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We consider two formulations for the uncapacitated hub
location problem with single assignment (UHL), which
use multicommodity flow variables. We project out the
flow variables and determine some extreme rays of the
projection cones. Then we investigate whether the cor-
responding inequalities define facets of the UHL polyhe-
dron. We also present two families of facet defining
inequalities that dominate some projection inequalities.
Finally, we derive a family of valid inequalities that gen-
eralizes the facet defining inequalities and that can be
separated in polynomial time. © 2004 Wiley Periodicals, Inc.
NETWORKS, Vol. 44(2), 84–93 2004
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1. INTRODUCTION

In this article, we consider the Uncapacitated Hub Lo-
cation Problem with Single Assignment (UHL). Let I denote
the set of terminal nodes with �I� � n and K the set of
commodities. For commodity k � K, o(k) is the origin,
d(k) is the destination and tk is the amount of traffic where
tk � to(k)d(k). Origins and destinations of commodities are
terminal nodes, and any distinct pair of terminal nodes
defines a commodity.

Each terminal either receives a hub or is connected to
another node that receives a hub. If node i � I is connected
to such a node j � I�{i}, then the traffic on the link between
nodes i and j is the traffic adjacent at node i, that is, the total
traffic of commodities with node i as origin or destination.
The cost of routing this traffic on the link between node i
and node j is denoted by Fij. Any node i that becomes a hub

is assigned to itself. The cost of installing a hub at node i is
denoted by Fii.

Let A � {( j, l ) : j � I, l � I, j � l} and Rjl denote
the cost of routing a traffic unit on arc ( j, l ) if it becomes
a backbone arc, that is, if both nodes j and l receive hubs.
We assume that the cost vector R satisfies the triangle
inequality and Rjl � 0 for all ( j, l ) � A. In addition, we
assume that all data are rational.

If two nodes i and m are assigned to the same hub, say
j, the traffic from node i to node m follows the path i 3
j 3 m. However, if node i is assigned to node j and node
m is assigned to node l, then the traffic from node i to node
m follows the path i 3 j 3 l 3 m. Therefore, the total
traffic on arc ( j, l ) is the sum of the traffic of commodities
whose origins are assigned to node j and whose destinations
are assigned to node l. In Figure 1, we see a network with
10 nodes where nodes 1, 2, 3, and 4 are hub nodes. The
traffic from node 9 to node 5 follows the path 9 3 1 3 4
3 5, because node 9 is assigned to node 1 and node 5 is
assigned to node 4. The traffic from node 8 to node 7 goes
through the path 8 3 2 3 7, as both nodes 8 and 7 are
assigned to node 2. Finally, the traffic from node 3 to node
10 goes from node 3 to node 1 and then to node 10, because
node 3 is a hub and so is assigned to itself and node 10 is
assigned to node 1.

The aim of UHL is to choose the hub locations and
assign the terminal nodes to hubs to minimize the total cost
of location and routing. It has applications in transportation
and telecommunication. The UHL is an NP-hard problem
(see Yaman [10] for the proof for the special case where Rjl

� 0 for all ( j, l ) � A). For a recent survey on applications
and solution methods, see Campbell et al. [3].

Let xij be 1 if node i � I is assigned to node j � I and
0 otherwise. If node i receives a hub then xii is 1 and node
i is assigned to itself. Further, define zjl to be the total traffic
on the arc ( j, l ) � A. We can formulate UHL as follows:

min �
i�I

�
j�I

Fijxij � �
� j,l ��A

Rjlzjl
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s.t. �
j�I

xij � 1 � i � I (1)

xij � xjj � i, j � I, i � j (2)

zjl � �
k�K

tkxo�k� jxd�k�l � � j, l � � A (3)

xij � �0, 1� � i, j � I (4)

zjl � 0 � � j, l � � A (5)

Constraints (1), (2), and (4) imply that each node either
receives a hub or is assigned to exactly one other node
which receives a hub. For (i, j) � A such that Rjl � 0,
constraints (3) compute the value of traffic in terms of the
assignment variables.

In this article, we present two ways of linearizing con-
straints (3). These linearizations use the flow variables Xjl

k

� xo(k) jxd(k)l for k � K and j � I, l � I and they have the
same linear programming bound (see Yaman [10]). The
number of flow variables is O(n4). So these linearizations
are huge in size and not very useful in practice. We discuss
how to project out these flow variables to obtain a formu-
lation of a smaller size. Then we investigate the domination
among the projection inequalities. Finally, we prove that
some of these inequalities are facet defining for the hub
location polyhedron. We also introduce two other families
of facet-defining inequalities that dominate some of the
projection inequalities. Then we give a family of valid
inequalities which generalizes the facet defining inequali-
ties.

This article is organized as follows: In Section 2, we
present the multicommodity formulation. We project out the
flow variables in two different ways and compare the pro-
jection inequalities. In Section 3, we project out the flow
variables in the hub location formulation and characterize
the extreme rays of the projection cone for a single com-

modity. Then we present some families of extreme rays for
the multicommodity case. In Section 4, we summarize the
previous polyhedral results for the UHL and present new
facet-defining inequalities.

