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Abstract

To address the ongoing global biodiversity crisis, governments have set strate-
gic objectives and have adopted indicators to monitor progress toward their
achievement. Projecting the likely impacts on biodiversity of different pol-
icy decisions allows decision makers to understand if and how these targets
can be met. We projected trends in two widely used indicators of population
abundance Geometric Mean Abundance, equivalent to the Living Planet Index
and extinction risk (the Red List Index) under different climate and land-use
change scenarios. Testing these on terrestrial carnivore and ungulate species,
we found that both indicators decline steadily, and by 2050, under a Business-
as-usual (BAU) scenario, geometric mean population abundance declines by
18–35% while extinction risk increases for 8–23% of the species, depending
on assumptions about species responses to climate change. BAU will therefore
fail Convention on Biological Diversity target 12 of improving the conservation
status of known threatened species. An alternative sustainable development
scenario reduces both extinction risk and population losses compared with
BAU and could lead to population increases. Our approach to model species
responses to global changes brings the focus of scenarios directly to the species
level, thus taking into account an additional dimension of biodiversity and
paving the way for including stronger ecological foundations into future bio-
diversity scenario assessments.

Introduction

Growing concerns over the loss of biodiversity and
the goods and services it provides to humankind have
prompted the United Nations to establish the Intergov-

ernmental Platform on Biodiversity and Ecosystem Ser-
vices (IPBES), to inform global environmental decision
making (Brooks et al. 2014). The main function of
IPBES is to produce regional and global assessment on
status, trends, and future scenarios of biodiversity and
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ecosystem services. These assessments will advise on the
policies required to achieve sustainable development
goals, including the Convention on Biological Diversity
(CBD) Aichi targets for 2020 and the CBD vision for
2050. These targets have an associated set of biodiversity
indicators to monitor progresses (Tittensor et al. 2014).

Both IPBES and the CBD require a framework for pro-
ducing projections about future trends in biodiversity loss
under alternative policy scenarios. Until now, such pro-
jections measured via biodiversity indicators adopted by
the CBD have been limited to a single study of African-
protected area scenarios (Nicholson et al. 2012).

In order for any biodiversity scenario projection to be
relied upon, it is important that the ecological response
models are known to provide accurate estimates of past
trends; surprisingly, there are no studies hindcasting
terrestrial ecological models from past to present for
models calibration and validation. Moreover, most biodi-
versity scenario studies have used indicators such as total
number of species derived from species-area curves (Van
Vuuren et al. 2006) and naturalness via Mean Species
Abundance (MSA; Alkemade et al. 2009) that do not use
species-specific responses to anthropogenic pressures.
Species-specific ecological models improve predictions of
ecological responses to global change by accounting for
life-history traits, and allow understanding which species
are at higher risk and why (Pearson et al. 2014).

Here, we assess the ecological impact of different
human development scenarios with species-specific
ecological models and two established species-level
indicators, the Red List Index (RLI; an aggregate mea-
sure of species’ extinction risk) and species Geometric
Mean Abundance, (GMA) an indicator equivalent to
the Living Planet Index (which is based on observed
trends of populations of vertebrates species) for 440
terrestrial mammalian carnivores and ungulates (89% of
the species in these groups). These two complementary
indicators have been adopted by the CBD to measure
progress toward global biodiversity targets (Butchart et

al. 2010). We validate our models through hindcasting
species distributions and biodiversity indicators from
1970 to the present and we provide confidence intervals
around past and future modeled trends. We conclude by
highlighting the step-changes required for achieving con-
servation goals for large mammals based on our scenario
projections.

Methods

Scenario storylines

The “Business-as-usual” (BAU) scenario explores the ef-
fects of economic growth, consumption patterns, and

energy mix in the absence of new policies (PBL 2012).
Growing human population and economic development
will increase the demand for food, energy, and other
essential goods, such as clean water, fibers, and wood.
These demands are satisfied by increasing agricultural
productivity and expanding agricultural land and fresh-
water consumption; by expanding fisheries and aqua-
culture; by increasing the use of fossil fuels and wood
products (PBL 2012). These trends largely satisfy hu-
man needs, reduce extreme poverty, and improve human
health. However, they also result in ongoing decline of
biodiversity measured as MSA (PBL 2012) and large in-
creases of greenhouse gas emissions.

