes sense to treat the f -vector problem for each dimension separately. This
starts at d = 2, where the trivial answer is F2 = {(n, n) : n ≥ 3}.

1.3. f -vectors of 3-polytopes. According to Steinitz’ paper [16] of 1906, the
f -vectors of 3-polytopes are all the integral vectors that satisfy

f2 ≤ 2f0 − 4 and f0 ≤ 2f2 − 4

in conjunction with Euler’s formula, f1 = f0 + f2 − 2; see also [7, Section 10.3].
Since both inequalities are tight for the 3-simplex, with f(∆3) = (4, 6, 4), this
implies that F3 is the set of all integral points in a 2-dimensional polyhedral cone
with apex f(∆3), which is pictured in Figure 1.

Here the extreme cases, polytopes whose f - or flag vectors lie on the boundary of
the cone, are given by the simplicial polytopes (for which Steinitz’ first inequality
is tight) and the simple polytopes (second inequality tight). One can thus say that
“all (f -vectors of) 3-polytopes lie between the extremes of simple and of simplicial
polytopes.”

1.4. f -vector cones. For 4-dimensional polytopes, such a complete and simple
answer is not to be expected. Indeed, Fd is not just the set of all integral points
in a convex set, since some of the constraints, such as f1 ≤

(
f0
2

)
, are concave

rather than convex. Also, some of the 2-dimensional coordinate projections of F4

show “holes” that cannot be explained by such systematic inequalities; compare
Grünbaum [7, Section 10.4], Bayer [3], and Höppner and Ziegler [8].
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Figure 1. The f -vectors of 3-polytopes, graphed in the (f0, f2)-plane.

Thus, one heads for a more modest goal, the complete description of the closed
convex cone, with apex f(∆d), that is spanned by the f -vectors of d-polytopes:

cone(Fd) := topological closure of{
f(∆d) +

N∑
i=1

λi(f(Pi) − f(∆d)) : N ≥ 0, λ1, . . . , λN ≥ 0,

P1, . . . , PN d-polytopes
}
.

Equivalently, this is the solution set for the system of all linear inequalities that are
valid for the f -vectors of d-polytopes and are tight for the f -vector of the d-simplex.

1.5. The f -vector cone for 4-polytopes. The f -vector cone for 4-polytopes,
cone(F4), is a 3-dimensional convex cone. One can visualize it in terms of an
intersection with an affine hyperplane, which yields a 2-dimensional convex set;
equivalently, one can introduce projective coordinates for the cone, that is, suitable
ratios of linear quantities which vanish at the apex of the cone.

Here we use the projective coordinates introduced in [18],

ϕ0 :=
f0 − 5

f1 + f2 − 20
and ϕ3 :=

f3 − 5
f1 + f2 − 20

.

In terms of these quantities, we describe (and picture) our knowledge about the
f -vector cone of 4-polytopes. The known necessary conditions can be written as

(1) ϕ0 ≥ 0, ϕ3 ≥ 0, ϕ0 + 3ϕ3 ≤ 1, 3ϕ0 + ϕ3 ≤ 1, and ϕ0 + ϕ3 ≤ 2
5 .

The first two conditions are trivial, the second two have simplicial, resp. simple,
polytopes as extreme cases, and the last condition is a non-trivial bound that Bayer
[3] derived from a flag vector inequality, which in terms of the “toric g-vector” of
Stanley [15] reads “gtor

2 ≥ 0”; a rigidity-theoretic proof was obtained by Kalai [10].
Figure 2 represents the pentagon described by the five linear inequalities (1).

As indicated in the figure, four of its vertices are spanned by the (ϕ0, ϕ3)-pairs of
known classes of polytopes.
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Figure 2. The f -vector cone of 4-polytopes, graphed in projective
coordinates, (ϕ0, ϕ3).

There is some hope that the five linear inequalities of (1) represent a complete
description of cone(F4). This is true if and only if there exist polytopes whose
(ϕ0, ϕ3)-pairs approach the fifth vertex of the pentagon, that is, for which the sum
ϕ0 + ϕ3 is arbitrarily small. Equivalently, we want the fatness parameter

F (P ) :=
1

ϕ0 + ϕ3
=

f1 + f2 − 20
f0 + f3 − 10

arbitrarily large [18]. This observation has sparked a certain race for “fat” 4-
dimensional polytopes. The following table summarizes the main steps. Most of
the examples that appear there are 2-simple and 2-simplicial, with a symmetric
f -vector; the first infinite family of such polytopes was constructed by Eppstein,
Kuperberg and Ziegler [5]; a simple construction appears in Paffenholz and Ziegler
[12]. We call a polytope “even” if its 1-skeleton is a bipartite graph.