2. MULTICOMMODITY FLOW LINEARIZATION
AND ITS PROJECTIONS

As the routing cost R satisfies the triangle inequality, we
can formulate UHL using multicommodity flows. To obtain
the multicommodity flow formulation, we replace con-
straints (3) with the following set of inequalities:

�
l�I�� j�

Xlj
k � �

l�I�� j�

Xjl
k � xd�k� j � xo�k� j � j � I, k � K

(6)

�
k�K

tkXjl
k � zjl � � j, l � � A (7)

Xjl
k � 0 � � j, l � � A, k � K (8)

Notice that the flow balance equations are replaced by
the equivalent inequality forms (6) (see Mirchandani [6]).
These constraints state that if the origin of commodity k is
assigned to hub j but not the destination, there is a net flow
of one unit that goes out of hub j. On the contrary, if the
destination is assigned to j but not the origin, there is a net
flow of one unit that comes into node j. If both the origin
and destination are assigned to j or neither one is assigned
to j, the flow on the arcs incoming to node j is equal to the
flow on the arcs outgoing from node j concerning this
commodity. As the routing cost satisfies the triangle in-
equality, these constraints guarantee that the traffic of a
commodity uses the direct link between the hubs of its
origin and destination if its origin and destination are as-
signed to different hubs.

Constraints (7) imply that the traffic on arc ( j, l ) should
be at least the sum of the traffic of commodities whose
origins are assigned to node j and whose destinations are
assigned to node l. We sometimes refer to the traffic on the
backbone links as capacity to be able to follow the termi-
nology of flows and cuts.

To our knowledge, there are two ways of projecting out
the flow variables in this system. The first method used by
Mirchandani [6] is a direct projection. This method leads to
inequalities known as the metric inequalities (see Iri [4] and
Onaga and Kakusho [7]). Mirchandani [6] studies the ex-
treme rays of the resulting cone for the single commodity
and multicommodity cases. For the single commodity case
the projection inequalities are the well-known cut inequal-
ities. However, for the multicommodity case, we do not
know any characterization of all the extreme rays of the
resulting cone.

The second method used by Rardin and Wolsey [8] is to
replace the flow constraints by the corresponding cut con-

FIG. 1. Routing in a hub network.
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straints and do the projection afterwards. The projection
inequalities are called dicut inequalities.

Here, we do the projection using both methods and
compare the results. The comparison gives us a necessary
condition for the dicut inequalities not to be dominated.

2.1. Projection 1: Direct Method

First, we follow the method used by Mirchandani [6]. If
we associate dual variables 	j

k to constraints (6) and 
jl to
constraints (7), by Farkas’ Lemma, we have the following
result: given a solution x and z, there exists a vector X
satisfying (6)–(8) if and only if

�
� j,l ��A

zjl
jl � �
k�K

�
j�I

tk� xo�k� j � xd�k� j�	j
k (9)

for all (	, 
) � 0 such that


jl � 	j
k � 	l

k � k � K, � j, l � � A (10)

For a � �, let (a)� � max{0, a}. As zjl � 0 for all ( j,
l ) � A and all the data are rational, for a given ( x, z) there
exists a vector X that satisfies (6)–(8) if and only if

�
� j,l ��A

zjlmax
k�K

�	j
k � 	l

k�� � �
k�K

�
j�I

tk�xo�k� j � xd�k� j�	j
k (11)

for all integer 	j
k � 0.

2.2. Projection 2: Indirect Method

We now do the projection as in Rardin and Wolsey [8].
Let ua

k denote the capacity of arc a used for commodity k.
For x, which satisfies (1), (2), and (4), there exists a feasible
flow for commodity k if and only if

�
a���S�

ua
k � tk �

j�S

� xo�k� j � xd�k� j� � S � I

where �(S) � {( j, l ) � A : j � S, l � I�S} is the cut
induced by cut set S. So the inequalities (6)–(8) can be
replaced by the following:

�
a���S�

ua
k � tk �

j�S

� xo�k� j � xd�k� j� � S � I, k � K (12)

�
k�K

ua
k � za � a � A (13)

ua
k � 0 � a � A, k � K (14)

If we associate dual variables �S
k � 0 to inequalities (12)

and a to equations (13) we get that, given ( x, z) which
satisfies (1), (2), (4), and (5) there exists a vector X satis-
fying (6)–(8) if and only if

�
a�A

zaa � �
S�I

�
k�K

tk �
j�S

� xo�k� j � xd�k� j��S
k (15)

for all (�, ) such that

a � �
S:a���S�

�S
k � k � K, a � A

�S
k � 0 � k � K, S � I

This condition is equivalent to

�
a�A

zamax
k�K

� �
S:a���S�

�S
k� � �

S�I

�
k�K

tk �
j�S

�xo�k� j � xd�k� j��S
k (16)

for all integer � � 0 as all data are rational and za � 0 for
all a � A.

The �S
ks are interpreted in Rardin and Wolsey [8] as

follows: if we let 	k denote a collection of cut sets for
commodity k, we can interpret �S

k as the number of times
cut set S is repeated in the collection 	k.

2.3. Comparison of Projections 1 and 2

Proposition 1. For a given �, define 	k to be the collec-
tion of cut sets for k � K, that is, S is repeated �S

k times in
	k. Then for a given (x, z) which satisfies (1), (2), (4), and
(5), there exists a vector X that satisfies (6)–(8) if and only
if (16) is satisfied for all integer � � 0 such that we can
rename the cut sets in 	k as S1

k, . . . , Snk
1
k , Snk

k where nk

� �	k� in such a way that Snk

k � Snk
1
k � . . . � S1

k for all k
� K.