An alternative scenario, “Consumption Change” be-
longs to a family of scenarios designed to achieve a set of
sustainable development goals on human well-being, cli-
mate change, and biodiversity simultaneously. Consump-
tion Change, does so by limiting meat intake per capita,
reducing waste in the agricultural production chain and
adopting a less energy-intensive lifestyle (PBL 2012). The
rapid adoption of these societal changes make this sce-
nario possible but ambitious (PBL 2012). Scenario as-
sumptions are in Table 1, trends in major land-uses pro-
jected for both scenarios are in Figures S1 and S2.

Climate change

Our baseline climate was an average of the observed bio-
climatic variables between 1975 and 2005. We considered
two Intergovernmental Panel on Climate Change - As-
sessment Report 4 climate scenarios: A1B, associated with
BAU and B1 associated with Consumption Change (PBL
2012). Raw monthly temperature minimum and maxi-
mum were obtained from http://climascopewwfus.org at
a resolution of 0.5° (Price et al. 2012). Standard biocli-
matic variables (Table S1) were generated using the “cli-
mates” package in R (VanDerWal et al. 2011).

Habitat loss

We used the outputs from Integrated Model to Assess
the Global Environment (IMAGE) version 2.5 (Bouwman
et al. 2006) as an estimate of the area converted to or from
cropland, pasture, plantation or forestry, in 24 world
macroregions at any time step. These estimates from the
IMAGE agroeconomic model were used as input into the
GLOBIO land-use change model to derive fractions of dif-
ferent land-cover and land-uses within 6’ grid cells (ap-
proximately 10 by 10 km at the equator) for the years
1970–2050 at decadal interval (Alkemade et al. 2009; Vis-
conti et al. 2011). The GLOBIO land-cover and land-use
data (see, e.g., in Table S6) were used together with the
relevant climate for projecting species responses to global
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Table 1 Assumptions of Business-as-usual and Consumption Change scenarios for the year 2050 (PBL 2012)

Assumption Business-as-usual Consumption Change

Access to food 250 million people globally have insufficient access to

food in 2050

Inequality in access to food due to income inequality

converges to zero by 2050

Consumption +65% energy consumption, +50% food consumption Meat consumption per capita levels off at twice the

consumption level suggested by a supposed healthy

diet (Stehfest et al. 2009) which would imply reducing

meat and egg consumption in all regions by 76–88%.

Waste Stable 30% of total production Waste is reduced by 50% with respect to BAU by 2030

Agricultural productivity Yield increase by 0.06% annually (+27% by 2050) In all regions, 15% increase in crop yields by 2050,

compared with the BAU scenario

Protected areas No further protected areas respect to 2010 17% of each of the 65 realm-biomes. Expansion allocated

close to existing agriculture to protect areas currently

most threatened by habitat loss

Forestry +30% in clear-cut, +35% plantation, –12.5% selective

logging. No reduced impact logging.

Forest plantations supply 50% of timber demand; almost

all selective logging based on reduced impact logging

by 2020.

changes from past to present, thereby validating our
model results against known trends (“model hindcast”
Supporting Information: S5), and to model the impacts
of future global change on large terrestrial mammals.

Species’ response to climate and land-use
change

We followed a hierarchical approach to model species
distribution (Pearson & Dawson 2003). Bioclimatic
envelope models were used to estimate species past,
present, and future extent of occurrence (EOO) re-
flecting the known relationship between climate and
species geographic range, (Soberón & Nakamura 2009).
Habitat suitability models were used to identify the areas
potentially occupied by the species within the EOO
(i.e., Extent of Suitable Habitat; ESH) based on habitat
preferences coded in the IUCN Red List (RL) database
(IUCN 2012b) and projected land-cover and land-use.

