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Projectile Breakup Effect on 6Li Elastic Scattering from 28Si 
and 40Ca Studied by Microscopic Coupled-Channels Method 
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The 6Li breakup is treated with the coupled·discretized-continuum-channels method. The 
ground and continuum states of 6Li are described by the microscopic a-d cluster model. 
Forward-angle cross sections are well reproduced. The breakup effect is strongly repulsive so 
as to shallow by half the too deep double-folded potential. 

In extensive applications of the double­
folding model la

) (DFM) to nucleus-nucleus 
scattering, 6Li scattering is known to be 
anomalously difficult to reproduce as far as 
use is made of the bare normalization factor 
of NR = 1.0 for the double-folded real poten­
tial between 6Li and target nuclei. 
Independently on targets and bomberding 
energies, the real part is required to be weak­
ened by about haWH) (NR""0.5~0.6) so as to 
fit the experimental data. 

It has often been said that the strong re­
normalization may be attributed to the 
breakup effect of 6Li nucleus which has a 
small a-d threshold energy of 1.47 MeV. In 
fact, Thompson and NagarajanS

) found re­
cently a large effect of the 6Li breakup on 
elastic scattering on the basis of the three­
body model with the adiabatic treatment6) of 
the 6Li breakup; the effect gives rise to a 
good fit to the data at forward angles. Their 
result suggests that the strong renormaliza­
tion is largely due to the breakup of 6Li ions. 
However, magnitude of the renormalization 
factor in DFM was not discussed because 
they took a-target and d-target optical poten­
tials and an a-d point-cluster wave function 
of 6Li instead of starting with a nucleon­
nucleon force and a microscopic 6Li wave 
function. Validity of the adiabatic approxi-
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mati on should be examined, because the ap­
proximation often overestimates the breakup 
effect6),7) due to neglecting an energy transfer. 

The purpose of the present paper is to 
make a microscopic coupled-channels (CC) 
calculation of 6Li scattering with 6Li-breakup 
channels taken explicitly into account in the 
framework of the coupled-discretized-con­
tinuum-channels (CDCC) method of Refs. 7) 
to 10), and to investigate the relation between 
the projectile breakup effect and the strong 
renormalization factor in DFM. 

Since it is desirable to construct the bound­
and continuum-state wave functions of 6Li as 
precisely as possible, we do it on the basis of 
the totally antisymmetrized a-d cluster mod­
el. Let cp<a) and cpl~) denote the internal wave 
functions of a and d clusters. The 1 + 

ground-state wave function of 6Li may be 
described by 

and the continuum-state wave function with 
the a-d relative momentum hk(h2 k2 /2f1.=c, c 
being the a-d c.m. energy) by 

Here, JI is the total antisymmetrization op­
erator. u~I) is the a-d relative wave function 
with the angular momentum I. 

In order to take the continuum 6Li-breakup 
channels into account in practical CC calcu-
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lations, we follow the framework of CDCC 
method.7)~IO) Namely, after calculating the 
tPlJM(6Li, k) for 0< k< kmax, we discretize the 
k-continuum into Nb bins with an equal width 
Llk and average the tPIIM(6Li, k) in each mo­
mentum bin; let denote the averaged wave 
packets by {¢lJM(6Li, i); i=I~Nb}. We 
then solve the relative motion between the 6Li 
and target nuclei within the usual CC frame­
work where the 6Li internal wave functions 
are given by tPwM(6Li, g.s.) and {¢lJM(6Li, 
i); i = 1 ~ Nb}. Validity of this type of CDCC 
method was extensively examined in Refs. 7) 

and 10). 

As for the point-nucleon density of the 
target nucleus, we take that of 28Si and 40Ca 
adopted in Ref. 2). 

The real part of the diagonal and channel­
coupling form factors in the CDCC method 
are microscopically calculated with the use of 
a nucleon-nucleon potential of the M3Y type la) 

and an additional delta-function potential 
which is regarded to approximate a part of 
the nucleon exchange effect; the potentials*) 
adopted are the same as those used in usual 
DFM studies. The imaginary part of the 
form factors are constructed by multiplying 
the real part (NR = 1.0) by a common con­
stant NI as often done in DFM studies. 

Now, let us discuss how to calculate the 
microscopic 6Li wave functions tPlJM(6Li) of 
Eqs. (1) and (2). The radial part of g>(a) and 
g>l~) are assumed to be given respectively by 
the internal wave functions of the (OS)4 and 
(OS)2 harmonic-oscillator shell-model con­
figurations with an oscillator constant mw/h 
=0.5 fm-2. The u~J) is assumed here to sat­
isfy the equation 

( 
h2 

11- K -2; /7 2 + Veff 

+ al.l W;?>- E )/l=K uFJ.=o , (3) 

*) The explicit form is given by Eqs. (ll) 

and (16) in Ref. 1a). Another case of Eqs. 00) 
and (6) gives almost the same final results of 
Figs. 3 to 5. 
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Fig.1. a-d scattering phase shifts for l=O, 1 and 
2 waves. The solid lines are given by the 
microscopic a-d cluster model. The dotted 
lines stand for the case of the a-d spin-orbit 
potential switched off. 

where K is the exchange overlap kernel and 
Veff( r )*) and al.l Ve(;?)( r) are effective central 

and spin-orbit a-d potentials, respectively, 
al.l being {J(J + 1) - l(t + 1) -1(1 + 1)} /2. 
Equation (3) is a modified type") of the equa­
tion of the orthogonality condition model '2) 
and is considered to be a good approxima­
tion l3

) of the resonating group equation for 
u~J). 