Proof. Consider inequality (15) for (�, ) � 0 such
that � is integer and a � maxk�K{¥S�I:a��(S) �S

k} for all
a � A. Define 	j

k � ¥S�I:j�S �S
k . Then 	j

k is the number
of times node j is repeated in the cut sets in collection 	k.
The right hand side of inequality (15) is equal to

�
S�I

�
k�K

�
j�S

tk� xo�k� j � xd�k� j��S
k

� �
k�K

�
j�I

�
S�I:j�S

tk� xo�k� j � xd�k� j��S
k

� �
k�K

�
j�I

tk� xo�k� j � xd�k� j�	j
k

which is equal to the right-hand side of inequality (9) for
this 	.
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Now we compare the left hand sides. For ( j, l ) � A and
k � K,

�	j
k � 	l

k�� � � �
S�I:j�S

�S
k � �

S�I:l�S

�S
k��

� � �
S�I:j�S

�S
k � �

S�	k:l�S, j�S

�S
k�� � �

S�I:� j,l ����S�

�S
k

Let k� be such that maxk�K(	j
k 
 	l

k)� � (	j
k� 
 	l

k�)�.
It follows that

jl � max
k�K

� �
S�I:� j,l ����S�

�S
k� � �

S�I:� j,l ����S�

�S
k�

� max
k�K

�	j
k � 	l

k�� � 
jl

Hence, the left-hand side of inequality (15) is greater than or
equal to the left-hand side of inequality (9). As the right-
hand sides are equal, inequality (9) dominates inequality
(15).

Next, we show how we can construct a pair (�, ) that
gives the same inequality as a given (	, 
) pair. For each
commodity k, let 	k � maxj�I	j

k. Define 	k to be the
collection of sets Si

k for i � 1, 2, . . . , 	k where Si
k � { j

� I : 	j
k � i} so that we have S	k

k � S	k
1
k � . . . � S1

k for
all k � K. Define also �Si

k
k to be the number of times Si

k is
repeated in 	k for all i � 1, 2, . . . , 	k and k � K. For S
� 	k, set �S

k � 0. Then 	j
k � ¥S�I:j�S �S

k . Moreover, if
	j

k � 	l
k, then whenever l � S, we have j � S. Therefore,

	j
k � 	l

k � �
S�I:j�S

�S
k � �

S�I:l�S

�S
k

� �
S�I:j�S

�S
k � �

S�	k:l�S, j�S

�S
k � �

S�I:� j,l ����S�

�S
k

and if 	j
k � 	l

k, then there is no Si
k � I such that ( j, l )

� �(Si
k). So

�
S�I:� j,l ����S�

�S
k � 0 � �	j

k � 	l
k��

This proves that

�	j
k � 	l

k�� � �
S�I:� j,l ����S�

�S
k

for all ( j, l ) � A and k � K.
Hence, for inequalities (16), it is enough to consider 	

where we can sort the cut sets in each 	k such that Snk

k �
Snk
1

k � . . . � S1
k where nk is the number of cut sets in 	k.

■

This result implies that the inequalities (16) that do not
satisfy the condition of Proposition 1 are dominated by

inequalities (11). So in a solution procedure based on cuts,
one does not need to separate these dominated inequalities.

3. HUB LOCATION LINEARIZATION AND ITS
PROJECTION

To obtain the hub location linearization, we replace
constraints (3) by

�
l�I

Xjl
k � xo�k� j � j � I, k � K (17)


�
j�I

Xjl
k � 
xd�k�l � l � I, k � K (18)


 �
k�K

tkXjl
k � 
zjl � � j, l � � A (19)

Xjl
k � 0 � � j, l � � A, k � K (20)

This formulation is given in Skorin-Kapov et al. [9]. Note
that we replaced constraints (17) and (18), which are orig-
inally equalities by their equivalent inequality forms. This
formulation is different from the multicommodity formula-
tion given in the previous section as it explicitly imposes
that every commodity travels from the hub of its origin to
the hub of its destination directly. If the origin and destina-
tion of a commodity k are assigned to the same hub, say j,
then the variable Xjj

k takes value 1 (these variables did not
exist in the multicommodity formulation).

Proposition 2. Given (x, z), there exists X that satisfies
(17)–(20) if and only if

�
a�A

za
a � �
k�K

tk �
j�I

� xo�k� j	j
k � xd�k� jj

k� (21)

for all (	, , 
) � 0 such that


jl � 	j
k � l

k � k � K, � j, l � � A (22)

0 � 	j
k � j

k � k � K, j � I (23)

Proof. If we associate dual variables 	j
k to constraints

(17), l
k to constraints (18) and 
jl to constraints (19), by

Farkas’ Lemma, we get the result. ■

Notice that inequalities (11) form a subset of the projec-
tion inequalities of this hub location linearization. More
precisely, inequalities (11) correspond to inequalities (21)
for integer (	, , 
) � 0 which satisfy 	j

k � j
k for all k

� K and j � I and 
jl � maxk�K(	j
k 
 l

k) for all ( j, l )
� A. However, remaining inequalities (21) are not neces-
sarily dominated by inequalities (11). This is natural as the
routing of the hub location is also feasible for the multi-
commodity formulation.
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Let H be the cone of (	, , 
) � 0 that satisfy inequal-
ities (22) and (23). Nondominated projection inequalities
are among inequalities (21) that are defined by (	, , 
),
which are extreme rays of H (see Balas [2]).

We consider first the case for a single commodity and
characterize all nondominated inequalities. This gives us
insight for the multicommodity case.

