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Abstract

Recent shifts in the geographic distribution of marine species have been linked to shifts in

preferred thermal habitats. These shifts in distribution have already posed challenges for liv-

ing marine resource management, and there is a strong need for projections of how species

might be impacted by future changes in ocean temperatures during the 21st century. We

modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using

long-term ecological survey data from the North American continental shelves. These habi-

tat models were coupled to output from sixteen general circulation models that were run

under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over

the 21st century to produce 32 possible future outcomes for each species. The models gen-

erally agreed on the magnitude and direction of future shifts for some species (448 or 429

under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or

120 respectively). This allowed us to identify species with more or less robust predictions.

Future shifts in species distributions were generally poleward and followed the coastline, but

also varied among regions and species. Species from the U.S. and Canadian west coast

including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and

many species shifted more than 1000 km under the high greenhouse gas emissions sce-

nario. Following a strong mitigation scenario consistent with the Paris Agreement would

likely produce substantially smaller shifts and less disruption to marine management efforts.

Our projections offer an important tool for identifying species, fisheries, and management

efforts that are particularly vulnerable to climate change impacts.
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Introduction

Amajor impact of climate change in the oceans has been the redistribution of marine organ-

isms, which have generally been shifting poleward or into deeper waters as temperatures warm

[1, 2]. Long-term shifts in species distributions have been linked to directional shifts in their

preferred temperatures [3, 4], as the geographic distributions of marine species are strongly

linked to temperature tolerance [1]. Further, regional species productivity [5, 6] and phenology

[7, 8] can be highly sensitive to variation in water temperatures, which may be a driver of long-

term shifts [9]. The implications of geographic shifts of marine species have already been

observed in global fisheries catches and changes in catch composition from regional landings

data are consistent with poleward shifts in species distributions [10].

The North American continental shelf is an expansive area with some of the most produc-

tive fisheries globally [11]. This diverse area also contains some of the most rapidly increasing

regions of ocean temperature in the world [12, 13]. The rising temperatures have been linked

to major shifts in the distribution of some species [3, 14]. These shifts have led to conflicts

between regions over fisheries catch allocation as species shift across management boundaries

[15, 16]. Global ocean temperatures are projected to continue rising [17] and areas of the

Northeast American shelf may experience some of the most extreme increases [18]. Associated

with this warming are predictions for substantial shifts in regional fisheries productivity [11].

Predictions for how ocean warming will impact the living marine resources of the United

States and Canada are currently a priority for federal management [19–21].

Projections of future species distribution shifts and biomass changes are an emerging tool

for anticipating climate change impacts on marine systems. Predictions about how species will

respond to ocean warming are often made by coupling models of species thermal habitat with

output from climate projection models [22]. Generally, species projection studies indicate that

biomass will shift with preferred thermal habitat [23–25], but shifts may be constrained by

other habitat features such as depth [26], seafloor complexity [27], primary productivity [28],

salinity [29], or ocean carbonate chemistry [30]. Further, for some species, annual temperature

extremes instead of thermal averages can be a primary driver of projected shifts in distribution

[31, 32] or of regional biomass [33].

Previous studies that projected species distribution changes have been limited for two

major reasons. First, the spatial extents for species distribution projections are often restricted

to regional scales [24, 26, 27]. While these regional perspectives are valuable, they limit our

ability to anticipate the larger scale changes that will occur over the entire range of species. Fur-

ther, species habitat models are often based on data from only a portion of the total geographic

range, and thus may fail to capture the full extent of a species’ realized thermal niche. For

instance, climate change may introduce novel conditions to a region, such as higher annual

maximum temperatures, which may be unrepresented in habitat models built from narrow-

scale data. In contrast, some notable species projection efforts have been global in scope [25,

34], but these have often been at a coarse spatial grain that makes it more challenging to define

accurate thermal envelopes for marine species. The coarse spatial grain of these latter studies

also makes them less directly useful at the regional scales that are particularly relevant for ques-

tions of community turnover and resource management. A second limitation of many previ-

ous studies has been a relative lack of uncertainty estimates for predictions among species [35,

36]. Uncertainty in projections of species distribution comes from multiple sources, including

uncertainty over future greenhouse gas emissions scenarios, variation among climate projec-

tion model predictions, natural internal variability inherent in the climate system, structural

differences among species distribution models, and parameter uncertainty in species distribu-

tion models. The first three factors impact predictions of regional ocean temperature changes
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[37] and can lead to a wide range of predicted outcomes for individual species [31, 33, 38].

There have been relatively few marine species distribution projections to date, and it remains

unclear how much uncertainty is acceptable for a projection to be useful. Conducting projec-

tions on multiple species within a standard format for assessing uncertainty can provide

opportunities for identifying species with more or less robust predictions [23, 28].

Here we summarize results from a comprehensive effort to project future distributions of

686 marine species on the North American continental shelf. For each species, we generated

predictions of their distribution throughout the 21st century using sixteen fully coupled general

circulation models, each run under a low (Representative Concentration Pathway (RCP) 2.6)

and high (RCP8.5) future greenhouse gas emission scenario. Thus, thirty-two projections were

simulated for each species. We used three metrics for identifying species with more uncertain

or more robust projections based on agreement among modeled outcomes. We have expanded

on previous efforts to predict the responses of marine species to climate change by combining

extensive survey data from around the continent in order to better define each species’ thermal

habitat. Finally, we projected distribution shifts for each species across the North American

shelf in order to include a large portion of species’ distributions, rather than limiting the pre-

dictions to individual oceanic basins. Compared to previous studies, our projections suggest

some of the largest future shifts in species distribution, many exceeding 1000 km. We found

that the geometry of the continental shelf played an important role in determining whether

species were projected to shift more or less over the 21st century.

Methods

Survey data

Species occurrence and biomass data were taken from 136,044 bottom trawl hauls from twenty

long-term surveys that encompassed a majority of the continental shelf regions around the

United States and Canada (Fig 1). Within six of the sampling regions, separate surveys were

conducted in multiple seasons (Table 1). Most of the survey data have been used in previous

studies [3, 9, 39, 40]. A majority of the data from the United States were obtained from the

trawlData package [39] used with R software version 3.3.2 [41].

Within each survey, non-standard hauls were omitted (e.g., those with non-standard trawl

dimensions or mesh size) in order to ensure consistent sampling gear within surveys. Trawl

catch by species was expressed as biomass per unit area swept. Only species-level taxa were

considered for distribution modeling. Species names were standardized across surveys. When

a species was recorded separately by sex or maturity stage, these biomasses were summed

before further analysis. Egg and larval stage samples were excluded from analyses. Because sur-

veys comprehensively record the species found, survey records were expanded to include zeros

(observed absences) for species not observed in a given haul, but that were observed in other

surveys conducted on the same coast (i.e., Atlantic or Pacific). In addition, we added near-zero

biomass values (1.0−10) for a fraction of the hauls in regions where a species was never

observed (10% of the hauls in a region or 10% of total observations, whichever was smaller) in

order to facilitate fitting the full thermal envelope for species biomass models only (i.e., this

does not affect presence-absence models, see below). These near-zero values were important to

allow biomass models to include a larger range of environmental conditions—as opposed to

being restricted to a species present range—which was necessary to conduct biomass predic-

tions at the scale of the North American continental shelf. This approach is similar to the use

of “pseudoabsences” in distribution models that are based on presence-only data [42], which

are used to develop contrasts between suitable and unsuitable habitats.

Projecting thermal habitat shifts on the North American continental shelf
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Environmental data

Sea surface and bottom water temperatures for each haul were obtained from the Simple

Ocean Data Assimilation (SODA3.3.1) reanalysis of ocean climate, which provides a global

reconstruction of historical ocean temperatures [43]. SODA3.3.1 has a spatial resolution of 28

Fig 1. Biological survey regions. Locations for 136,044 bottom trawl hauls from long-term ecological surveys conducted on the North American continental shelf.
Hauls are colored to indicate the different survey regions described in Table 1.

https://doi.org/10.1371/journal.pone.0196127.g001

Table 1. Information for North American bottom trawl surveys.

Region Seasons Years # hauls Color Agency

Aleutian Islands Summer 1983–2014 4588 Red Alaska Fisheries Science Center, NOAA

Eastern Bering Sea Summer 1982–2014 12210 Blue Alaska Fisheries Science Center, NOAA

Gulf of Alaska Summer 1984–2013 9578 Green Alaska Fisheries Science Center, NOAA

West Coast Triennial Summer 1977–2004 4544 Orange Alaska Fisheries Science Center, NOAA

West Coast Annual Summer 2003–2014 7589 Orange Northwest Fisheries Science Center, NOAA

Gulf of Mexico (SEAMAP) Summer 1982–2014 9277 Cyan Gulf States Marine Fisheries Commission

Fall 1983–2014 9564

Southeast U.S. Shelf (SEAMAP-SA) Spring 1990–2015 2614 Black South Carolina Department of Natural Resources

Summer 1989–2015 2384

Fall 1989–2015 2595

Northeast U.S. Shelf Spring 1968–2015 16472 Orange Northeast Fisheries Science Center, NOAA

Fall 1963–2014 17767

Northeast U.S. Inner Shelf (NEAMAP) Spring 2008–2015 1171 Red Virginia Institute of Marine Science (VIMS)

Fall 2007–2015 1307

Scotian Shelf Spring 1979–2011 5217 Purple Department of Fisheries and Oceans (DFO), Canada

Summer 1970–2011 7517

Fall 1978–1986 1114

Southern Gulf of St. Lawrence Summer 1971–2009 5142 Green Department of Fisheries and Oceans (DFO), Canada

Newfoundland and Labrador Spring 1996–2011 4540 Blue Department of Fisheries and Oceans (DFO), Canada

Fall 1995–2011 10854

The season of biological sampling, years of survey data used, number of hauls, color indicator for reference to Fig 1, and conducting agency for twenty regional bottom

trawl surveys that were used for fitting species thermal habitat models.

https://doi.org/10.1371/journal.pone.0196127.t001
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km at the equator with increasingly finer resolution towards the poles (0.25˚ latitude × 0.25˚

longitude), and it has a 5-day temporal resolution beginning in 1980. For hauls occurring

before 1980, we used the SODA2.2.4 data, which has a 0.5˚ spatial resolution and monthly

temporal resolution. For each haul, we recorded the seasonal average temperature by calculat-

ing the average surface and bottom temperatures for a three-month period (including the

month when the haul took place and the preceding and following months) and by using the

appropriate SODA grid cell based on haul location. This time-interval was chosen to match

our projections, which were based on seasonal average temperatures in future years. To check

that the SODA-derived seasonal surface and bottom temperatures were reasonable, we com-

pared them to the surface and bottom water temperatures measured at each haul (i.e., not sea-

sonal means) during the course of the surveys. The SODA-derived seasonal average

temperatures that we used in the species habitat models were highly correlated with in situ

measured temperatures (surface temperatures: slope(se) = 0.906(0.001), P< 0.001, r2 = 0.90,

DF = 102048; bottom temperatures: slope(se) = 1.003(0.001), P< 0.001, r2 = 0.86,

DF = 120859).