Species data

We focused on all extant terrestrial carnivore and un-
gulate species of the orders Carnivora, Cetartiodactyla,
Perissodactyla, and Proboscidea for which the geographic
range was known and available from the IUCN (IUCN
2012b), and sufficiently large to obtain an adequate sam-
ple of presence points for fitting bioclimatic envelope
models. In total, we projected the responses to climate
and land-use change impact of 440 of the 493 species in
these orders for which range data were available.

Bioclimatic envelope models

We simulated climate change effects on species distri-
bution by fitting bioclimatic envelopes at 30’ resolution
and by projecting spatial changes to this envelope at 10-
year intervals. We used seven statistical models with the
R package BIOMOD (Thuiller et al. 2009) to fit current
bioclimatic envelopes and to project these envelopes into
future climatic scenarios (see Supporting Information:
S2.1). The variables selected (Table S1) are those usu-
ally considered most important for modeling species dis-
tributions at large scale (Guisan & Zimmermann 2000).
We transformed the probabilistic output of these models
to a binary (presence/absence) output selecting for each
species and model the probability threshold that maxi-
mized True Skill Statistic TSS (Allouche et al. 2006). We
obtained a single model output by calculating the mode of
the seven binary values (presence/absence) derived from
individual models.

We accounted for species ability to track climate us-
ing two dispersal assumptions. The first represents a pes-
simistic scenario where species were unable to disperse
and adjust their EOO according to climate; hence species
could only lose suitable climate space within their present
EOO. In the second assumption, species were allowed
to track climate at the speed of one dispersal distance
per generation (see Supporting Information, S2.2). This
equals to assuming an intergenerational relay race to
track climate change. We also considered a climate adap-
tation scenario in which we assumed species to be able to
adapt locally to climate change and persist in their present
EOO wherever the habitat is suitable.
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Habitat suitability models

We used the IUCN Global Mammal Assessment habitat
suitability models (Rondinini et al. 2011; Visconti et al.
2011) to quantify the ESH for each species within a
species’ EOO. Each combination of land-cover, land-use,
and elevation within a grid cell was scored as either
suitable or not according to the land-cover and alti-
tudinal preferences of species and their sensitivity to
different land-uses reported by IUCN taxonomic experts
(Rondinini et al. 2011). The land-use classification system
was a modification of the 23 Global Land Cover 2000
adopted by the GLOBIO model which included grazing
areas and subclasses related to the type and intensity
of agriculture and forestry, yielding a total of 66 classes
(Table S5). For each species, suitable habitat within
the 6’ cells inside a species EOO was calculated as the
proportion of suitable land-cover/land-use within the
cell multiplied by the proportion of suitable altitude
within the cell. The ESH was the sum of all suitable
habitat within a species’ EOO.

The suitable area does not reflect the actual occurrence
of the species because parts might not be occupied due
to other biophysical, ecological, or anthropogenic fac-
tors, including habitat fragmentation and isolation. We
accounted for this by correcting the ESH with an occu-
pancy factor φ to derive the Area of Occupancy (AOO =
ESH∗φ). To account for uncertainty in this parameter, we
ran 1,000 Monte Carlo simulations in which φ was drawn
from a distribution U (0.1, 1).

Red List Index

The RLI shows trends in aggregate extinction risk of
species, as measured using the categories of the IUCN
Red List of Threatened Species, and ranges from 0 if all
species are Extinct to 1 if all are assigned the lowest pos-
sible extinction risk category (“Least Concern”) (Butchart
et al. 2007). RL categories are broad classes of extinction
risk (IUCN 2012a) assigned on the basis of criteria relating
to the size, structure, and trends in population and geo-
graphic range (IUCN 2012a). We estimated each species’
RL category at each time-step by comparing the projected
EOO, AOO, and estimated population size (number of
mature individuals) against RL criteria A2 (trends in
population size), B1 (EOO size), B2 (AOO size), C1 (small
and declining population), and D1 (very small popu-
lation). We followed IUCN guidelines (IUCN 2012a) to
assign each species to the following RL categories: Least
Concern, Near Threatened, Vulnerable, Endangered,
Critically Endangered, and Extinct (including Extinct in
the Wild), according to IUCN criteria and thresholds. To
project RL categories according to criteria C1 and D1, we