3.1. Single Commodity Case

Suppose �K� � 1. We drop the index k from the variables
defined above.

Proposition 3. The ray (	, , 
) � (0, 0, 0) is extreme for
cone H if and only if it belongs to one of the classes:

1. 
jl � 1 for some ( j, l ) � A and the other entries
are zero.

2. j � 1 for some j � I and the other entries are
zero.

3. 	j � 1 for all j � S, where S � I, l � 1 for all l
� I and the other entries are zero.

4. 	j � 1 for all j � S where S � I, l � 1 for all l
� T where T � I such that S � T, 
jl � 1 if j � S,
l � T and the other entries are zero.

Proof. The proof is very similar to the proof of Prop-
osition 3.5 given by Mirchandani [6]. We give it here for the
sake of completeness.

(Sufficiency) Classes 1 and 2 are trivial. For classes 3
and 4, consider (	, , 
) � (0, 0, 0) � H. Let B � {( j,
l ) � A : 
jl � 0}, S � { j � I : 	j � 0} and T � {l � I
: l � 0}. Notice that S � T because of the constraint (23).
Suppose that (	, , 
) is not an extreme ray of H. Then
there exist distinct (	, , 
)1 and (	, , 
)2 in H, which are
not multiples of (	, , 
) and (	, , 
) � 1/2(	, , 
)1

� 1/2(	, , 
)2. This implies that 	j
1 � 	j

2 � 0 if j � S,
j

1 � j
2 � 0 if j � T and 
jl

1 � 
jl
2 � 0 if ( j, l ) � B.

In Class 3, B � A and T � I. As 
jl
1 � 
jl

2 � 0 for all
( j, l ) in A, l

1 � 	j
1 and l

2 � 	j
2 for all j � S and l � I.

As 	j
1 � 	j

2 � 2	j � 2 and l
1 � l

2 � 2l � 2 we have
that l

1 � 	j
1 � �1 and l

2 � 	j
2 � �2 for all j � S and

l � I. Then (	, , 
)1 and (	, , 
)2 are multiples of (	, ,

).

In Class 4, B, S, and T are all nonempty. If j � S and l
� T, then 
jl � 0. So we have l

1 � 	j
1 and l

2 � 	j
2 for

all j � S and l � T. By the above discussion, l
1 � 	j

1 �
�1 and l

2 � 	j
2 � �2 for all j � S and l � T.

If j � S and l � T, then 
jl
1 � 	j

1 and 
jl
2 � 	j

2. As 	j
1

� 	j
2 � 2	j � 2 and 
jl

1 � 
jl
2 � 2
jl � 2, we get 
jl

1

� 	j
1 � �1 and 
jl

2 � 	j
2 � �2. So (	, , 
)1 and (	, ,


)2 are multiples of (	, , 
).
For classes 3 and 4, we showed that a ray (	, , 
)

satisfying the requirements of one of these classes cannot be
written as a linear combination of two distinct rays of H.
Thus, such a ray (	, , 
) is an extreme ray.

(Necessity) Given an extreme ray (	, , 
) � (0, 0, 0) of

H, define the sets B, S, and T. Assume that S � A. It is
easy to show that if T � A, then (	, , 
) should belong to
class 1 and if B � A then (	, , 
) should belong to class
2. If both T and B are not empty, then this can be written as
a linear combination of rays of classes 1 and 2, so it cannot
be extreme.

Now, assume that S � A. By feasibility, we have S �
T. Define � � min{minj�S	j, minl�Tl}. Clearly, � � 0.
Consider the two rays (	, , 
)1 and (	, , 
)2 defined as
follows: 	j

1 � � for all j � S, l
1 � � for all l � T, 
jl

1

� � for all j � S, l � T, 	j
2 � 2	j 
 � for all j � S, l

2

� 2l 
 � for all l � T, 
jl
2 � 2
jl 
 � for all j � S,

l � T, 
jl
2 � 2
jl for all j � S, l � T or j � S and the

rest of entries are 0. Both (	, , 
)1 and (	, , 
)2 are in H
and (	, , 
) � 1/2(	, , 
)1 � 1/2(	, , 
)2. But as (	, ,

) is an extreme ray, (	, , 
)1 and (	, , 
)2 should be
multiples of (	, , 
). So 	j � 1 for all j � S, l � 1 for
all l � T, 
jl � 1 for all j � S, l � T and the rest of the
entries are 0.

If B � A, by feasibility we have T � I. Then (	, , 
)
is in Class 3. Otherwise, it is in Class 4. ■

Proposition 4. Given (x, z) which satisfies (1), (2), (4),
and (5), there exists X that satisfies (17)–(20) if and only if

�
� j,l ��A:j�S,l�T

zjl � t��
j�S

xoj � �
l�T

xdl� (24)

for all S � T � I.

Proof. Inequalities (21) defined by (	, , 
) that are
extreme rays of H are as follows:

1. zjl � 0 for all ( j, l ) � A.
2. xdj � 0 for all j � I.
3. ¥j�S xoj � 1 for all S � I.
4. ¥( j,l )�A:j�S,l�T zjl � t(¥j�S xoj 
 ¥l�T xdl) for all S

� T � I.

The first three families of inequalities are implied by con-
straints (5), (4), and (1), respectively. The only nonredun-
dant inequalities are the inequalities of the fourth form. ■

These inequalities are quite similar to cut inequalities for
the single commodity flow. In fact, when we take a cut in
the case of hub location, we choose two disjoint subsets of
the set I, S and T� � I�T and consider all the arcs going from
S to T� .