Marine species temperature preferences are often modeled by only using observed tempera-

tures that are recorded at the time of sampling [3, 24, 27]. However, annual temperature

extremes including the summer maximum and winter minimum are also important factors

shaping the geographic distribution of marine species [1, 9, 44, 45]. Therefore, we also

included the maximum surface and bottom temperatures and the minimum bottom tempera-

ture during the preceding twelve-month period for each haul, which were extracted from the

SODA data set based on the date and location of each haul. Minimum surface temperature

was excluded because it was highly correlated with minimum bottom temperature (slope(se) =

1.027(0.001), P< 0.001, r2 = 0.87, DF = 136126).

The distribution of marine species on the continental shelf can also be influenced by sea-

floor rugosity (a measure of the spatial variation in depth) and sediment type [27, 46]. To cal-

culate seafloor rugosity, we obtained depth data from the GEBCO gridded bathymetric data

set for the North American shelf at ~1 km resolution [47]. Rugosity was calculated as the mean

of the absolute differences between a given grid cell depth and the depths of the eight sur-

rounding cells using the raster package in R [48]. To reduce computation time, rugosity was

aggregated by averaging to a ~5.6 km resolution (0.05˚ latitude x 0.05˚ longitude). Aggregated

rugosity values were highly correlated with the non-aggregated values (slope(se) = 0.872

(0.001), P< 0.001, r2 = 0.77, DF = 148535). Rugosity values were assigned to individual hauls

from the trawl surveys based on location.

Grain size was used to characterize seafloor sediment types throughout the sampling area

using the Wentworth Phi (F) scale, where lower values indicate coarser sediments and higher

values indicate finer sediments. Sediment data were obtained from multiple sources (Table 2)

and mostly consisted of point estimates. Where sediment data in a region had only verbal or

categorical descriptions, these were assigned to Folk codes [49] based on naming conventions

in the U.S. Chart [50]. These were subsequently matched to quantitative sediment estimates

using relationships between grain size, percentage gravel, mud, and sand (%GSM), and Folk

codes developed using the full usSEABED database (117,031 point observations) for the Atlan-

tic shelf [51], Gulf of Mexico [52], and U.S. West Coast [53]. In the Gulf of Mexico, grain size

for each polygon was calculated from %GSM using F values for each pure sediment type (e.g.,

gravel F = -2.7, sand F = 1.7, and mud F = 7.5). Point estimates for grain size and %GSM

were interpolated using inverse distance weighting in the gstat package [54, 55] to match the

spatial resolution of the rugosity data.
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Species distribution modeling

To model the observed niche of individual species, we used a two-stage generalized additive

model (GAM) approach [3, 4, 24] with the mgcv package in R [57]. GAMs were used because

they require no a priori assumptions about the shape of the relationship that a given species

has with a predictor variable and because they allow for nonlinear associations with habitat

features [58]. For each species, models were fitted by using either the combined survey data

from the east coast (including the Gulf of Mexico) or from the west coast U.S., including all

seasons. By including all survey regions and seasons into a single niche model, we were able to

more completely describe the range of thermal conditions in which a species is found [24, 40].

For species occurring on both U.S. coasts, the Atlantic and Pacific Ocean distributions were

modeled separately.

For each species, the first-stage GAM was fitted to presence and absence data, and assumed

a binomial error distribution. The second-stage GAM was fitted to log transformed biomass

from non-zero observations and assumed Gaussian errors [3, 4, 24]. Predictor variables for

each model included seasonal bottom and surface temperatures, annual minimum and maxi-

mum bottom temperatures, annual maximum surface temperature, seafloor rugosity and sedi-

ment grain size. Additionally, a categorical indicator for ecological survey was included to

account for differences in sampling gear and methods between surveys (i.e., differences in sur-

vey catchability), which is a common method for standardization of catch data [59, 60]. We

modeled ecological survey as a fixed effect because our data included a majority of the large-

scale continental shelf surveys in North America, as opposed to randomly drawing from a pop-

ulation of surveys where random effects might be more appropriate. Further, initial trials indi-

cated that using random effects would greatly increase computer processing time for niche

Table 2. Sediment data sources.

Region Source Ref Type Data

U.S. Atlantic Coast CONMAP a Polygon Categorical

U.S. Atlantic Coast ecstdb2005 b Point Grain Size; %GSM

Gulf of Mexico Gulf of Mexico Data Atlas c Polygon %GSM

U.S. West Coast usSEABED d Point Grain Size; %GSM

Eastern Bering Sea ebssed e Point Grain Size; %GSM

Gulf of Alaska Gulf of Alaska Digitization Project f Point Verbal

Aleutian Islands AFSC g Point Verbal

Gulf of St. Lawrence Loring and Nota (1973) [56] h Digitized polygon map Categorical

Scotian Shelf; British Columbia; Labrador Natural Resources Canada Expedition Database i Point Grain Size, %GSM

Newfoundland Sediment Thickness Database j Polygons Categorical

The source and type of data used for quantifying sediment characteristics on different regions of the North American continental shelf. Web links to each source are

listed below. %GSM indicates data consisting of percentage gravel, sand, and mud.
ahttp://pubs.usgs.gov/of/2005/1001/data/conmapsg/conmapsg.zip
bhttp://pubs.usgs.gov/of/2005/1001/data/surficial_sediments/ecstdb2005.zip
chttps://gulfatlas.noaa.gov/
dhttps://pubs.usgs.gov/ds/2006/182/
ehttps://data.noaa.gov/dataset/dataset/ebssed-database-surficial-sediments-of-the-eastern-bering-sea-continental-shelf
fhttps://www.sciencebase.gov/catalog/item/5699855be4b0ec051295ed8b
ghttp://www.afsc.noaa.gov/RACE/groundfish/Bathymetry/Aleutians.htm
hhttp://www.dfo-mpo.gc.ca/Library/1493.pdf
ihttp://ed.gdr.nrcan.gc.ca/grainsize_e.php
jhttp://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/97fc16ab-aadc-52f5-b33a-9145a78dd21c.html

https://doi.org/10.1371/journal.pone.0196127.t002
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modeling. A majority of the trawl surveys used have had vessel changes during the survey his-

tory or they employ multiple vessels each year. Vessel effects can influence catch and this can

vary among species and years [61]. However, our niche modeling approach did not include

vessel effects in order to reduce model complexity. Thus, our approach assumes that while

catchability may vary among vessels, this variability will appear in the error term and does not

interact with the environmental variables we are interested in. Depth was not included as a

predictor variable so that projections into the future could allow for species to shift into deeper

water [27], which has been observed to occur as a result of ocean warming [3, 4, 14]. Previous

research has indicated that including depth as a predictor would greatly limit the ability of

these models to explain historical shifts in depth, and that models without depth have greater

explanatory power [3]. Further, a majority of the included species had survey observations that

occurred throughout the sampled areas. Thus our approach assumes that any apparent rela-

tionship that species have with depth is driven by temperature variables and seafloor character-

istics. The likelihood of overfitting the GAMs was reduced by including a gamma setting

during model fitting, which acts as a penalty against model complexity. Gamma for each GAM

was set to the log of the number of samples divided by two [58]. Predictions of biomass from

the two-stage GAMs were calculated using the product of the predicted probability of occur-

rence and the exponentiated prediction of log-biomass.

Several criteria were used to determine which species to include in projections. First, we

limited niche model fitting to species that had at least 250 occurrences within the combined

survey data, which resulted in 703 species that were included for niche modeling. Second, we

fitted a presence-absence model for each species, as described above, to a training data set that

consisted of the initial 80% of hauls that occurred within each region. The remaining 20% of

observations were used as a testing data set. The area under the receiver operator curve (AUC)

was calculated using predicted and observed responses from the testing data with the dismo

package in R [62]. Fourteen species were dropped from the analysis based on AUC scores

below 0.75 [63] and three other species were dropped because observations were restricted to

the testing data set.

Projecting species distributions

Output from sixteen fully coupled general circulation models (GCMs) that participated in the

Coupled Model Intercomparison Project 5 (CMIP5) were used to generate a range of projec-

tions for ocean temperature changes over the 21st century (Table 3). For each GCM, we used

output from simulations that were run under two future greenhouse gas emissions scenarios: a

“strong mitigation” (RCP 2.6) and a “business as usual” scenario (RCP 8.5)[64]. The latter pre-

dicts continued global warming in excess of 4˚C by 2090, while the former is expected to lead

to global warming that is roughly consistent with the 2˚C target of the Paris Agreement [17].