first estimated the potential global population size of a
species by multiplying the AOO by the average popula-
tion density of the species. To account for the uncertainty
in the realized density of the species and that mature
individuals are a fraction of the whole population, we
multiplied the observed and estimated mean density by
a correction factor δ (see Supporting Information: S4).
We drew 1,000 values of δ from a distribution U (0.1, 1)
and applied these values to Monte Carlo simulations
(together with φ that was sampled independently).
For each combination of socioeconomic scenario and
dispersal assumption, we thus obtained 1,000 time series
of EOO, AOO, and population size which we used to
calculate the RLI (see Supporting Information: S3.1).

After transforming RL categories into weights W from 0
(LC) to 5 (EX), we calculated the RLI following Butchart
et al. (2007)

RLIt = 1 −

S∑
s

Wc (s,t)

WEXS
, (1)

where W c(s,t) is the weight applied to category c of species
s at time t, S is the total number of species modeled, and
WEX is the weight applied to extinct species.

We also created spatial maps of RLI for 2010 and 2050
and its difference for each scenario and dispersal assump-
tion (see Supporting Information: S3.2).

Geometric Mean Abundance

The GMA at time t is the geometric mean across a group
of species S of the ratio between their population size at
time t and their population size in 1970. This is the equiv-
alent at the species to the LPI which is instead based on
trends of single populations (Collen et al. 2009).

GMAt = S

√√√√ S∏
s=1

ps,t

ps,1970
, (2)

where ps,t is the total expected population size of species
s at time t, across its whole EOO obtained by multiplying
the AOO of species s for its expected population density.

Indicator trends validation

We hindcasted species’ responses to global changes from
1970 to 2010 and compared the predicted and observed
trends in GMA and RLI for model validation and calibra-
tion (see Supporting Information: S5).

Results

When assuming that species can adapt locally to climate
change, for example, through phenotypic plasticity or
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Figure 1 Projected GMA (a, b, and c) and RLI (d, e, and f) for terrestrial carnivores and ungulates under two global socioeconomic scenarios. Business-

as-usual in red and Consumption Change in blue. (A and D) Species can adapt to climate change, (B and E) maximum dispersal under land-use and climate

change, (C and F) and no dispersal under land-use and climate change. Shading indicates 95% confidence intervals in RLI, the dark lines within the shading

represent themedian RLI values. The GMA trends do not show confidence intervals because, contrary to RLI, the correction factors for population density

and area occupied did not affect these indicators. This is because these factors were applied to obtain population estimates at both numerators and

denominator of Equation (2), thereby cancelling each other and generating only oneGMAvalue across all parameter tested in theMonte Carlo simulations.

The GMA and RLI values in 2010 vary depending on the dispersal assumption; this affected species range dynamics during the period 1970–2010 used

as “burn-in” phase thereby influencing GMA and RLI in 2010.

Figure 2 Spatial patterns of trends in Red List Index. (a and b) Bivariate plot showing spatial pattern in species richness and trends in the Red List Index

(d-RLI) between 2010 and 2050 under the BAU scenario, with land-use and climate change and assuming maximum dispersal (a) and no dispersal (b).

(c and d) Relative improvements in d-RLI for an alternative scenario, Consumption Change relative to Business-as-usual for year 2050 under maximum

dispersal (c) and no dispersal (d). Areas in white contain fewer than five species per grid cell modeled in 2010.

microevolution (Boutin & Lane 2014), their EOOs re-
main stable, and only the area occupied within varies due
to land-use and land-cover changes. Under a combina-
tion of this assumption and the BAU scenario, we found
a steady global decline in mean population abundance
of large mammals over the next 40 years (Figure 1a).