Proposition 5. Given (x, z), we can separate inequalities
(24) by solving a min cut problem.

Proof. Separation of (24) is to find S � T � I such
that ¥( j,l )�A:j�S,l�T zjl 
 t(¥j�S xoj 
 ¥l�T xdl) is
minimized. Let � denote this minimum value. Consider the
layered graph G� � (V, A�) where V includes the nodes o
and d, the set I and a duplicate I� of set I, that is, V � {o,
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d} � I � I�. The arc set is A� � {(o, j) : j � I} � {( j,
l ) : j � I, l � I�} � {(l, d) : l � I�}. Let wij denote the
capacity of arc (i, j) � A� defined as follows:

woj � txoj � j � I

wld � txdl � l � I�

wjl � zjl � j � I, l � I� : � j, l � � A

wjj� � � � j � I, j� � I�

A cut set C is a subset of the set V such that o � C and d
� C. Define S � C � I and T � C � I�. If the duplicates
of nodes in S are not in T, the cut has an infinite capacity.
Otherwise, the capacity of cut set C is

�
�i, j����C�

wij � �
j�S

txoj � �
j�S

�
l�T

zjl � �
l�T

txdl

� t � �
j�S

txoj � �
l�T

txdl � �
j�S

�
l�T

zjl

As cut set C � {o} has capacity t, the min cut problem has
a finite value. So, � � minC ¥(i, j)��(C) wij 
 t. ■

In Figure 2, the set C � {o, 1, 2, 1�, 2�}. So S � {1,
2}, T � {1�, 2�} and the corresponding inequality is:

z13 � z14 � z23 � z24 � t� xo1 � xo2 � xd1 � xd2�

3.2. Multicommodity Case

Now we consider the multicommodity case. For (	, , 
)
� (0, 0, 0) in H, define B � {( j, l ) � A : 
jl � 0}, Sk

� { j � J : 	j
k � 0} and Tk � {l � I : l

k � 0} for all
k � K and K� � {k � K : Sk � A}.

The extreme rays for which B � A or K� � A are
characterized as follows:

1. If Sk � Tk � A for all k � K, then (	, , 
) is an
extreme ray if and only if 
jl � 1 for some ( j, l ) � A
and the rest of entries are zero. The corresponding pro-
jection inequality is zjl � 0.

2. If Sk � A for all k � K and B � A, then (	, , 
) is
an extreme ray if and only if j

k � 1 for some j � I and
for some k � K and the rest of the entries are 0. The
corresponding projection inequality is xd(k) j � 0.

3. If B � A and Sk � I for all k � K�, then we should have
Tk � I for all k � K�. In this case, (	, , 
) is an
extreme ray if and only if �K�� � 1. The corresponding
projection inequality is ¥j�Sk

xo(k) j � 1.

These propositions can be proved in a similar way to the
proof of Proposition 3.

We have a sufficient condition for a special class of the
remaining rays to be extreme.

Proposition 6. (Labbé et al. [5]) Let Sk � Tk � I for all k
� K. Define (	, , 
) such that

	j
k � 1 j � Sk

l
k � 1 l � Tk


jl � 1 if there exists a k � K such that j � Sk and l�Tk

and the other entries are 0. Then (	, , 
) � H.
Define G� � (B, E) where B � {(j, l) � A : 
jl � 1} and

E � {{(j, l), (m, n)} : (j, l) � B, (m, n) � B, 
jl � 	j
k and


mn � 	m
k for some k � K}. For k � K, define also the

bipartite graph G�k � (Sk  Tk, E�k) where E�k � {{j, l} : j
� Sk, l � Tk, 
jl � 0 or j � l}.

Ray (	, , 
) is extreme if graphs G� and G�k are
connected for all k � K and Sk � I for all k � K.

A special class of these extreme rays define inequalities that
are similar to inequalities (24).

Proposition 7. (Labbé et al. [5]) The inequality

�
j�S

�
l�T

zjl � �
k�K�

tk��
j�S

xo�k� j � �
l�T

xd�k�l � 1� (25)

where S and T are nonempty disjoint subsets of I and K� �
K is a valid inequality, and it is not dominated by other
projection inequalities.

Moreover, a subset of these inequalities are indeed sufficient
to have a formulation of UHL.

FIG. 2. The separation problem as a min cut.
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Proposition 8. (Labbé et al. [5]) For (x, z) which satisfies
(1), (2), (4), and (5), there exists X that satisfies (17)–(20) if
and only if (x, z) satisfies inequalities

zjl � �
k�K�

tk� xo�k� j � xd�k�l � 1� � K� � K, � j, l � � A

(26)

For the single commodity case, these inequalities sim-
plify to

zjl � t� xoj � xdl � 1� � � j, l � � A

zjl � 0 � � j, l � � A

This corresponds to the classical way of linearizing con-
straints zjl � txojxdl for all ( j, l ) � A when we minimize
a cost function where variables zjls have positive coeffi-
cients.

4. FACETS OF THE UHL POLYHEDRON

Polyhedral properties of UHL are studied in Labbé et al.
[5]. Here we summarize their results and present some new
facet defining inequalities.

We replace constraints (3) by (26) to have a linear
formulation. We also eliminate the variables xjjs by substi-
tuting xjj � 1 
 ¥m�I�{ j} xjm for all j � I (see Avella and
Sassano [1]).