Each GCM was first regridded to match the finer spatial resolution of the SODA3.3.1 data

(0.25˚ latitude and longitude at the equator), and the depth strata for projecting bottom tem-

peratures was refined according to this finer spatial resolution of bathymetry. The delta

method was used to downscale surface and bottom temperatures from the CMIP5 models. For

this procedure, we first calculated the difference (i.e., delta value) between future temperatures

and a modeled baseline period (mean of 1995–2014) with each GCM and for each scenario.

These delta values were then added to a mean temperature climatology developed from the

SODA3.3.1 data for 1995–2014. For the SODA grid cells outside the domain of a CMIP5

model, we used the nearest CMIP5 grid cell. For a majority of the GCMs (N = 12), 5% or less

of the SODA grid cells needed to be populated in this fashion. Four of the GCMs had more

restricted coverage on the continental shelf and between 18 and 35% of grid cells needed to be
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populated with neighboring cells. Finally, the climate projection grid was refined to 0.05˚ lati-

tude x 0.05˚ longitude based on the spatial grain of the rugosity and sediment variables. We

assumed that rugosity and sediment variables would be constant for the 21st century and pre-

dictions were limited to depths shallower than 401m. Our resulting projection grid for the

North American shelf consisted of 65,826 individual cells on the Pacific coast, 69,209 cells on

the Atlantic coast, and 13,383 cells in the Gulf of Mexico, which was separated from the Atlan-

tic coast at -80.75˚ longitude off the southern tip of Florida. For each species, we generated 32

projection series (16 GCMs × 2 RCPs) of annual biomass estimates from 2007 to 2100 for each

grid cell during the summer season (July-September). Data from each series were aggregated

by averaging projections within twenty-year bins. Projections ran for 7.7 days on Centauri, a

640-core computer cluster in the School of Environmental and Biological Sciences at Rutgers

University.

Analysis and uncertainty estimation

For each species, we calculated the centroid for the present time period (2007–2020) and the

end of the century (2081–2100) for each GCM and RCP. We calculated the centroid as the pre-

dicted biomass-weighted mean latitude and longitude [3]. Projection grid cell areas decline

towards the poles due to converging longitudes and this was factored into centroid calculations

using the raster R package [48]. Centroid calculations were conducted separately for the Gulf

of Mexico and the Atlantic coast for species with historic survey observations in both regions.

However, species that only had historic observations in the Gulf of Mexico were analyzed in

that region only. From initial and future centroid locations, we calculated the predicted dis-

tance shifted in km and the direction of the shift in degrees using the geosphere R package [65].

Table 3. Climate projection models.

Model Modeling Center

bcc-csm1-1-m Beijing Climate Center, China Meteorological Administration, China

bcc-csm1-1 Beijing Climate Center, China Meteorological Administration, China

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada

CCSM4 National Centre for Atmospheric Research, U.S.A.

CESM1-CAM5 National Science Foundation, Department of Energy;

National Center for Atmospheric Research, U.S.A.

CNRM-CM5 Centre National de Recherches Meteorologiques, France

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, U.S.A.

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, U.S.A.

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, U.S.A.

GISS-E2-R NASA Godard Institute for Space Studies, U.S.A.

GISS-E2-H NASA Godard Institute for Space Studies, U.S.A.

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace, France

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace, France

MIROC-ESM Japan Agency for Marine-Earth Science and Technology;

Atmosphere and Ocean Research Institute (The University of Tokyo);

National Institute for Environmental Studies, Japan

MPI-ESM-LR Max Planck Institute for Meteorology, Germany

NorESM1-ME Norwegian Climate Centre, Norway

The 16 general circulation models used for climate projections including the laboratory of origin. The spatial

resolution of each model can be found at: https://portal.enes.org/data/enes-model-data/cmip5/resolution

https://doi.org/10.1371/journal.pone.0196127.t003
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The change in latitudinal centroid was also calculated. We then calculated the mean and stan-

dard deviation among GCM projections within an RCP for distance shifted and change in lati-

tude. We were not able to calculate shift distances that followed the coastline, as is often done

at smaller spatial scales [14], because there was no simple path northward that spanned our

projection grid on either coast. Centroids were not confined to the projection grid, and for this

study, we used projected shifts in centroids to indicate the magnitude of change in species’

distributions.

We also calculated a metric for directional agreement among GCM projections by first con-

verting each projected shift direction into Cartesian coordinates on a unit circle of radius one.

We then averaged these Cartesian coordinates across GCMs and calculated the radius of that

mean position from the origin as an indicator of directional agreement. A radius of zero indi-

cated a complete lack of agreement in shift direction, and a value of one indicated that all

GCM predictions pointed in an identical direction.

We used two methods that we termed distance-directional uncertainty (DDU) and latitudi-

nal uncertainty (LU) to identify which species had relatively robust projections of distribution

changes (strong agreement among models) and which species had poor agreement among

projections. DDU combined metrics for variation in projected shift distance and direction

among the sixteen GCMs. For DDU, we first used linear regression to relate the standard devi-

ations of shift distance to the mean predicted shift distances (km) of projected species. The

regression was done on a log-log scale to normalize residual errors. We then used the residual

error values from this regression model to indicate the relative uncertainty in shift distance

among species, where positive (negative) residuals indicated projections that were more (less)

uncertain than would be expected given the distance shifted. The residual error values were

then plotted against values for GCM directional agreement. Species falling above the 75th per-

centile for either the residual error values from the regression or for directional agreement

were considered to have medium uncertainty, while species falling above the 95th percentile

were considered to have high uncertainty.

Latitudinal uncertainty (LU) was calculated by regressing the standard deviations among

the sixteen GCM predictions against the absolute values of mean predicted shifts in latitude.

This was done on a log-log scale to normalize residual errors. Quantile regression, using the

quantreg package in R [66], of the 95th and 75th percentiles was used to indicate species with

high or medium uncertainty, respectively. For each RCP, species classified as “high uncer-

tainty” with either the DDU or LUmethods were considered to have poor model agreement

among projections, while species with “low uncertainty” for both methods were considered to

have robust projections. The low uncertainty species were then used to make comparisons of

assemblage-scale shifts among the major oceanic basins of North America.

While centroid calculations reflect spatial patterns of thermal habitat, they do not elucidate

the influence of climate change on the overall amount of thermal habitat available. Therefore,

for each GCM we calculated the projected change in total mean annual thermal habitat during

the 21st century. Average annual thermal habitat availability was calculated as the sum of all

projected biomass values (biomass per swept area × grid cell area) from the projection grid.

Predicted change was calculated as a percentage of the mean predicted thermal habitat for the

2007–2020 period. The mean percentage change in annual thermal habitat of the sixteen

GCMs was calculated for each species that was classified as low uncertainty.

Our approach for projecting shifts in species distribution and biomass modeled only the

changes in thermal habitat for each species and did not include other important factors like

the influences of fishing or changes in primary productivity and carbonate chemistry on spe-

cies distribution and abundance. In this way, our projections are only projections of potentially

suitable habitats. Interpreting our projections of thermal habitat as projections of species
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distributions assumes that species are able to colonize all thermally suitable habitat within our

projection region and that shifts are not limited by reproduction and recruitment dynamics.

Our goal was to isolate temperature effects, and thus provide an indication of the anticipated

magnitude of changes among species and regions as a result of climate change in the 21st cen-

tury. Further, we use the term ‘thermal habitat availability’ (alt. ‘thermal habitat’) to indicate

that we are not making future predictions of absolute biomass.

Results

Species distribution model summaries and uncertainty analysis

A total of 383 Atlantic species and 303 Pacific species met the criteria during thermal niche

model fitting for conducting projections. This list of species included teleost fishes, elasmo-

branchs, three hagfishes, a species of chimaera, a variety of crustaceans, cephalopods, echino-

derms and other invertebrates, and a species of sea turtle (S1 Appendix). The number of

occurrences within the survey data ranged among species from 298 to 35018, with a median

value of 1359 occurrences. The amount of variation in survey data that was explained by the

thermal niche models varied widely by species. For the presence-absence GAMs, all species

had AUC values greater than 0.79, with a median value of 0.94 among species. The percentage

of deviance explained for the presence-absence GAMs ranged from 11.7 to 77.7%, with a

median value of 38.3%. For the logged biomass GAMs, the percentage deviance explained ran-

ged from 3.3 to 98.6% and the median value was 90.0%.

Species varied greatly in how much the 16 GCMs agreed in their distribution projections.

The standard deviation of total centroid shift distance among GCMs increased linearly with

mean predicted shift for both RCPs (Fig 2A and 2B). For the DDUmetric, residual values

from these linear relationships were plotted against the directional agreement among GCM

predictions (Fig 2C and 2D). Directional agreement among predictions was much higher for

RCP 8.5 projections (75th percentile at 0.72) than for RCP 2.6 (75th percentile at 0.41). This dif-

ference among RCPs was primarily due to many species with small projected shift distances

under RCP 2.6, which allowed for more variation in direction among GCMs. The DDU

method categorized 498 (507) species projections as low uncertainty for RCP 2.6 (RCP 8.5),

295 (286) as medium uncertainty, and 85 (85) as high uncertainty. Note that some species have

separate projections for the east coast and the Gulf of Mexico, which is why the total exceeds

686 species for each RCP.

The standard deviation of predicted latitudinal shifts (positive or negative) of centroids

among GCMs was linearly related to absolute values of the mean predicted shifts in latitude

(Fig 2E and 2F). For categorizing species based on latitudinal uncertainty (LU) for the RCP 2.6

(8.5) scenario, our method grouped 658 (658) species as low uncertainty, 175 (177) as medium

uncertainty, and 45 (43) as high uncertainty.