Veff and V~;?) are so chosen as to fit well 
the low energy part (E:S 15 Me V) of the a-d 
phase shifts (Fig. 1); also, the energies of the 

*) The nuclear part is chosen at V.,cl'r~!")( r) 
=vlexP{-(r/rl)2}+v2exP{-(r/r2)2} with v, 

=-102.4, rl=2.19, v2=46.2, r2=1.61 for 1=0, v, 
=-49.4, rl=2.19, v2=22.3, r2=1.61 for l=l and 
VI= -83.0, rl=2.38, v2=31.0, r2=1.85 for l=2 
(v's in MeV and r's in fm). 
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Fig. 2. Electron scattering charge form factors of 6Li. The solid lines are given by the 
microscopic a-d cluster wave functions of the ground and 0.71 MeV 3+ states. 

ground state and 3+ resonance at E=0.71 
Me V are fitted. 

The microscopic wave functions of the 
ground state and the 3+ resonance are suc­
cessfully examined by the elastic and in­
elastic electron scattering charge form fac­
tors (Fig. 2). The density of our 6Li ground 
state is very close to that adopted in Ref. 2). 

As for those a-d continuum states, we 
consider that, since the 6Li incident energies 
of 99 Me V and 156 MeV concerned in the 
present paper are rather high, the effect of the 
a-d spin-orbit potential must play a minor 
role in calculating the 6Li elastic scattering 
angular distribution. We therefore switch 
off the Vir::') in Eq. (3) and reconstruct the a-d 

wave functions (but note that the potential 
has been taken in the above examination). 

Due to this approximation, the calculated 
3+, 2+ and 1+ resonances in Fig. 1 become 
degenerate to a resonance at E "'" 2 MeV with 
the width of about 1 MeV. Taking this posi­
tion and width into consideration, we dis­
cretize the a-d continuum into two bins in 
each a-d partial wave. We take kmax = 1.0 
fm- I and therefore Llk=0.5 fm-I. In the 
light of the CDCC analysis7

) of d+ 5BNi scat-

tering at Ed=80 MeV, the present case kmax 
= 1.0 fm- I and Llk= 0.5 fm- I is considered to 
be a good approximation of the exact calcu­
lation at forward angles in rather high-energy 
6Li scattering. The a-d relative waves of l 

=0, 1 and 2 are taken in the following cal­
culation: We have verified that the effect of 
the l=3 and 4 waves is negligible for 6Li 
elastic scattering. Thus, the number of 
channels considered here amount to thirteen. 

Figure 3 illustrates the angular distribution 
of elastic 6Li+ 4°Ca scattering at E(6Li)=156 
MeV in ratio to the Rutherford cross section. 
The dashed line stands for the usual DFM 
calculation (NR=0.64 and Nr=0.68) with the 
use of our 6Li ground-state density. The 
dotted line which lies far above the experi­
mental data is a DFM result with NR = 1.0 
and Nr=0.68. The solid line shows the pres­
ent CDCC result with NR = 1.0 and Nr=0.68; it 
beautifully fits the data for ecm :S25". In 
order to see the breakup effect explicitly, we 
simply have taken the same imaginary poten­
tial as the DFM cases mentioned above and 
have not searched the best one which could 
improve the fit to the data at backward 
angles. Similar analysis is shown in Fig. 4 
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Fig. 3. Angular distribution of elastic 6Li scat­
tering from <oCa at E(6Li) = 156 MeV. Cal­
culated results by the present model (CDCC) 
and by the double-folding model (DF) are 
shown. The experimental data are from 
Ref. 14). 

for 6Lj +2·Si scattering at E(6Li) =99 MeV. 
It can then be said that the strong renor­

malization of NR to about half (repulsive 
effect) in DFM comes from the 6Li breakup 
effect (as far as 6(f}cm) for f}cm:S25" is con­
cerned). In order to clearly see the effective­
ly repulsive role of the 6Li breakup, we plot in 
Fig. 5 the Argand diagram of the elastic S­
matrix elements for the three cases of Fig. 3. 
We see that, for the scattering angular mo­
mentum L <: 30, the phases given by the eDee 
calculation are shifted clockwise (effectively 
repulsive) relative to those given by DFM 
(namely, the Nb=O case in the eDee) with 
NR = l.0 and N, = 0.68. In the surface region 
of the 6Li-target interaction, the breakup 
effect is repulsive since the grazing angular 
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Fig. 4. Same as Fig. 3 for 6Li scattering from 
2·Si at E(6Li)=99 MeV. The data are from 
Refs. 2) and 15). 

momentum is L:::e 35. It is to be noted in Fig. 5 
that the difference of the S-matrix elements 
themselves is so small between the eDee 
result with NR=l.O and N,=0.68 and the 
DFM result with NR = 0.64 and N, = 0.68. 

As for the adiabatic approximation of the 
6Li breakup, we have examined its validity 
with the use of the same three-body model of 
Ref. 5) and have found the approximation to 
be rather good at the energies considered 
here; the detailed discussion will be made in 
a forthcoming paper as well as discussion 
about roles of the individual 3+, 2+ and 1+ a-d 
resonance states and the off-resonance con­
tinuum states. Application to 7Li scattering 
is in progress. 

The authors would like to thank Professor 
M. Kawai and Mr. Y. Iseri for valuable dis­
cussions. 
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Fig. 5. Argand diagram of the elastic S-matrix elements for 6Li scattering from <·Ca. 
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