If both j and l become hubs, then the traffic of commod-
ities with destination j or origin l does not travel on arc ( j,
l ). Moreover, the traffic from node j to node l travels on arc
( j, l ). Define Kjl � K�({( j, l )} � {(m, j) : m � I�{ j}}
� {(l, m) : m � I�{l}}).

The UHL can be reformulated as follows:

min �
i�I

�
j�I��i�

Fijxij � �
i�I

Fii�1 � �
j�I��i�

xij� � �
� j,l ��A

Rjlzjl

s.t. xij � �
m�I�� j�

xjm � 1 � �i, j� � A (27)

zjl � �
k�K�:o�k��j,d�k��e

tk� xo�k� j � xd�k�l � 1�

� �
i�I�� j,l�:� j,i��K�

tji� xil � �
m�I�� j�

xjm� � �
i�I�� j,l�:�i,l ��K�

til� xij

� �
m�I��l�

xlm� � tjl�1 � �
m�I�� j�

xjm � �
m�I��l�

xlm�

� K� � Kjl, � j, l � � A (28)

xij � �0, 1� � �i, j� � A (29)

zjl � 0 � � j, l � � A (30)

Let PUH � conv({( x, z) � {0, 1}n(n
1)  �n(n
1) : ( x,

z) satisfies (27)–(30)}). Define eij
x � ( x, z) (resp. eij

z � ( x,
z)) to be the unit vector such that xlm � 0 for all (l, m)
� A�{(i, j)}, xij � 1 and zlm � 0 for all (l, m) � A (resp.
xlm � 0 for all (l, m) � A, zlm � 0 for all (l, m) � A�{(i,
j)} and zij � 1).

Proposition 9. (Labbé et al. [5]) The polyhedron PUH is
full dimensional, that is, dim(PUH) � 2n(n 
 1).

Theorem 1. (Labbé et al. [5]) The inequality �x � �0

defines a facet of PUH if and only if it defines a facet of PUC

� conv{x � {0, 1}n(n
1) : xij � ¥m�I�{j} xjm � 1 @(i, j)
� A}.

The polytope PUC is a special stable set polytope. For
facet defining inequalities of PUC, see Yaman [10].

Theorem 2. (Labbé et al. [5]) No inequality of the form 
z
� 
0 defines a facet of PUH unless it is a positive multiple
of zjl � 0 for some (j, l) � A.

Proposition 10. (Labbé et al. [5]) For (j, l) � A, if tjl � 0,
then the inequality zjl � 0 defines a facet of PUH.

The remaining facet defining inequalities of PUH involve
both x and z variables. Here, we investigate which inequal-
ities (28) are facet defining inequalities.

Proposition 11. For (j, l) � A and K� � Kjl, define I�j
� {m � I�{l} : ?i � I�{m} : (i, m) � K�, tim � 0} and I�l
� {m � I�{j} : ?i � I�{m} : (m, i) � K�, tmi � 0}. If
inequality (28) defines a facet of PUH, then I�j � I�l � A.

Proof. Assume that ( x, z) � PUH satisfies inequality
(28) at equality and that xjm � 1 for some m � I�j. Then the
right-hand side of inequality (28) is

�
k�K�:o�k��j,d�k��e

tk� xd�k�l � 1� � �
i�I�� j,l�:� j,i��K�

tji� xil � 1�

� �
i�I�� j,l�:�i,l ��K�

til �
m�I��l�

xlm � tjl �
m�I��l�

xlm

� �
k�K�:o�k��j,d�k��e

tk� xd�k�l � 1� � �
i�I�� j,l�:� j,i��K�

tji� xil � 1�

� �
i�I��m�:�i,m��K�

tim� xml � 1� � 
 �
i�I��m�:�i,m��K�

tim � 0

So, any ( x, z) � PUH that satisfies inequality (28) at
equality also satisfies xjm � 0 for m � I�j. We can show that
( x, z) should also satisfy xlm � 0 for m � I�l in a similar
way. So if at least one of sets I�j and I�l is nonempty, then
inequality (28) is not facet defining for PUH. ■

If tk � 0 for all k � K�, then both sets I�j and I�l are
empty. We next show that in this case, inequality (28) is
facet defining. Define N to be a very large integer.
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Proposition 12. For (j, l) � A, if tk � 0 for all k � K�,
then inequality (28) is facet defining for PUH.

Proof. Assume that tk � 0 for all k � K�. Below are
2n(n 
 1) affinely independent points in PUH that satisfy
inequality (28) at equality:

● ¥(t,s)�A�{( j,l )} Nets
z � tjlejl

z

● ¥(t,s)�A�{( j,l )} Nets
z � tjlejl

z � eim
z for (i, m) � A�{( j,

l )}
● eim

x � ¥(t,s)�A�{( j,l )} Nets
z � tjlejl

z for i � I�{ j, l} and
m � I�{i, j, l}

● ejm
x � ¥(t,s)�A�{( j,l )} Nets

z for m � I�{ j}
● elm

x � ¥(t,s)�A�{( j,l )} Nets
z for m � I�{l}

● eij
x � elj

x � ¥(t,s)�A�{( j,l )} Nets
z for i � I�{ j, l}

● eil
x � ejl

x � ¥(t,s)�A�{( j,l )} Nets
z for i � I�{ j, l}. ■

In the sequel, we present two more families of facet-
defining inequalities that dominate some projection inequal-
ities.