There was a significant association between our two methods (DDU and LU) for categoriz-

ing species projection robustness (Pearson’s Chi-square test for RCP 2.6: Χ4 = 97.84,

P< 0.001; RCP 8.5: Χ4 = 141.4, P< 0.001). For RCP 2.6 projections, 59% of species had an

identical uncertainty rating (i.e., high, medium or low) for each method, and for RCP 8.5 pro-

jections 62% of species had identical ratings. Based on combining DDU and LU methods for

identifying species with relatively robust projections, for RCP 2.6 (RCP 8.5) we grouped 429

(448) species as low uncertainty, 329 (314) as medium uncertainty, and 120 (116) as high

uncertainty (Table 4; S1 Appendix). The level of projection uncertainty for RCP 2.6 was

affected by how often a species was encountered in survey data (ANOVA: F2, 875 = 7.714,

P< 0.001) and species in the medium and high uncertainty categories had significantly fewer

observations than low uncertainty species. Among the RCP 8.5 projections there was no
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Fig 2. Species projection uncertainty. Categorizing uncertainty for 878 species projections within the RCP 2.6 (A, C, and E) and RCP 8.5 (B, D and F)
scenarios. (A and B) The logged standard deviation of projected shift distance plotted against the logged mean shift distance in km among 16 GCMs. (C and
D) The distance-directional uncertainty (DDU) method where the residual error values from panels (A) and (B) were plotted against shift directional
agreement among GCMs. (E and F) The latitudinal uncertainty (LU) method where the logged standard deviation in projected shift in latitude was plotted
against logged mean shift in latitude among 16 GCMs. Red and blue lines indicate the 95th and 75th percentiles (C and D) or quantiles (E and F),
respectively. Points are colored according to their level of uncertainty where red indicates high uncertainty, orange is medium, and blue is low uncertainty
(C–F).

https://doi.org/10.1371/journal.pone.0196127.g002
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difference in the number of survey observations between the low, medium and high uncer-

tainty groups (F2, 875 = 0.004, P = 0.99).

Projections of centroid shifts

For presenting the projections of species centroid shifts, we grouped species into seven regions

based on projected centroid location for the 2007–2020 time period (Figs 3 and 4). However,

projections for all species were conducted at a coast-wide scale. Under the RCP 2.6 emissions

scenario, the low uncertainty projections of species centroid shifts were generally less than 200

km (Figs 3 and 4). However, multiple projections for RCP 2.6 in the Gulf of Alaska andWest

Coast U.S. exceeded 300 km (Fig 3). The magnitudes of shifts were much larger under the

RCP 8.5 scenario, and multiple species shifts exceeded 1500 km on the west coast and exceeded

600 km on the east coast (Figs 3 and 4). Projected shifts generally followed the coastline

towards increasing latitude. For example, species that were primarily caught in the U.S. North-

east Shelf shifted to the northeast, while species originating from the Gulf of Alaska shifted

west and north. Species from the northernmost regions, such as Eastern Bering Sea and New-

foundland, had smaller projected shifts, which is probably the result of these regions being

constrained by the northern boundary of our projection region. Projections in the Gulf of

Mexico tended to shift westward or towards the southeast and were generally of lower magni-

tude, which probably was the result of this region being constrained by the U.S. coast.

Within regions, there was wide variation in species’ projected responses to ocean warming,

both in shift direction and magnitude (Figs 3 and 4). For example, species originating from the

Gulf of Alaska and the west coast of Canada that had low uncertainty projections ranged in

projected shift distance from 267 to 1630 km under RCP 8.5. Generally, projections among

species with low uncertainty had a high level of agreement in shift direction. Although in some

regions, shifts clustered in more than one general direction. For example, in the southeast

many tropical species expanded northward into this region from the Florida shelf, while

another group of species originating from the southeast shifted towards the northeast into the

mid-Atlantic U.S. region. Conversely, shifts in atypical directions for a region were most often

categorized as medium or high uncertainty, illustrating the low level of GCMmodel agreement

for these species (Figs 3 and 4). West coast projected shifts were generally more robust; in par-

ticular species originating from the Gulf of Alaska and Eastern Bering Sea regions tended to

have robust projections, with both regions having at least 62% of species categorized as low

uncertainty for both RCPs (Table 4). Conversely, in the Gulf of Mexico and Northeast U.S.

regions, less than 45% of species had low uncertainty projected shifts for both RCPs.

Table 4. Projection uncertainty of species by region.

Region RCP 2.6 RCP 8.5

Low Medium High Low Medium High

Eastern Bering Sea 84 48 12 99 31 14

G. Alaska-W. Canada 71 22 6 61 29 9

E. Canada 67 32 12 62 34 15

Northeast U.S. 17 13 8 8 20 10

West U.S. 34 16 10 35 18 7

Southeast U.S. 80 71 36 100 64 23

Gulf of Mexico 76 127 36 83 118 38

Total 429 329 120 448 314 116

Number of species categorized as low, medium, and high uncertainty within each RCP scenario by region.

https://doi.org/10.1371/journal.pone.0196127.t004
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To compare among regions, we only considered species with low uncertainty projections,

and combined both shift distances and directions to calculate the average assemblage shift for

each region. Under RCP 2.6, the mean shift distance across species was greatest for West Coast

U.S., and Gulf of Alaska and West Coast Canada species (mean shift distance of 224 and 248

km, respectively) (Fig 5A). In contrast, species originating from the Gulf of Mexico and the

Southeast U.S. both had mean shifts less than 40 km. For the RCP 8.5 scenario, the highest

magnitude average shifts again occurred for the West Coast U.S. at 1162 km and the Gulf of

Alaska at 954 km, but the Northeast U.S. also had relatively high magnitude projections at 637

km (Fig 5B). Species from the Gulf of Mexico again had the lowest magnitude projected shifts

under RCP 8.5, which partly results from greater variation in projected shift direction among

species (Fig 4).

Projections of change in thermal habitat availability

Predicted changes in the availability of thermal habitat over the course of the 21st century were

generally of greater magnitude, both positive and negative, for RCP 8.5 predictions as

Fig 3. Projected shifts in distribution for west coast species. The direction and magnitude in km of projected shifts in centroids for 303 species on the
North American west coast. Species were grouped into regions based on projected origin of centroid averaged over 2007–2020, but all projections were on
a coast-wide scale. Each regional pair of plots consists of RCP 2.6 projections on the left and RCP 8.5 projections on the right. Projections colored blue
indicate low uncertainty, orange indicates medium uncertainty, and red indicates high uncertainty. Note that the distance scales on the compass plots and
that of the map do not match. The gray area on the map indicates the projection area on the continental shelf.

https://doi.org/10.1371/journal.pone.0196127.g003
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compared to RCP 2.6 (Fig 6). Many species were projected to experience overall increases in

thermal habitat availability in North America over the 21st century, particularly those from the

Southeast, Northeast, andWest U.S. Coasts, and the Gulf of Alaska and West Coast of Canada.

These positive responses resulted from two major patterns. First, some species expanded into

regions with larger areas of continental shelf habitat. For example, on the U.S. West coast,

both jack mackerel (Trachurus symmetricus) and canary rockfish (Sebastes pinniger) had pro-

jected centroid shifts that exceeded 1300 km as they expanded into the Gulf of Alaska and East-

ern Bering Sea, respectively (Fig 7). Associated with these changes in distribution were large

(greater than 90%) predicted increases in thermal habitat availability. The second mechanism

by which projections for thermal habitat availability increased was for species of tropical origin

that expanded into the projection area as temperatures increased. Gray snapper (Lutjanus gri-

seus) was initially most abundant west of Florida, but its thermal habitat expanded throughout

the Gulf of Mexico (71% increase; Fig 8). In the Southeast U.S. shelf gray snapper was initially

projected to have negligible habitat, and so the expansion of this species into the region by the

end of the 21st century led to a large estimate of increase in thermal habitat (96,663% increase),

which was a common trend in this region (Fig 6).

Fig 4. Projected shifts in distribution for east coast species. The direction and magnitude in km of projected shifts in centroids for 336 species on the
North American east coast and 239 species in the Gulf of Mexico. For additional detail refer to Fig 3 caption. Note that the scale of the compass plots for the
east and west coasts differ.

https://doi.org/10.1371/journal.pone.0196127.g004
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Not all species that expanded northward had major increases in thermal habitat availability.

Sheepshead (Archosargus probatocephalus) was projected to shift northward on the east coast

by 2.4 degrees of latitude, but a 46% decline in total suitable habitat was predicted for this spe-

cies because habitat gained in the Northeast U.S. shelf was still marginal (Fig 8). Temperatures

became less favorable in the Gulf of Mexico for sheepshead resulting in a loss of 83% of initial

habitat. The projected loss in habitat for sheepshead within the Gulf of Mexico was among the

medium uncertainty group, despite having a low uncertainty projection on the Atlantic coast.

Nevertheless, 43% of Gulf of Mexico species with robust projections also lost thermal habitat

during the 21st century (Fig 6). Spiny dogfish (Squalus acanthias) was projected to have an

increase in habitat suitability during the 21st century in areas of the Newfoundland shelf and in

the Gulf of St. Lawrence as the center of distribution shifted 483 km (Fig 8). However, spiny

dogfish was predicted to have a 32% net loss of thermal habitat coast-wide due to a major

decline in habitat availability in the southern half of its range.