The 18% projected GMA decline until 2050, however
is comparable to the rate observed in the last 40 years
(Figure 3b), therefore it does not lead to changes in
RL categories, which require an increase in the rate of
decline (Figure 1d). When assuming that species cannot
adapt locally to climate change, we found a decline in
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the GMA in the period 2010–2050 of 31–34%, assuming
respectively that species disperse to their maximum phys-
iological capacity, or cannot disperse at all (Figure 1b and
c). Extinction risk increased by at least one category for
21–23% of the species. The RLI is projected to decline by
0.055–0.0582 points (Figure 1e and f) which equates to
27.5–29.1% of the species moving one RL category closer
to extinction over the time period, a trend comparable
to that of the last 40 years (Di Marco et al. 2014). In the
BAU scenario, climate change is predicted to outpace the
ability of many species to shift their distributions even
under the maximum physiological dispersal assumption
(Figure 1b and e, Supporting Information: S2.2).

The Consumption Change scenario, regardless of
assumptions concerning climate change impact and
dispersal, results in an initial improvement and then
stabilization in the RLI and GMA until 2030 brought
about by habitat regeneration and human-driven habitat
restoration assumed for this scenario (PBL 2012). When
accounting for species responses to climate change, this
initial improvement is followed by a decline due to
the later onset of EOO contractions caused by climate
change (Figure 1b, c, e, and f); which poses at risk the
achievement of long-term conservation goals.

The overall trends shown by the RLI do not follow the
same monotonic decline as the GMA for the BAU sce-
nario. As the rate of habitat loss slows down toward 2050
in the BAU scenario, these species decline more slowly,
eventually qualifying for lower categories of extinction
risk under RL criteria A and C (Figure 1d and e). This
leads to an improvement in the RLI trend, which con-
trasts with the GMA trend, in which the magnitude of
decline reflects the total reduction in population abun-
dance of the set of species by 2050.

Under the BAU scenario, increases in species extinction
risk (i.e., declining RLI trends) are predicted in all regions
of high-current mammal richness (Figure 2, Figure S6).
However, particularly steep declines are predicted in
the Amazon, a region with very low spatial climatic
gradients that is predicted to experience no-analog future
climates (Williams et al. 2007) and with a high richness of
mammal species whose dispersal abilities are insufficient
to keep pace with projected climate change (Schloss et al.
2012). Large declines are also predicted in sub-Saharan
Africa under all scenarios. This hotspot of carnivore
and ungulate species diversity is predicted to double its
human population size and experience a rapid increase in
per-capita growth rate from 2030 leading to a tripling of
per-capita calorie consumption, and rapidly reducing the
extent of natural vegetation (PBL 2012). Insular South-
east Asia, which holds many currently threatened and
restricted-range species (Schipper et al. 2008), due to the
highest rates of deforestation globally (Hansen et al. 2013;

Abood et al. 2014) is also expected to face an increase
in overall extinction risk under the BAU scenario due
to continued deforestation (PBL 2012). Improvements
in extinction risk are expected in continental South-East
Asia due to the slowdown of deforestation with respect
to the past 40 years (Figure S6). Compared with the
BAU scenario, Consumption Change reduces aggregate
extinction risks under all dispersal assumptions. Reduc-
tions are more pronounced in the tropics (Figure 2c and
e), driven by measures to reduce deforestation, such as
reduced meat consumption, reduced impact logging, and
setting aside areas for protection (PBL 2012).

When comparing modeled and observed responses to
recent (1970–2010) land-use and climate change, we
found that the modeled GMA is within the large con-
fidence intervals of the observed LPI for the subset
of species for which population trends were available
(Collen et al. 2009) (Figure 3a). Aggregate extinction risk
for the period 1996–2008 (corresponding to the two pub-
lished global mammal assessments), was estimated accu-
rately and without bias after accounting for all uncertain-
ties in parameters and models (Figure 3b).

Discussion

Our analyses show that a scenario with aggressive policies
to eradicate hunger, ensure universal health, and access
to modern energy can be compatible with short-term
biodiversity goals. This is the first quantitative analy-
sis in demonstrating that these potentially conflicting
goals are not mutually exclusive. These ambitious goals
will require rapid and widespread implementation of
sustainable production practices, for example, adoption
of reduced impact logging and sustainable agricultural
intensification to increase crop yields. It will also require
changes in consumption: low-energy lifestyle, reduce
waste, and consumption of meat from industrially farmed
animals. Finally, it will require progressive environmen-
tal legislation: carbon taxation (including emission from
land-use change), and strategic placement of protected
areas where habitat loss poses the highest threat to
biodiversity. Our results also show that this might not be
sufficient to stabilize long-term trends, due to the lasting
effect of increased carbon emissions. BAU instead, will
fail to meet both short- and long-term CBD goals.