4-polytopes fatness property reference date

simple or simplicial < 3

24-cell 4.526 2-simple, 2-simplicial Schläfli [13] 1852

dipyramidal 720-cell 5.020 2-simple, 2-simplicial Geváy [6] 1991

neighborly cubical 5 − ε even Joswig and Ziegler [9] 2000

[E-construction] 5.048 2-simple, 2-simplicial Eppstein et al. [5] 2003

E(Cm × Cn) 6 − ε 2-simple, 2-simplicial Paffenholz [11] 2004

Projected products 9 − ε even here
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For example, the neighborly cubical 4-polytopes Cn
4 for n → ∞ yield the point

(0, 1
5 ) in the (ϕ0, ϕ3)-plane, and thus fatness arbitrarily close to 5.
The concept of “strictly preserving a face” used in the following theorem will be

explained in Section 3. (Compare the concept of faces in the “shadow boundary”
of a projection, e.g. in [2].)

Theorem 1.1 (Projected Products of Polygons). Let n ≥ 4 be even and r ≥ 2.
Then there is a 2r-polytope P 2r

n ⊂ R
2r, combinatorially equivalent to a product of

r n-gons, P 2r
n

∼= (Cn)r, such that the projection π : R
2r → R

4 to the last four
coordinates strictly preserves the 1-skeleton as well as all the “polygon 2-faces”
of P 2r

n .

Theorem 1.2. The polytopes π(P 2r
n ) have the f -vectors

(
4
r
, 4, 5 − 6

r
+

4
n

, 1 − 2
r

+
4
n

)
· 1
4
r nr.

For n, r → ∞ they yield the point (0, 1
9 ), in the (ϕ0, ϕ3)-plane, while their duals

yield (1
9 , 0). In particular, for each ε > 0 there are polytopes of fatness larger than

9 − ε.

Thus the known polytopes now span a hexagon, which is shaded in Figure 2.
A flag vector parameter that is similar to fatness, called complexity [18], is defined

by

C(P ) :=
f03 − 20

f0 + f3 − 10
.

All 4-polytopes satisfy C(P ) ≥ 3. Fatness and complexity are roughly within a
factor of 2: C(P ) ≤ 2F (P ) − 2 and F (P ) ≤ 2C(P ) − 2. In particular, it is not
known whether C(P ) can be arbitrarily large. Previously, the polytopes with the
largest known complexity were the “neighborly cubical polytopes” of Joswig and
Ziegler [9], of complexity 8−ε. Our present construction yields “neighborly cubical
polytopes” for n = 4, but for n, r → ∞ it yields complexity as large as 16 − ε.

In the following two sections, we review the main ingredients for the construction
of π(P 2r

n ). The construction that yields Theorem 1.1 is described in Section 4, with
a sketch of the proof for its correctness. The flag vectors of the polytopes π(P 2r

n )
are computed in Section 5, which yields Theorem 1.2. Detailed proofs, the com-
binatorial characterization of the resulting polytopes, possible extensions, further
remarkable aspects (such as the polyhedral surfaces of high genus embedded in the
2-skeleta of the resulting 4-polytopes; cf. [14]) as well as necessity of the restrictions
(e.g., that n must be even) are topics of current research and will be presented later.

Acknowledgements. The intuition for the construction given here grew from
previous joint work and current discussions with Nina Amenta, Michael Joswig,
Raman Sanyal, and Thilo Schröder.
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2. Products and deformed products

The combinatorial structure of the products of polygons (Cn)r is easy to describe.
These are simple 2r-polytopes, with f0 = nr vertices, f1 = rnr edges, and f2r−1 =
rn facets. In general, its non-empty faces are products of non-empty faces of the
polygons, so

∑2r
i=0 fit

i = (n + nt + t2)r.
The 2-dimensional faces of (Cn)r , and thus of any polytope combinatorially

equivalent to (Cn)r, may be split into two classes. There are rnr−1 faces that are
n-gons, to which we refer as polygons ; they arise as products of one of the n-gons
with a vertex from each of the other factors. There are also

(
r
2

)
nr quadrilaterals

that (in (Cn)r) arise as products of edges from two of the factors with vertices from
the others. Thus, in total (Cn)r has f2 = rnr−1 +

(
r
2

)
nr 2-faces.