Species common to the northern extreme areas of the Eastern Bering Sea and Eastern Can-

ada shelf generally had negative trends in thermal habitat availability within our study region

(Fig 6). The large predicted loss of thermal habitat for these northern species may partly result

from their distributions moving out of our projection area. For example, walleye pollock

(Theragra chalcogramma) was initially abundant throughout the Alaskan shelf, but by the end

of the century it experienced a loss of 44% of thermal habitat and was projected to be largely

restricted to the Eastern Bering Sea at reduced densities (Fig 7).

Discussion

Water temperature is a major factor in determining the geographic distribution and preferred

habitats of marine species, though the mechanism for these relationships is perhaps mediated

by oxygen demand and availability [1, 3, 67, 68]. We have shown that climate change in the

21st century will shift the location and available area of suitable thermal habitat for species

inhabiting the North American shelf. These shifts in thermal habitat can interact in complex

Fig 5. Regional difference in projected distribution shifts.Mean direction and magnitude of projected centroid shifts over the 21st century for low
uncertainty species originating from seven regions of the North American shelf for (A) RCP 2.6 and (B) RCP 8.5.

https://doi.org/10.1371/journal.pone.0196127.g005
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ways with seafloor characteristics and variations in the width of the continental shelf to pro-

duce a wide range of predicted species responses. Despite this strong variation among species

and among climate models, the general trend was for poleward shifts in thermal habitat, which

is similar to previous studies predicting changes in species distribution [23–25, 28, 31]. How-

ever, most previous studies have either taken a more regional approach to species projections

and focused on changes in available habitat within the bounds of a biological survey, or have

taken a coarse global approach. Here we have presented some of the first fine-grained projec-

tions for distribution changes that encompass the majority of the geographic ranges for hun-

dreds of marine species in North America.

There are few existing studies that have also projected species distribution shifts at a larger

geographic scale. Robinson et al. [23] found a mean projected poleward shift of ~400 km

under a high emissions scenario for a group of nine pelagic species off eastern Australia by the

year 2070. Our projection summaries were for the end of the 21st century, but the projected

shift distances from many of our regional assemblages were similar to Robinson et al. [23].

Cheung et al. [25] conducted projections for 1066 species globally and found that the median

Fig 6. Projected change in thermal habitat availability.Mean percentage change in projected thermal habitat availability over the 21st century
for low uncertainty species originating from seven regions of the North American shelf for (A) RCP 2.6 and (B) RCP 8.5. Boxes indicate the
median and the 25th and 75th percentiles, whiskers extend to within 1.5 of the interquartile range or to data extremes. Number of extreme data
points occurring out of the plotting range is indicated for each region at the top. The right y-axis in (B) applies to SE U.S. only. Sample size for
each region is provided in Table 4.

https://doi.org/10.1371/journal.pone.0196127.g006
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Fig 7. Examples of west coast species projections. Jack mackerel Trachurus symmetricus is in the left-most column, canary rockfish Sebastes pinniger is in the
middle column, and walleye pollock Theragra chalcogramma is in the right-most column. Mean annual thermal habitat suitability during summer under RCP 8.5 is
shown for twenty-year periods in the 21st century. Habitat quality is higher in areas of greater blue intensity. Gray areas indicate regions of the projection grid that
are not suitable thermal habitat. White areas indicate regions not included in the projections (either land or deep water).

https://doi.org/10.1371/journal.pone.0196127.g007
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projected poleward shift of the center of marine species’ ranges was 79 km for a high carbon

emissions scenario. This study projected shifts between 2000–2005 and 2040–2060 and used a

single climate projection model. Further, the bioclimate envelope models used to project dis-

tribution shifts in their study were different than our approach, and incorporated population

Fig 8. Examples of east coast species projections.Gray snapper Lutjanus griseus is in the left-most column, sheepshead Archosargus probatocephalus is in the
middle column, and spiny dogfish Squalus acanthias is in the right-most column. For other details, refer to Fig 7 caption.

https://doi.org/10.1371/journal.pone.0196127.g008
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dynamics such as dispersal and population growth. Nevertheless, when we made a similar cal-

culation for poleward shifts in latitudinal centroid among our projected species we found a

median value of 164 km (~20.6 km per decade). Simple comparisons between our results and

Cheung et al. [25] are difficult to make for multiple reasons (e.g., different species and regions

examined, different climate models used), but considering that our projections are to the years

2081–2100, then the median latitudinal shift values between our studies are similar. More

recently, Jones and Cheung [69] projected distribution shifts on a global scale for 802 marine

species and compared three different approaches of presence-only niche modeling, using a sin-

gle climate projection model. They found a median poleward shift of 25.6 km per decade for

species centroids under RCP 8.5, which is similar to our value of ~20.6 km for North American

species. While similarities among results from these projection studies are encouraging, there

is still a poor understanding of how these different approaches to species niche modeling influ-

ence projections [36].

Species from the U.S. West Coast, Gulf of Alaska andWest Canada Coast assemblages had

relatively large predicted shifts in distribution, some exceeding 1500 km for the high emissions

scenario (RCP 8.5). It is challenging to assess the realism of these projections by looking at his-

toric trends in marine species distribution shifts, largely because available historical data are

typically restricted to a region. However, even at a regional scale species distribution shifts

greater than 10 km per year have been observed [3, 70], which would scale to 1000 km over a

century. Further, ocean warming rates under the RCP 8.5 scenario are projected to be greater

than what has been observed during the past four decades, the decades during which most

long-term surveys were operational [71]. This suggests that our projections are likely consis-

tent with historical observations.

The dramatic predictions for centroid shifts for Pacific species (excluding Eastern Bering

Sea) might be expected because the spatial gradient of temperature change on the west coast is

much weaker than on the east coast [12]. Consequently, the projected climate velocity (the rate

and direction of isotherm shift) on the west coast of North America is predicted to have a

much stronger along-shore and poleward trajectory than on the east coast [72]. This is impor-

tant because predicted shifts in species distribution can be greater in areas with weak spatial

gradients in temperature change [23]. Another reason for the large magnitude shifts among

Pacific species is the greater continental shelf habitat available to the north. In other words, as

habitat becomes suitable at latitudes corresponding to the Gulf of Alaska or Eastern Bering

Sea, the greater amount of continental shelf in these regions results in major thermal habitat

increases, which strongly influenced estimates for geographic centers of biomass.

Interestingly, the projected shifts of marine species for the U.S. West Coast assemblage rep-

resented a contrast to historic trends in this area, where ocean temperatures have been rela-

tively static or even cooling in recent decades [12]. Consequently, the distribution of species in

this region has been relatively stable compared to other North American areas [3]. Our predic-

tions show a similar contrast for the Southeast U.S., where temperatures and species distribu-

tions have also been relatively static in recent decades [9], but where our projections suggested

rapid northward shifts in the future.

Species common to the northern parts of our projection area had lower magnitude projec-

tions for shift distance, and projections for changes in thermal habitat availability were gener-

ally negative. However, many of these species may be able to redistribute northwards and out

of our study region, where continental shelf habitat is also available. For example, in the

Barents Sea, more temperate Atlantic species have been spreading into areas where seasonal

sea ice occurs, displacing Arctic species [73]. We did not extend our projection grid towards

Arctic waters due to a lack of biological survey data in these regions, along with a lack of data

on sediment characteristics. However, Wisz et al. [74] used niche habitat modeling for north
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Atlantic and Pacific species and projected that Arctic regions will become suitable for many

temperate species during the 21st century.

Predicted shift distances were also small in the Gulf of Mexico and there was the least agree-

ment in shift direction among the low uncertainty species. This may be unsurprising as tem-

peratures are more uniform across the Gulf of Mexico compared to other regions of the North

American shelf, and there was not a strong along-shore directional gradient in our tempera-

ture climatology for this region. Further, projected isotherm shifts in this region are generally

poleward as opposed to along shore [72]. As a result, shifts in this region were often driven by

tropical species expanding throughout the region (e.g., gray snapper, Fig 8) or by species gen-

erally losing habitat (e.g., sheepshead, Fig 8). Also, some species were projected to become

increasingly restricted to deeper habitats, which has been shown with historic observations

from survey data [3, 4].

Despite the detailed data that went into our species distribution models, the models were

fitted in an automated fashion and did not account for a detailed understanding of each spe-

cies’ natural history. However, the benefit of an automated approach to model fitting is that we

could make projections for a wide range of species. A closer examination of gray snapper (Fig

8) helps to illuminate the caveats of this approach. Climate change impacts for this species

have been studied in detail, and so this offers a good opportunity for comparison. Hare et al.

[31] predicted gray snapper to be resident on the U.S. Southeast coast to a maximum extent of

between 31 and 31.5˚ N by the end of the century for a high greenhouse gas emissions sce-

nario. Their study projected gray snapper distributions based on low temperature tolerance

during winter through effects on overwinter survival in estuaries. Similarly, minimum annual

bottom water temperatures were an important predictor for our gray snapper niche model.

However, we predicted gray snapper to extend to ~34˚ N under RCP 8.5. This difference

between studies suggests the importance of recruitment dynamics. Gray snapper are estuarine

dependent and early life stages occur close to shore [31]. Indeed, a close inspection of our pro-

jection for gray snapper at the end of the century indicated that above ~31.5˚ N, gray snapper

were excluded from the shallowest areas of the shelf, where winter temperatures were relatively

low. The process our model does not capture is that excluding gray snapper from the shallow-

est parts of the shelf also excludes the adults from the same latitude further offshore [31, 75].

However, our results are surprisingly consistent with Hare et al. [31] when examining near-

shore habitat on the shelf, despite our two studies using very different niche modeling

approaches.

Uncertainty in species projections

The magnitude and direction of projected shifts in distribution varied widely among species,

but we also found variation in the robustness of projections. We used sixteen different GCMs

for species projections so as to examine a range of possible temperature futures within each

RCP. While each of these GCMs predict global ocean warming under both greenhouse gas sce-

narios, they vary significantly in the magnitude of their predictions, particularly at a regional

scale [37]. Uncertainty among GCM predictions is higher at the smaller spatial scales at which

predictions of living marine resource responses to climate are generally made [22, 36, 37].