We explored species responses to future global changes
by projecting two indicators adopted by the CBD to
monitor progress toward the Aichi targets. However, our
approach lends itself to project any indicator based on
species distribution and population abundance and is
potentially applicable to any taxonomic group for which
distribution data and habitat requirements are known.
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Figure 3 Validation of modeled trends in Red List Index (a) and Geometric Mean Abundance, (b). The colored bands in panel A represent the 95%

confidence interval from the Montecarlo simulations of the modeled RLI (hindcast) under three assumptions of species responses to climate change:

species can adapt locally to climate change (Adaptation, green band), species can colonize new suitable climatic areas that are within their maximum

physiological dispersal abilities (Max. dispersal, blue band), species cannot colonize new suitable climatic areas (No dispersal, red band). The black dashed

line represents the observed RLI from 1996 to 2008. The points in panel B represent observed annual GMA values for the set of carnivore and ungulate

species for which population data were available. The solid line represents the trend in GMA (line of best fit across the points) and has a slope βο =
−0.0037 ± 0.061. The modeled GMA (calculated in the same way as the LPI) has slope βm = –0.0021 within the confidence intervals of the line of best fit

of GMA values.

Our modeled responses to global changes may be
overoptimistic for some species because we did not
account for all threats to mammals, especially hunting
which is a major threat to many of the species considered
here (Hoffmann et al. 2011). However, we do not expect
this to change the qualitative differences in projected
trends between scenarios. Rather it might widen the dif-
ference between BAU and Consumption Change because
low food security, poor access to food markets, a high
proportion of people living in rural areas, and poorer
environmental governance are more likely to exacerbate
hunting in the former than the latter (PBL 2012).

Our results illustrate how detailed biodiversity in-
dicators can be used in conjunction with coupled
socioeconomic and environmental scenarios to inform
the development of policies that achieve future sustain-
ability goals. Our approach brings the focus of scenarios
directly to the species level, thus taking into account an
additional dimension of biodiversity and paving the way
for incorporating stronger ecological foundations into
future biodiversity assessments.
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(2009). BIOMOD–a platform for ensemble forecasting of

species distributions. Ecography, 32, 369-373.

Tittensor, D.P., Walpole, Matt, Hill Samantha, L.L. et al.

(2014) A mid-term analysis of progress toward

12 Conservation Letters, January/February 2016, 9(1), 5–13 Copyright and Photocopying: C© 2015 The Authors Conservation Letters published by Wiley
Periodicals, Inc. on behalf of Society for Conservation Biology.



P. Visconti et al. Projecting biodiversity indicators

international biodiversity targets. Science, 346, 241-

244.

Van Vuuren, D., Sala, O. & Pereira, H. (2006). The future of

vascular plant diversity under four global scenarios. Ecol.

Soc., 11, 25. http://www.ecologyandsociety.org/vol11/

iss2/art25/ES-2006-1818.pdf

VanDerWal, J.J., Beaumont, L.J. & Zimmermann, N.E.

(2011). R package ‘climates’: methods for

working with weather and climate. www.rforge.net/

climates/.

Visconti, P., Pressey, R.L., Giorgini, D. et al. (2011). Future

hotspots of terrestrial mammal loss. Philos. Trans. Royal Soc.

B: Biol. Sci., 366, 2693-2702.

Williams, J.W., Jackson, S.T. & Kutzbach, J.E. (2007).

Projected distributions of novel and disappearing climates

by 2100 AD. Proc. Nat. Acad. Sci., 104, 5738-5742.

Conservation Letters, January/February 2016, 9(1), 5–13 Copyright and Photocopying: C© 2015 The Authors Conservation Letters published by Wiley
Periodicals, Inc. on behalf of Society for Conservation Biology. 13