In the case n = 4, the polygon 2-faces of (Cn)r are 4-gons, but we nevertheless
treat the r4r−1 polygons and the

(
r
2

)
4r quadrilaterals separately also in this case.

An inequality description for such a product polytope may be obtained as


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�
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�

V
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V

V



x ≤



�

�

�

�

�

�

�



,

assuming that V x ≤ b is a correct description for an n-gon. For this it is necessary
and sufficient that the row vectors vi of V are non-zero and distinct and that they
positively span R

2, that the components bi of b are positive, and that the rescaled
vectors 1

bi
vi are in convex position (the vertices of the polar of the polygon).

For this we say that a finite set of vectors v1, . . . , vk ∈ R
d positively spans if it

satisfies the following equivalent conditions:

(i) every vector x ∈ R
d is a linear combination of the vectors vi, with non-

negative coefficients;
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(ii) every vector x ∈ R
d is a linear combination of the vectors vi, with positive

coefficients;
(iii) the vectors vi span R

d, and 0 ∈ R
d is a linear combination of the vectors vi,

with positive coefficients (that is, the vectors vi are positively dependent).

In the following, we will need “deformed products.” (The deformations are more
general than the “rank 1” deformations as described in Amenta and Ziegler [1].)
For this, we look at systems of the form


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x ≤


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�3
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�
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�



.

Given any such left-hand side matrix for such a system, we can adapt the right-
hand side so that the resulting polytope is combinatorially equivalent to (Cn)r . For
this all components of bk have to be sufficiently large compared to b1, . . . , bk−1, for
k = 2, 3, . . . , r. (Compare [1] and [9].)

3. Projections

We will work with a rather restrictive concept of faces “being preserved under
projection.”

Definition 3.1 (Strictly preserving faces under projection). Let π : P → Q = π(P )
be a projection of polytopes. Then a face G ⊆ P is strictly preserved if

(i) its image π(G) is a face of Q,
(ii) the map G → π(G) is a bijection, and
(iii) the preimage of the image is G, that is, π−1(π(G)) = G.

In the definition, conditions (ii) and (iii) are both needed. Indeed, in the pro-
jection “to the second coordinate” displayed in our figure, the vertex v is strictly
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preserved, but the vertex w and the edge e are not: for w condition (iii) fails, while
for e condition (ii) is violated.

ew

vπ(v)

π(w)

P
Q

π

For simplicity, the following characterization result is given only in a coordina-
tized version, for the projection “to the last d coordinates.”

We say that a vector c defines the face G ⊆ P given by all the points of P that
have maximal scalar product with c. This describes exactly all the vectors in the
relative interior of the normal cone of G. If P is full-dimensional, this interior of
the normal cone consists of all the positive combinations of outer facet normals nF

to the facets F ⊂ P that contain G. (Compare [17, Sections 2.1, 3.2, 7.1].)

Proposition 3.2. Let π : R
e+d → R

d, (x′, x′′) 
→ x′′ be the projection to the last d
coordinates, and let P ⊂ R

e+d be an (e + d)-dimensional polytope, and let G be a
face of P . Then the following three conditions are equivalent:

(1) G is strictly preserved by the projection π : P → π(P ) = Q.
(2) Any c′ ∈ R

e arises as the first e components of a vector (c′, c′′) that de-
fines G.

(3) The vectors n′
F , given by the first e components of the normal vectors

(n′
F , n′′

F ) = nF to facets F of P that contain G, positively span R
e.

Proof. Here we only establish “(3) ⇒ (1),” which is used in the following.
If the vectors n′

F are positively dependent, then some positive combination of
the vectors (n′

F , n′′
F ) = nF yields (0, c′′) =: c. A point x ∈ P lies in the face

G ⊆ P if and only if its scalar product with each facet normal nF is maximal. This
happens if and only if ctx is maximal, that is, iff (c′′)tx′′ is maximal under the
restriction x′′ ∈ π(P ). Thus we have established that under the assumption (3),
π(G) =: Ḡ is a face of π(P ), and π−1(π(G)) = π−1(Ḡ) = G; that is, conditions (i)
and (iii) of Definition 3.1 are satisfied.