Therefore, major differences in species predictions can occur when using different GCMs. Cal-

culating a mean response from multiple projections reduces the bias from any one model and

also allows the calculation of variance around projections [22, 23, 31]. However, the amount of

variation among GCM projections can be difficult to put into context without comparing

across species. Our results for projections of 686 species suggest that results for some species

may be unreliable based on poor model agreement. Therefore, there are major benefits in
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conducting projections with many species under a similar framework, because less robust pro-

jections can be down-weighted during interpretation of general trends.

Our method for identifying robust projections was based on two metrics that quantified the

distance-directional and latitudinal uncertainty in projected shifts. These two metrics were

used, as opposed to using only one, in order to maximize our ability to identify species with

greater uncertainty so that regional assemblages could be compared using only robust projec-

tions. Further, we did not assess if one metric for uncertainty is more robust than the other.

Indeed, some species had different ratings for uncertainty between these two metrics, suggest-

ing that one method to characterize uncertainty may not always be adequate. The uncertainty

metrics were essentially based on a ranking of species’ model agreement (i.e., quantiles) and

were somewhat arbitrary in that we chose the 95th and 75th percentiles to indicate high and

medium uncertainty species, respectively. However, this framework nonetheless provided an

objective way to omit less robust projections for analyses of regional trends.

Most of the regional assemblages had at least some unexpected projections (e.g., equator-

ward shifts in the East Canada region) and our metrics for uncertainty indicated that these

were generally less robust. However, we note that our uncertainty methods were potentially

conservative, and some species categorized with medium or high uncertainty may still have

useful predictions. Further, some regions may have been more likely to have medium or high

uncertainty projections based on the coastal geometry and climatology. For example, species

originating from the Northeast U.S. were generally shifting into a large area of continental

shelf (e.g., Gulf of St. Lawrence and the Grand Banks) and so the potential for variation among

GCM predictions was greater there. Similarly, shifts in the Gulf of Mexico were particularly

sensitive to the DDUmetric (only 38% had low uncertainty for DDU), which probably arises

from the lack of a strong along-shore direction in climate velocity, as discussed above. For

example, sheepshead (Fig 8) were considered medium uncertainty in the Gulf of Mexico

because of the DDUmetric, but all 16 GCMs predicted 64% or greater loss in thermal habitat

during the 21st century for this species. In addition to considering potential regional biases in

our uncertainty metrics, it was also apparent that the level of agreement in projections among

the 16 GCMs varied spatially for some species. Thus, even species considered to have high

uncertainty projections at the coastwide scale, may still have strong agreement among GCMs

within portions of their ranges. This may occur when projections vary more at species range

edges than in core areas of distributions. This indicates potential threshold effects [36], where

a portion of GCMs predict temperature changes that exceed a limiting value and cause a shift

or expansion in the distribution of a species, which leads to greater uncertainty among GCMs.

Therefore, projection uncertainty may depend on the spatial scale of interest, and for this

study we have focused on coastwide predictions.

Atlantic cod (Gadus morhua) are an example of a species with useful projection results at a

regional scale, despite not being grouped with low uncertainty projections. This species was

generally predicted to occur throughout the north Atlantic, with a southern limit in the Gulf of

Maine and Georges Bank during 2007–2020. Atlantic cod was considered medium uncertainty

due to relatively high variability in the extent of latitudinal shift among GCMs (i.e., latitudinal

uncertainty). Nevertheless, there was strong agreement among the GCMs for a southern range

contraction. There was a 90.7% mean (16.1% s.d.) projected loss of thermal habitat for Atlantic

cod in U.S. waters, which includes the Gulf of Maine and Georges Bank, during the 21st cen-

tury under RCP 8.5; thirteen out of the sixteen GCMs that we used projected a greater than

90% loss for this region. Similarly, Kleisner et al. [24] modeled historic and future abundance

of Atlantic cod in the Northeast U.S. region based on a climate projection model that had a

higher resolution than any of the 16 GCMs in our study [18]. Their results also indicated that

thermal habitat in this region will become unsuitable for cod during the 21st century, which
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was consistent with historical trends of habitat loss [24]. Thus, our medium or high uncer-

tainty species projections may still be useful to resource management depending on the spatial

context. Similarly, projected shifts in thermal habitat may differ between coastwide trends, as

we reported in our study, and subregions within a species geographic range. For example,

Kleisner et al. [4] showed that historic species shifts in latitude and depth can vary among

major regions of the continental shelf. Therefore, it is important for resource managers to con-

sider projected changes in thermal habitat at coastwide and regional scales.

Our results incorporated two major sources of uncertainty that may affect future climatic

conditions, namely scenario uncertainty of future greenhouse gas concentrations (RCP 2.6

versus RCP 8.5), and model uncertainty among climate projections (i.e., 16 GCMs). We did

not include uncertainty from natural internal variability within GCMs—which can affect pre-

dicted outcomes of ocean temperatures [36, 37]—because variation among different GCMs

was expected to be greater on decadal to centennial timescales [37]. Among the 16 GCMs that

we used for projections, the horizontal and vertical resolution varied, along with the extent of

spatial coverage on the continental shelf. Further, all of these climate models projected ocean

temperature changes at a relatively coarse grain (i.e., 0.25˚ latitude and longitude or greater),

which does not allow for precise representation of mesoscale ocean features (e.g., ocean eddies

or upwelling dynamics), complex bathymetry (e.g., deep-water channels), or shallow-coastal

areas of the continental shelf [18]. Despite the relatively coarse resolution, IPCC-class global

climate models like the ones we used have been widely used to study future changes in upwell-

ing regions, but results have varied. For example, some studies have concluded that the loca-

tions of prominent upwelling regions are expected to shift poleward in the 21st century [76],

while others predict that the seasonal duration and intensity of upwelling regions will become

more homogenous across latitude [77]. Presently, high-resolution (e.g., 10 km horizontal

grain) climate projection models that can be run on centennial timescales are rare and present

limited opportunities for ensemble modeling [18]. However, as more high resolution GCMs

become available, an examination of how climate model resolution impacts the projected

response of marine species would be valuable.

Another source of uncertainty that we did not address is associated with species habitat

model structure [36]. Previous research has suggested that the structure of habitat models can

affect predicted outcomes [69, 78]. Robinson et al. [23] used two types of thermal habitat

modeling frameworks for projecting distribution shifts for a group of pelagic fishes. They

found differences between the two model types, but uncertainty between model types was gen-

erally lower than that attributed to climate projection uncertainties. Parameter uncertainty

may also influence predicted outcomes. Hare et al. [31] show that uncertainty in thermal toler-

ance in gray snapper was the primary source of projection uncertainty. Generally, our niche

models performed well at the coast-wide scale in terms of the amount of variation explained

(i.e., percent deviance) in the trawl catch data. Further, the presence-absence models had high

predictive power when applied to independent testing data (median AUC: 0.93). Nevertheless,

a modeling structure that, for example, accounted for individual vessel effects [59] or spatial

autocorrelation [79] might refine parameter values. There is still a relatively poor understand-

ing for how these habitat model uncertainties might affect projections and how these uncer-

tainties vary among species [36]. Future work will be devoted to quantifying habitat model

uncertainties with a subset of the species analyzed here.

Implications for the management of living marine resources

Our results contribute to a growing body of work that stresses the importance of the level of

global warming for the magnitude of changes in living marine resources by the end of this
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century. We found dramatic differences in the magnitude of distribution and thermal biomass

changes between RCP 2.6 and 8.5. These major difference result from only about 2 to 3˚C

global warming difference [17]. Marine species responses to temperature are often nonlinear,

and so small increases in temperature can have large impacts on predicted outcomes [31, 68,

80]. A high greenhouse gas emissions scenario has been predicted to have large impacts on

regional biodiversity [34] and a net loss in fisheries productivity in most coastal regions of

North America [81]. Our results add to this and suggest that a future under a ‘business-as-

usual’ greenhouse gas emissions scenario (i.e., RCP 8.5) will lead to large shifts in the distribu-

tion of species important to fisheries. These shifts in turn may lead to a host of management

challenges, including shifts in fishing locations [82], conflict over regional allocation of fisher-

ies quota, displaced fisherman, and changes in stock boundaries [83, 84]. However, if emis-

sions are curtailed to a level that is consistent with the Paris Agreement (i.e., RCP 2.6), then

dramatic shifts in species distribution can be mostly avoided.

A primary motivation for producing these species projections was to contribute to a set of

tools available to policy makers and managers considering climate adaptation of marine fisher-

ies management. In the United States, fisheries are managed regionally, including species that

are managed by individual states and federally managed fisheries that are governed by regional

councils with representatives from neighboring states. Existing tools for climate adaptation in

fisheries management include descriptions of historical species distribution shifts from biolog-

ical survey data [3], expert judgment climate vulnerability assessments for marine species [20],

and social vulnerability assessments [85]. The projections produced here can also help regional

managers identify species that are most likely to experience major changes in availability to

fisheries. At the regional management scale, there will be fisheries that experience negative

consequences of ocean warming, but also potentially positive outcomes when valuable species

expand into an area [24]. As the availability of species shift, coordination among regional man-

agement groups will be critically important, and the projections summarized here may offer

an objective tool for management groups to begin communication prior to conflict over, for

example, regional allocation [84]. Further, these projections can be utilized for future efforts to

assess the risk of shifting fisheries for different coastal communities [85].
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Pinsky.

References
1. Sunday JM, Bates AE, Duty NK. Thermal tolerance and the global redistribution of animals. Nat Clim

Chang. 2012; 2:686–690.