Proposition 13. For (j, l) � A, the inequality

zjl � tjl�1 � �
i�I�� j�

xji � �
i�I��l�

xli� � �
i�I�� j,l�

tji� xil � �
m�I��i, j�

xjm�

� �
i�I�� j,l�

til� xij � �
m�I��i,l�

xlm� (31)

is valid for PUH.

Proof. If xji � xli � 0 for all i � I�{ j, l}, then
inequality (31) is the same as inequality (28) for K� � {( j,
i) : i � I�{ j, l}} � {(i, l ) : i � I�{ j, l}}. If xjp � 1 for
some p � I�{ j, l}, then the right-hand side of inequality
(31) is


tjl �
i�I��l�

xli � �
i�I�� j,l,p�

tji�xil � 1� � �
i�I�� j,l�

til �
m�I��i,l�

xlm � 0

The case where xlp � 1 for some p � I�{ j, l} is analogous.
■

The proof of Proposition 13 shows that inequality (31)
dominates inequality (28) for K� � {( j, i) : i � I�{ j, l}}
� {(i, l ) : i � I�{ j, l}}.

Proposition 14. For (j, l) � A, inequality (31) defines a
facet of PUH.

Proof. Below are 2n(n 
 1) affinely independent
points in PUH that satisfy inequality (31) at equality:

● ¥(t,s)�A�{( j,l )} Nets
z � tjlejl

z

● ¥(t,s)�A�{( j,l )} Nets
z � tjlejl

z � eim
z for (i, m) � A�{( j,

l )}
● eim

x � ¥(t,s)�A�{( j,l )} Nets
z � tjlejl

z for i � I�{ j, l} and
m � I�{i, j, l}

● ejm
x � ¥i�I�{ j,l,m} eil

x � ¥(t,s)�A�{( j,l )} Nets
z for m

� I�{ j}
● elm

x � ¥i�I�{ j,l,m} eij
x � ¥(t,s)�A�{( j,l )} Nets

z for m
� I�{l}

● eij
x � ¥(t,s)�A�{( j,l )} Nets

z � (tjl � til)ejl
z for i � I�{ j,

l}
● eil

x � ¥(t,s)�A�{( j,l )} Nets
z � (tjl � tji)ejl

z for i � I�{ j,
l}. ■

Proposition 15. For (j, l) � A, Ij � I�{j, l} and Il � I�{j,
l} such that Ij � Il � A and Ij � Il � I�{j, l}, the inequality

zjl � �
i�Ij

�
m�Il

tim� xij � xml � xim � xmi � 1�

� �
i�Il

tji� xil � �
m�I��i, j�

xjm� � �
i�Ij

til� xij � �
m�I��i,l�

xlm�

� tjl�1 � �
i�I�� j�

xji � �
i�I��l�

xli� (32)

is valid for PUH.

Proof. Assume that xim � xmi � 0 for all i � Ij and
m � Il and xjm � xlm � 0 for all m � I�{ j, l}. Then
inequality (32) is the same as inequality (28) for K� � {(i,
m) � K : i � Ij, m � Il} � {(i, l ) � K : i � Ij} � {( j,
i) � K : i � Il} and is valid. If xjm � 1 for some m
� I�{ j} then we can show that inequality (32) is still valid
as in the proof of Proposition 13. So inequality (32) is valid
if xim � xmi � 0 for all i � Ij and m � Il. Notice that if
xim � xmi � 1 for some i � Ij and m � Il then xij � xml

� 0. So inequality (32) is valid for PUH. ■

Inequality (32) dominates inequality (28) for K� � {(i,
m) � K : i � Ij, m � Il} � {(i, l ) � K : i � Ij} � {( j,
i) � K : i � Il}.

Proposition 16. For (j, l) � A, Ij � I�{j, l} and Il � I�{j,
l} such that Ij � Il � A and Ij � Il � I�{j, l}, inequality (32)
defines a facet of PUH.

Proof. Below are 2n(n 
 1) affinely independent
points in PUH that satisfy inequality (32) at equality:

● ¥p�Ij
epj

x � ¥(t,s)�A�{( j,l )} Nets
z � ¥p�Ij�{ j} tplejl

z

● ¥p�Ij
eij

x � ¥(t,s)�A�{( j,l )} Nets
z � ¥p�Ij�{ j} tplejl

z �
eim

z for (i, m) � A�{( j, l )}
● eim

x � ¥p�Il�{m} epl
x � ¥p�Ij�{i} epj

x � ¥(t,s)�A�{( j,l )}

Nets
z � ¥p�Ij�{i}�{ j} ¥r�Il�{m}�{l} tprejl

z for i � Ij and
m � Il

● emi
x � ¥p�Il�{m} epl

x � ¥p�Ij�{i} epj
x � ¥(t,s)�A�{( j,l )}

Nets
z � ¥p�Ij�{i}�{ j} ¥r�Il�{m}�{l} tprejl

z for i � Ij and
m � Il

● eim
x � ¥p�Il

epl
x � ¥(t,s)�A�{( j,l )} Nets

z � ¥p�Il�{l}

tjpejl
z for i � Ij and m � Ij

● eim
x � ¥p�Ij

epj
x � ¥(t,s)�A�{( j,l )} Nets

z � ¥p�Ij�{ j}

tplejl
z for i � Il and m � Il

● eij
x � ¥p�Il

epl
x � ¥(t,s)�A�{( j,l )} Nets

z � ¥p�Il�{l} (tip

� tjp)ejl
z for i � Ij
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● eil
x � ¥p�Il