For part (ii) of Definition 3.1, we have to show that G → π(G) is injective.
Assume that x = (x′, x′′) and y = (y′, y′′) are points in G with π(x) = π(y), that
is, x′′ = y′′. For each normal vector nF = (n′

F , n′′
F ) we have nF

tx = nF
ty and

(n′′
F )tx′′ = (n′′

F )ty′′, which implies (n′
F )tx′′ = (n′

F )ty′′. But the vectors n′
F that

correspond to the various facets F that contain G are positively spanning in R
e,

which implies x′ = y′. �
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4. Construction

Proposition 4.1 (Construction for the proof of Theorem 1.1). For n ≥ 4 even
and r ≥ 2, let P 2r

n be defined by the linear inequality system
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

x ≤


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

.

Here the left-hand side coefficient matrix Aε
n,r ∈ R

rn×2r contains blocks of size
n × 2, where

V =
�

�

�

�0
�1
�0
�1 −→ V ε =

�
ε
0

�
ε
1

�
ε
2

�
ε
3
�

�

�

, W =
�

�

�

�0
�1
�0
�1 , U =

�

�

�

�0
�1
�0
�1 ∈ R

n×2,

with

v0 = (1, 0), v1 = (0, 0) = 0, w0 = (0, 1), w1 = (−3,− 2
3 ),

u0 = (− 31
4 , 1

2 ), u1 = (9,− 2
3 ).

The block V ε arises from V by an ε-perturbation:

vε
i =


(
1 − ε(n − 2 − 2i)2, ε(n − 2 − 2i)

)
for i = 0, 2, 4, . . . , n − 2,

ε
(
1 − ε(n − 2 − 2i)2, ε(n − 2 − 2i)

)
for i = 1, 3, 5, . . . , n − 3,

ε(−1, 0) = (−ε, 0) for i = n − 1

for a sufficiently small ε > 0. All entries of Aε
n,r outside the r + (r− 1)+ (r− 2) =

3r − 3 blocks of types V ε, W and U are zero.
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Let the right-hand side vector be such that b1 is given by b1,i = 1 for even i, and
b1,i = ε for odd i, and by bk = Mk−1b1 for sufficiently large M .

Then P 2r
n has the properties claimed by Theorem 1.1. In particular, it is a

deformed product of r n-gons, and all its polygon 2-faces survive the projection to
the last 4 coordinates.

Proof. The rows vε
i of V ε are indeed in cyclic order:

Moreover, rescaled as 1
bk,i

vε
i = 1

Mk−1εvε
i for odd i and as 1

bk,i
vε

i = 1
Mk−1 vε

i for even
i they are in convex position, if ε is small; so V εx ≤ bi defines a convex n-gon.
Thus for sufficiently small ε and sufficiently large M , the polytope P2r is indeed a
deformed product of polygons, as discussed in Section 2.

Now we show that for sufficiently small ε, all the polygon 2-faces of P 2r
n survive

the projection to the last 4 coordinates. For this, we verify that the left-hand side
matrix with V -blocks instead of V ε-blocks, which we denote by A0

n,r = An,r, satis-
fies the linear algebra condition dictated by Proposition 3.2(3). This is sufficient,
since the “positively spanning” condition is stable under perturbation by a small ε.

Any polygon 2-face G of the simple 2r-polytope P 2r
n is defined by the facet

normals to the 2r − 2 facets that contain G. The facet normals correspond to
the rows of the inequality system, and thus for the facet normals of a polygon 2-
face one has to choose two cyclically adjacent rows from each block (corresponding
to a vertex from each factor polygon), except from one of the blocks no row is
taken. Moreover, due to the structure of the matrices U , V , and W , in which rows
alternate, any choice of two cyclically-adjacent rows from a block yields the same
pair of rows (only the order is not clear, but it also does not matter).

Thus, to apply Proposition 3.2(3) we have to show:

If one of the r pairs of rows is deleted from the reduced matrix

A′
n,r =



�

�

�

�

�

�

�

�

�

�0

�1

�1

�0

�0

�1

�1

�0

�0

�1

�0

�0

�0

�1

�0

�0

�1

�1

�0

�0

�0

�1

�1

�0

�0



∈ R
2r×(2r−4),
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then the remaining 2r − 2 rows
(a) span R

2r−4, and
(b) have a linear dependence with strictly positive coefficients.

Let us establish (b) first. For this, let

αk := 2k + 2−k − 2 and βk := 2k + 5
42−k − 9

4 .