2. Poloczanska ES, Brown CJ, SydemanWJ, KiesslingW, Schoeman DS, Moore PJ, et al. Global imprint
of climate change on marine life. Nat Clim Chang. 2013; 3:919–925.

3. Pinsky ML,Worm B, Fogarty MJ, Sarmiento JL, Levin SA. Marine taxa track local climate velocities. Sci-
ence. 2013; 341:1239–1242. https://doi.org/10.1126/science.1239352 PMID: 24031017

4. Kleisner KM, Fogarty MJ, McGee S, Barnett A, Fratantoni P, Greene J, et al. The effects of sub-regional
climate velocity on the distribution and spatial extent of marine species assemblages. PloS ONE. 2016;
1–21.

5. Hettler WF. Correlation of winter temperature and landings of pink shrimp Penaeus duorarum in North
Carolina. Fish Bull. 1992; 90:405–406.

6. Meng KC, Oremus KL, Gaines SD. New England cod collapse and the climate. PloS ONE. 2016; 11:1–
10.

7. Sims DW, Genner MJ, Southward AJ, Hawkins SJ. Timing of squid migration reflects north Atlantic cli-
mate variability. Proc Roy Soc Lon B. 2001; 268:2607–2611.

8. Mills KE, Pershing AJ, Brown CJ, Chen Y, Chiang F-S, Holland DS, et al. Fisheries management in a
changing climate: Lessons from the 2012 ocean heat wave in the northeast Atlantic. Oceanog. 2013;
26(2):191–195.

9. Morley JW, Batt RD, Pinsky ML. Marine assemblages respond rapidly to winter climate variability. Glob
Chan Bio. 2017; 23:2590–2601.

10. CheungWWL,Watson R, Pauly D. Signature of ocean warming in global fisheries catch. Nature. 2013;
497:365–368. https://doi.org/10.1038/nature12156 PMID: 23676754

11. CheungWWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Zeller D, et al. Large-scale redistribu-
tion of maximum fisheries catch potential in the global ocean under climate change. Glob Chan Bio.
2010; 16:24–35.

Projecting thermal habitat shifts on the North American continental shelf

PLOSONE | https://doi.org/10.1371/journal.pone.0196127 May 16, 2018 24 / 28

https://doi.org/10.1126/science.1239352
http://www.ncbi.nlm.nih.gov/pubmed/24031017
https://doi.org/10.1038/nature12156
http://www.ncbi.nlm.nih.gov/pubmed/23676754
https://doi.org/10.1371/journal.pone.0196127


12. BurrowsMT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, et al. The pace of
shifting climate in marine and terrestrial ecosystems. Science. 2011; 334:652–655. https://doi.org/10.
1126/science.1210288 PMID: 22053045

13. Pershing AJ, Alexander MA, Hernandez CM, Kerr LA, Bris AL, Mills KE, et al. Slow adaptation in the
face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science. 2015; 350:809–812.
https://doi.org/10.1126/science.aac9819 PMID: 26516197

14. Nye JA, Link JS, Hare JA, OverholtzWJ. Changing spatial distribution of fish stocks in relation to climate
and population size on the northeast United States continental shelf. Mar Eco Prog Ser. 2009;
393:111–129.

15. Miller KA, Munro GR. Climate and cooperation: a new perspective on the management of shared fish
stocks. Mar Res Eco. 2004; 19:367–393.

16. Bell RJ, Richardson DE, Hare JA, Lynch PD, Fratantoni PS. Disentangling the effects of climate, abun-
dance, and size on the distribution of marine fish: an example based on four stocks from the northeast
US shelf. ICES J Mar Sci. 2015; 72(5):1311–1322.

17. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term Climate
Change: Projections, Commitments and Irreversibility, Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change. 2013.

18. Saba VS, Griffies SM, AndersonWG,Winton M, Alexander MA, Delworth TL, et al. Enhanced warming
of the northeast Atlantic ocean under climate change. J Geophys Res: Ocean. 2016; 121:118–132.

19. Shackell NL, Greenan BW, Pepin P, Chabotand D, Warburton A. Climate Change Impacts, Vulnerabili-
ties and Opportunities Analysis of the Marine Atlantic Basin. Can Manuscr Rep Fish Aquat Sci. 2013;
3012. 366 p.

20. Hare JA, MorrisonWE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, et al. A vulnerability assess-
ment of fish and invertebrates to climate change on the northeast U.S. continental shelf. PloS ONE.
2016; 1–30.

21. Busch DS, Griffis R, Link J, Abrams K, Baker J, Brainard RE, et al. Climate science strategy of the US
national marine fisheries service. Mar Pol. 2016; 74:58–67.

22. Stock CA, Alexander MA, Bond NA, Brander KM, CheungWWL, Curchitser EN, et al. On the use of
IPCC-class models to assess the impact of climate on Living Marine Resources. Prog Oceanog. 2011;
88:1–27.

23. Robinson LM, Hobday AJ, PossinghamHP, Richardson AJ. Trailing edges projected to move faster
than leading edges for large pelagic fish habitats under climate change. Deep-sea Res II. 2015;
113:225–234.

24. Kleisner KM, Fogarty MJ, McGee S, Hare JA, Moret S, Perretti CT, et al. Marine species distribution
shifts on the U.S. northeast continental shelf under continued ocean warming. Prog Oceanog. 2017;
153:24–36.

25. CheungWWL, Lam VWY, Sarmiento JL, Kearney K,Watson R, Pauly D. Projecting global marine biodi-
versity impacts under climate change scenarios. Fish Fisheries. 2009; 10:235–251.

26. Rutterford LA, Simpson SD, Jennings S, JohnsonMP, Blanchard JL, Schon P-J, et al. Future fish distri-
butions constrained by depth in warming seas. Nat Clim Chang. 2015; 5:569–573.

27. Hare JA, Manderson JP, Nye JA, Alexander MA, Auster PJ, Borggaard DL, et al. Cusk (Brosme
brosme) and climate change: assessing the threat to a candidate marine fish species under the US
Endangered Species Act. ICES J Mar Sci. 2012; 69(10):1753–1768.

28. Hazen EL, Jorgensen S, Rykaczewski RR, Bograd SJ, Foley DG, Jonsen ID, et al. Predicted habitat
shifts of Pacific top predators in a changing climate. Nat Clim Chang. 2013; 3:234–238.

29. Weinert M, Mathis M, Kroncke I, Neumann H, Pohlmann T, Reiss H. Modelling climate change effects
on benthos: distribution shifts in the North Sea from 2001–2099. Est. Coast. Shelf Sci. 2016; 175:157–
168.

30. Fay G, Link JS, Hare JA. Assessing the effects of ocean acidification in the northeast US using an end-
to-end marine ecosystemmodel. Ecol. Mod. 2017; 347:1–10.

31. Hare JA,Wuenschel MJ, Kimball ME. Projecting range limits with coupled thermal tolerance-climate
changemodels: an example based on gray snapper (Lutjanus griseus) along the U.S. east coast. PloS
ONE. 2012; 7:1–13.

32. Grieve BD, Curchitser EN, Rykaczewski RR. Range expansion of the invasive lionfish in the Northwest
Atlantic with climate change. Mar Eco Prog Ser. 2016; 546:225–237.

33. Hare JA, Alexander MA, Fogarty MJ, Williams EH, Scott JD. Forecasting the dynamics of a coastal fish-
ery species using a coupled climate-population model. Ecol App. 2010; 20:452–464.

Projecting thermal habitat shifts on the North American continental shelf

PLOSONE | https://doi.org/10.1371/journal.pone.0196127 May 16, 2018 25 / 28

https://doi.org/10.1126/science.1210288
https://doi.org/10.1126/science.1210288
http://www.ncbi.nlm.nih.gov/pubmed/22053045
https://doi.org/10.1126/science.aac9819
http://www.ncbi.nlm.nih.gov/pubmed/26516197
https://doi.org/10.1371/journal.pone.0196127


34. Molinos JG, Halpern BS, Schoeman DS, Brown CJ, KiesslingW, Moore PJ, et al. Climate velocity and
the future redistribution of marine biodiversity. Nat Clim Chang. 2016; 6:83–88.

35. Planque B, Bellier E, Loots C. Uncertainties in projecting spatial distributions of marine populations.
ICES J Mar Sci. 2011; 68(6):1045–1050.
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projecting global fisheries catches under climate change. Ecol Mod. 2016; 325:57–66.

39. Batt RD, Morley JW, Selden RL, Tingley MW, Pinsky ML. Gradual changes in range size accompany
long-term trends in species richness. Ecol Lett. 2017. https://doi.org/10.1111/ele.12812 PMID:
28699209

40. Selden RL, Batt RD, Saba VS, Pinsky ML. Diversity in thermal affinity among key piscivores buffers
impacts of ocean warming on predator-prey interactions. Glob Chan Bio. 2018; 24:117–131.

41. RCore Team. R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. 2016. http://www.R-project.org/.

42. Jones MC, Dye SR, Pinnegar JK, Warren R, CheungWWL. Modelling commercial fish distributions:
prediction and assessment using different approaches. Ecol Mod. 2012; 225:133–145.

43. Carton JA, Chepurin GA, Chen L. An updated reanalysis of ocean climate using the Simple Ocean Data
Assimilation version 3 (SODA3), manuscript in preparation. 2016.

44. Dana JD. On an isothermal oceanic chart, illustrating the geographical distribution of marine animals.
Am. J. Sci. Arts, 2d ser. 1853; 66:153–392.

45. Stuart-Smith RD, Edgar GJ, Bates AE. Thermal limits to the geographic distributions of shallow-water
marine species. Nat Eco Evo. 2017; 1:1846–1852.