epl
x � ejl

x � ¥(t,s)�A�{( j,l )} Nets
z for i � Ij

● eil
x � ¥p�Ij

epj
x � ¥(t,s)�A�{( j,l )} Nets

z � ¥p�Ij�{ j} (tpi

� tpl)ejl
z for i � Il

● eij
x � ¥p�Ij

epj
x � elj

x � ¥(t,s)�A�{( j,l )} Nets
z for i � Il

● eji
x � ¥p�Il

epl
x � ¥(t,s)�A�{( j,l )} Nets

z for i � Ij � {l}
● eji

x � ¥p�Il�{i} epl
x � ¥p�Ij

epi
x � ¥(t,s)�A�{( j,l )} Nets

z

for i � Il

● eli
x � ¥p�Ij

epj
x � ¥(t,s)�A�{( j,l )} Nets

z for i � Il � { j}
● eli

x � ¥p�Ij�{i} epj
x � ¥p�Il

epi
x � ¥(t,s)�A�{( j,l )} Nets

z

for i � Ij. ■

Before concluding this section, we discuss the separation
problems related to inequalities (28), (31), (32), and (33).
For ( j, l ) � A, inequalities (28) can be separated in
polynomial time by taking

K� � ��i, m� � Kjl : i, m � I�� j, l�, xo�k� j � xd�k�l

� 1� � �i � I�� j, l� : xil � �
m�I�� j�

xjm� � �i � I�� j, l� : xij

� �
m�I��l�

xlm�

Inequalities (31) can also be separated in polynomial
time by enumeration. However, the separation of inequali-
ties (32) seems more complicated. In fact, this separation
problem is a special max cut problem on a graph Gc � (I,
Ac). Let wa denote the capacity of arc a � Ac. The arcs and
their capacities are defined as follows:

� j, i� : i � I�� j, l� wji � tji� xil � �
m�I��i, j�

xjm�

�i, l � : i � I�� j, l� wil � til� xij � �
m�I��i,l�

xlm�

�i, m� : i, m � I�� j, l�

wim � tim� xij � xml � xim � xmi � 1�

� j, l � wjl � tjl�1 � �
i�I�� j�

xji � �
i�I��l�

xli�

The capacity of a max cut separating j and l in Gc is
equal to the maximum value that the right-hand side of
inequality (32) can attain. So for ( j, l ) � A, the most
violated inequality (32) can be found by solving a max cut
problem.

We now present a family of valid inequalities that gen-
eralizes inequalities (32) and that can be separated in poly-
nomial time.

Proposition 17. For (j, l) � A and K� � Kjl, the inequality

zjl � �
k�K�:o�k��j,d�k��e

tk� xo�k� j � xd�k�l � xo�k�d�k� � xd�k�o�k� � 1�

� �
i�I�� j,l�:� j,i��K�

tji� xil � �
m�I��i, j�

xjm� � �
i�I�� j,l�:�i,l ��K�

til� xij

� �
m�I��i,l�

xlm� � tjl�1 � �
m�I�� j�

xjm � �
m�I��l�

xlm� (33)

is valid for PUH.

Proof. Similar to the proof of Proposition 15. ■

Clearly, for a given ( j, l ) � A and K� � Kjl, inequality
(33) dominates inequality (28). Propositions 12 and 17
imply the following:

Corollary 1. For (j, l) � A and K� � Kjl, inequality (28)
is facet defining for PUH if and only if tk � 0 for all k � K�.

Inequalities (33) can be separated in polynomial time by
taking for ( j, l ) � A,

K� � ��i, m� � Kjl : i, m � I�� j, l�, xo�k� j � xd�k�l � xo�k�d�k�

� xd�k�o�k� � 1� � �i � I�� j, l� : xil � �
m�I��i, j�

xjm�

� �i � I�� j, l� : xij � �
m�I��i,l�

xlm�

In the example below, we show that using inequalities
(33), we can cut some fractional solutions that do not violate
inequalities (28).

Example 1. Assume that I � {1, 2, 3, 4} and the only
nonzero traffic demand is from node 3 to node 4 and t34 � 1.
Consider (x, z) such that x31 � x42 � x34 � 0.5, the
remaining entries of x are zero and z � 0. The vector (x, z)
satisfies all inequalities (28). Inequality (33) for arc (1, 2)
and K� � {(3, 4)} is

z12 � t34� x31 � x42 � x34 � x43 � 1� � 0.5

So by introducing this inequality in the current LP relax-
ation, we can cut off the point (x, z). ■

This example suggests that inequalities (33) can be useful in
a branch and cut framework.

5. CONCLUSION

We considered two formulations for the UHL that are
based on flow variables. The first formulation is the multi-
commodity formulation. We presented two ways of project-
ing out the flow variables in this formulation. We deter-
mined some dicut inequalities that are dominated comparing
the two projections.

Then we projected out the flow variables in the hub
location formulation. The inequalities obtained from the
projection of the hub location formulation include the ine-
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qualities obtained from projection applied to the multicom-
modity formulation.

For the hub location formulation, we characterized the
extreme rays of the projection cone for the single commod-
ity case and pointed out its relation to cuts for flows. For the
multicommodity case, we identified some of the extreme
rays. The projection inequalities defined by a subfamily of
these rays is sufficient to have a valid formulation of UHL.
We showed that some of these inequalities are facet defining
while some others are dominated by other facet-defining
inequalities. We also presented a family of valid inequalities
that generalizes these facet-defining inequalities and that
can be separated in polynomial time.
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