These sequences are designed to be non-negative, αk, βk ≥ 0 for all k ∈ Z, with
equality only for k = 0. Thus for (b) it suffices to verify that

For any 1 ≤ t ≤ r, the rows of A′
n,r are positively dependent with

coefficients αk−t for the even-index row from the k-th block, and
βk−t for the odd-index row from the k-th block,

since the (two) vectors in the t-th block thus get zero coefficients, so they may be
deleted from any linear dependence (with otherwise positive coefficients). Thus we
are led to the condition

αk−1v0 + αkw0 + βkw1 + αk+1u0 + βk+1u1 = 0,

which is needed to hold for k ≤ |r − 2|, but which we impose for all k ∈ Z. The
choice of vectors v0, w0, w1, u0, u1 is designed to satisfy this condition. Indeed,
except for the choice of a basis, which we took to be v0 = (1, 0) and w0 = (0, 1),
the configuration of five vectors v0, w0, w1, u0, u1 is uniquely determined by the
condition.

For property (a), we have to show that if one of the r pairs of rows is deleted
from the matrix A′

n,r, then the resulting matrix still has full rank. If the first or
the second pair of rows is deleted, then we still have the last 2r − 4 rows, and they
form a block upper triangular matrix, which has full rank since its diagonal block(

�1

�0
)

is non-singular. If a later pair of rows is deleted, then we are faced with the task
to show that the 2k × 2k matrices Mk of the form

Mk :=

 �

�

�

�

�

�

�

�

�

�1

�0 �0

�0

�1

�0

�0

�1

�0

�1

�1

�0

�0

�1

�0

�1

�0


∈ R

2k×2k

are non-singular. To verify this (without proving explicitly that detMk = (2k−1)2

3k ,
which might need combinatorial ingenuity) we use our knowledge about row com-
binations of Mk. Indeed, if we sum the rows of Mk with coefficients (α0, β0, α1, . . . ,
αk−1, βk−1), then this will result in the linear combination of the three rows of the
matrix

H3 =

(
�0

�1

�0

)
∈ R

3×2r

with the coefficients (−α−1,−αk,−βk), since v1 = 0. Similarly, if we sum the rows
of Mk with coefficients (α1, β1, α2, . . . , αk, βk), then we get a linear combination
of the same three rows, with coefficients (−α0,−αk+1,−βk+1). And if we use
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coefficients (α2, β2, α3, . . . , αk+1, βk+1) to sum the rows of Mk, then the result will
be a sum with coefficients (−α1,−αk+2,−βk+2). The coefficient matrix−α−1 −αk −βk

−α0 −αk+1 −βk+1

−α1 −αk+2 −βk+2


is non-singular for k ≥ 0: its determinant is 3

8 (2k − 1 + 2−k−2). Thus the full row
space of H3 is contained in the row space of Mk. In particular, we find the unit
vectors e2k−1, e2k ∈ R

2k in the row space of H3, and thus of Mk, and this allows
us to complete the argument by induction. �

5. Flag vectors

The following result includes Theorem 1.2. Note that its proof relies only on
the properties of π(P 2r

n ) that are guaranteed by the statement of Theorem 1.1; it
does not refer to the specific combinatorial type of the polytopes constructed in
Section 4, in our proof of Theorem 1.1.

Theorem 5.1. The 4-polytope π(P 2r
n ) has the flag vector

(f0, f1, f2, f3; f03) = (nr, rnr, 5
4rnr− 3

2nr+ rnr−1, 1
4rnr− 1

2nr+ rnr−1; 4rnr− 4nr)

= (4n, 4rn, 5rn − 6n + 4r, rn − 2n + 4r; 16rn − 16n) · 1
4nr−1.

Proof. We obtain f0 = nr and f1 = rnr from the products (Cn)r, which are simple
2r-polytopes with nr vertices. With the abbreviation N := 1

4nr−1 this yields
f0 = 4nN vertices and f1 = 4rnN edges for π(P 2r

n ).
The products (Cn)r have P := rnr−1 = 4rN polygon 2-faces. In the projection,

all these are preserved, in addition to some of the quadrilateral 2-faces.
The projected polytope has two types of facets. There are “prism” facets, which

involve two of the polygons, as well as “cube” facets, which in (Cn)r arise as prod-
ucts of three edges and r − 3 vertices, but contain no polygon 2-faces. Thus each
prism facet is bounded by two polygons, and each polygon lies in two prism facets.
Hence there are P = 4rN prism facets, as well as some number C ≥ 0 of cube
facets.

Now double counting of ridges yields 6C + (n + 2)P = 2f2. Thus with the Euler
equation we get C = 1

4 (r − 2)nr = (rn − 2n)N . Finally, counting the vertex-facet
incidences according to facets yields f03 = 8C + 2nP = (8rn − 16n + 8rn)N . �
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