46. Methratta ET, Link JS. Seasonal variation in groundfish habitat associations in the Gulf of Maine-
Georges Bank region. Mar Eco Prog Ser. 2006; 326:245–256.

47. Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, et al. Global Bathymetry and Eleva-
tion Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Mar Geod. 2009; 32:355–372. https://doi.
org/10.1080/01490410903297766

48. Hijmans RJ. raster: Geographic Data Analysis and Modeling. R package version 2.3–40. 2015. http://
CRAN.R-project.org/package=raster.

49. Folk RL. Petrology of Sedimentary Rocks. Austin, TX: Hemphill Publishing; 1980.

50. NOAA and DoD. U.S. Chart No. 1: Symbols, Abbreviations and Terms Used on Paper and Electronic
Navigational Charts; 2013.

51. Reid JM, Reid JA, Jenkins CJ, HastingsME,Williams SJ, Poppe LJ. usSEABED: Atlantic coast offshore
surficial sediment data release. U.S. Geological Survey Data Series 118; 2005. http://pubs.usgs.gov/
ds/2005/118/.

52. Buczkowski BJ, Reid JA, Jenkins CJ, Reid JM,Williams SJ, Flocks JG. usSEASBED:L Gulf of Mexico
and Caribbean (Puerto Rico and U.S. Virgin Islands) offshore surficial sediment data release. U.S. Geo-
logical Survey Data Series 146; 2006. http://pubs.usgs.gov/ds/2006/146/.

53. Reid JA, Reid JM, Jenkins CJ, ZimmermannM,Williams SJ, Field ME. usSEABED: Pacific Coast (Cali-
fornia, Oregon, Washington) offshore surficial-sediment data release. U.S. Geological Survey Data
Series 182; 2006. http://pubs.usgs.gov/ds/2006/182/.

54. Pebesma EJ. Multivariable geostatistics in S: the gstat package. Computers & Geosciences. 2004;
30:683–691.

55. Graler B, Pebesma E, Heuvelink G. Spatio-Temporal interpolation using gstat. The R journal. 2016; 8
(1): 204–218.

56. Loring DH, Nota DJG. Morphology and sediments of the Gulf of St. Lawrence. Bull Fish Res Board Can-
ada. 1973; 182.

57. Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semipara-
metric generalized linear models. J Roy Stat Soc B. 2011; 73(1): 3–36.

58. Wood SN. Generalized additive models: an introduction with R. Chapman & Hall/CRC. Florida. 2006;
410p.

Projecting thermal habitat shifts on the North American continental shelf

PLOSONE | https://doi.org/10.1371/journal.pone.0196127 May 16, 2018 26 / 28

https://doi.org/10.1002/2015GB005338
https://doi.org/10.1002/2015GB005338
https://doi.org/10.1111/ele.12812
http://www.ncbi.nlm.nih.gov/pubmed/28699209
http://www.R-project.org/
https://doi.org/10.1080/01490410903297766
https://doi.org/10.1080/01490410903297766
http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=raster
http://pubs.usgs.gov/ds/2005/118/
http://pubs.usgs.gov/ds/2005/118/
http://pubs.usgs.gov/ds/2006/146/
http://pubs.usgs.gov/ds/2006/182/
https://doi.org/10.1371/journal.pone.0196127


59. Maunder MN, Punt AE. Standardizing catch and effort data: a review of recent approaches. Fisher Res.
2004; 70:141–159.

60. Bacheler N, Shertzer K, Reichert M, Stephen J, Pate M. Standardized CPUE of black sea bass (Centro-
pristis striata) caught in blackfish and Florida snapper traps deployed by MARMAP. SEDAR25-DW02.
2011; 19 p. http://sedarweb.org

61. Thorson JT, Ward EJ. Accounting for vessel effects when standardizing catch rates from cooperative
surveys. Fisher Res. 2014; 155:168–176.

62. Hijmans RJ, Phillips S, Leathwick J, Elith J. dismo: species distribution modeling. R package version
1.1–4. 2017. https://CRAN.R-project.org/package=dismo.

63. Elith J, GrahamCH, Anderson RP, Dudı́k M, Ferrier S, Guisan A, et al. Novel methods improve predic-
tion of species’ distributions from occurrence data. Ecography (Cop.). 2006; 29:129–151.

64. Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experimental design. Amer Meteor
Soc. 2012; 485–498.

65. Hijmans RJ. geosphere: spherical trigonometry. R package version 1.5–5. 2016. http://CRAN.R-
project.org/package=geosphere.

66. Koenker R. quantreg: quantile regression. R package version 5.33. 2017. https://CRAN.R-project.org/
package=quantreg.

67. Portner HO, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tol-
erance. Science. 2007; 315:95–97. https://doi.org/10.1126/science.1135471 PMID: 17204649

68. Deutsch C, Ferrel A, Seibel B, Portner H-O, Huey RB. Climate change tightens a metabolic constraint
on marine habitats. Science. 2015; 348:1132–1135. https://doi.org/10.1126/science.aaa1605 PMID:
26045435

69. Jones MC, CheungWWL. Multi-model ensemble projections of climate change effects on global marine
biodiversity. ICES J Mar Sci. 2015; 72:741–752.

70. Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill N, Holbrook NJ, et al. Species traits and climate veloc-
ity explain geographic range shifts in an ocean-warming hotspot. Ecol lett. 2015; 18:944–953. https://
doi.org/10.1111/ele.12474 PMID: 26189556

71. Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, et al. Multiple stressors of
ocean ecosystems in the 21st century: projections with CMIP5models. Biogeosciences. 2013;
10:6225–6245.

72. BurrowsMT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, et al. Geographical
limits to species-range shifts are suggested by climate velocity. Nature. 2014; 507:492–495. https://doi.
org/10.1038/nature12976 PMID: 24509712

73. FossheimM, Primicerio R, Johannesen E, Ingvaldsen RB, AschanMM, Dolgov AV. Recent warming
leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang. 2015; 5:673–677.

74. Wisz MS, Broennimann O, Gronkjaer P, Moller PR, Olsen SM, Swingedouw D, et al. Arctic warming will
promote Atlantic-Pacific fish interchange. Nat Clim Chan. 2015; 5:261–265.

75. Wuenschel MJ, Hare JA, Kimball ME, Able KW. Evaluating juvenile thermal tolerance as a constraint on
adult range of gray snapper (Lutjanus griseus): a combined laboratory, field and modeling approach. J
Exp Mar Biol Ecol. 2012; 436–437:19–27.

76. Rykaczewski RR, Dunne JP, Sydeman J, Garcia-Reyes M, Black BA, Bograd SJ. Poleward displace-
ment of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st
century. Geophys Res Lett. 2015; 42:6424–6431.

77. Wang D, Gouhier TC, Menge BA, Ganguly AR. Intensification and spatial homogenization of coastal
upwelling under climate change. Nature 2015; 518:390–394. https://doi.org/10.1038/nature14235
PMID: 25693571

78. Jones MC, Dye SR, Pinnegar JK, Warren R, CheungWWL. Using scenarios to project the changing
profitability of fisheries under climate change. Fish Fisher. 2015; 16:603–622.

79. Dormann CF. Effects of incorporating spatial autocorrelation into the analysis of species distribution
data. Glob Ecol Biogeogr. 2007; 16:129–138.

80. Rijnsdorp AD, Peck MA, Engelhard GH, Mollmann C, Pinnegar JK. Resolving the effect of climate
change on fish populations. ICES JMar Sci. 2009; 66:1570–83.

81. CheungWWL, Reygondeau G, Frolicher TL. Large benefits to marine fisheries of meeting the 1.5˚C
global warming target. Science. 2016; 354:1591–1594. https://doi.org/10.1126/science.aag2331
PMID: 28008069

82. Pinsky ML, Fogarty M. Lagged social-ecological responses to climate and range shifts in fisheries. Clim
chang. 2012; 115:883–891.

Projecting thermal habitat shifts on the North American continental shelf

PLOSONE | https://doi.org/10.1371/journal.pone.0196127 May 16, 2018 27 / 28

http://sedarweb.org
https://CRAN.R-project.org/package=dismo
http://CRAN.R-project.org/package=geosphere
http://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantreg
https://doi.org/10.1126/science.1135471
http://www.ncbi.nlm.nih.gov/pubmed/17204649
https://doi.org/10.1126/science.aaa1605
http://www.ncbi.nlm.nih.gov/pubmed/26045435
https://doi.org/10.1111/ele.12474
https://doi.org/10.1111/ele.12474
http://www.ncbi.nlm.nih.gov/pubmed/26189556
https://doi.org/10.1038/nature12976
https://doi.org/10.1038/nature12976
http://www.ncbi.nlm.nih.gov/pubmed/24509712
https://doi.org/10.1038/nature14235
http://www.ncbi.nlm.nih.gov/pubmed/25693571
https://doi.org/10.1126/science.aag2331
http://www.ncbi.nlm.nih.gov/pubmed/28008069
https://doi.org/10.1371/journal.pone.0196127


83. Link JS, Nye JA, Hare JA. Guidelines for incorporating fish distribution shifts into a fisheries manage-
ment context. Fish Fisher. 2011; 12:461–469.

84. Pinsky ML, Mantua NJ. Emerging adaptation approaches for climate-ready fisheries management.
Oceanography. 2014; 27(4):146–159.

85. Colburn LL, JepsonM, Weng C, Seara T, Weiss J, Hare JA. Indicators of climate change and social vul-
nerability in fishing dependent communities along the eastern and gulf coasts of the United States. Mar
Pol. 2016; 74:323–333.

Projecting thermal habitat shifts on the North American continental shelf

PLOSONE | https://doi.org/10.1371/journal.pone.0196127 May 16, 2018 28 / 28

https://doi.org/10.1371/journal.pone.0196127

