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Abstract

We report a new model to project the predictive performance of polygenic models based on the 

number and distribution of effect sizes for the underlying susceptibility alleles and the size of the 

training dataset. Using estimates of effect-size distribution and heritability derived from current 

studies, we project that while 45% of the variance of height has been attributed to common 

tagging Single Nucleotide Polymorphisms (SNP), a model trained on one million people may only 

explain 33.4% of variance of the trait. Current studies can identify 3.0%, 1.1%, and 7.0%, of the 

populations who are at two-fold or higher than average risk for Type 2 diabetes, coronary artery 

disease and prostate cancer, respectively. Tripling of sample sizes could elevate the percentages to 

18.8%, 6.1%, and 12.2%, respectively. The utility of future polygenic models will depend on 

achievable sample sizes, underlying genetic architecture and information on other risk-factors, 

including family history.

Introduction

For quite some time, many have predicted that the identification of heritable disease 

susceptibility markers, such as common genetic variants, could eventually lead to stable 

models for risk-prediction with important individual and public health implications1. Even 

for a trait such as breast cancer, which manifests a modest degree of familial aggregation, a 

polygenic model based on a comprehensive set of genetic variants could achieve sufficient 

discriminatory power and thus be applied in targeted screening programs2. To date, genome-
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wide association studies (GWAS) now have identified thousands of common susceptibility 

variants for a wide spectrum of complex traits. Recent studies, however, indicate that for 

most individual traits the loci discovered so far, explain only a small fraction of heritability 

and thus, collectively have low predictive power3–11.

While the phenomenon of “missing heritability”12,13 can be due to many factors such as an 

overestimation of heritability itself, lack of knowledge of gene-gene and gene-environment 

interactions and contributions from rare variants, there is increasing recognition that a 

significant part of the heritability comes from a large number of common SNPs, each of 

which individually has too small of an effect to be detected at the stringent genome-wide 

significance level with current sample sizes14–18. Recent studies, for example, have 

indicated that while about 200 loci identified through a large GWAS involving more than 

100,000 subjects can explain only approximately 10% of the variance of adult height6, a set 

of common SNPs included in existing GWAS platforms can explain up to 45% of the 

variance of the same trait16. Similar studies for a number of other complex traits have 

indicated the presence of significant “hidden heritability” in GWAS17,19–21.

The gap between estimates of heritability based on known loci and those estimated due to 

the comprehensive set of common susceptibility variants raises the possibility of 

substantially improving prediction performance of risk models by using a “polygenic” 

approach, one that includes many SNPs that do not reach the stringent threshold for genome-

wide significance. A major factor that determines how well such a model can perform in 

predicting a trait value in an independent sample will be the sample size of the “training” 

dataset based on which the prediction model can be built. Intuitively, as the sample size for 

the training dataset increases, the effects of the underlying SNPs can be more precisely 

estimated. Correspondingly, the underlying true polygenic model, which harnesses the full 

predictive power associated with total heritability associated with the SNPs, will be more 

accurately approximated.

In this report, we measure the ability of models based on current as well as future GWAS to 

improve the prediction of individual traits. We develop a new theoretical framework that 

characterizes the relationship between sample-size and predictive performance of a 

polygenic model based on the number and distribution of effect-sizes for the underlying 

susceptibility SNPs and the optimal balance of type-I and type-II error associated with the 

underlying criterion of SNP selection. Based on this, we provide a realistic assessment of the 

predictive performance of a polygenic model for each of ten complex traits, namely, the 

quantitative traits height (HT), body mass index (BMI), total cholesterol (TC), HDL and 

LDL and the disease traits, Crohn’s disease (CD), Type 1 diabetes (T1D), Type 2 diabetes 

(T2D), coronary artery disease (CAD) and prostate cancer (PrCA). We use a range of effect-

size distributions that are consistent with both known discoveries, 412 in total, reported from 

the largest GWAS of these traits and recent estimates of the “narrow-sense” heritability, i.e. 

the total heritability of the traits attributable to additive effects of common SNPs.

The results disclose several insights into the predictive ability of existing GWAS, the 

marginal utility of further increase in sample size, the sample-size threshold beyond which 

the predictive ability of the models may reach a plateau, the optimal threshold for SNP 
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selection and the joint utility of family history information and polygenic risks. Furthermore, 

the general theoretical framework we provide can be used to make projections for the 

predictive utility of different polygenic model building strategies that may utilize alternative 

statistical algorithms or/and could incorporate other types of effects, such as those due to 

gene-gene interactions and rare variants.

Results

Throughout, we assess the predictive performance of a model based on its “predictive 

correlation coefficient” (PCC), which, for a continuous outcome, is equivalent to the 

Pearson’s correlation coefficient between true and predicted outcomes for the underlying 

population of subjects. For a binary disease outcome, we show that PCC has a one-to-one 

mathematical correspondence to the area under the curve (AUC) statistics and other standard 

measures for discriminatory performance of risk models. In derivation of this formula, we 

assume a simple but popularly used22 model building algorithm in which SNPs are first 

selected for inclusion in the model depending on whether the corresponding individual tests 

of association achieve a specified significance threshold (α) and then a polygenic score is 

built by weighing the selected SNPs based on their estimated regression coefficients. The 

details of the underlying models and assumptions can be found in Methods section.

The relationship between predictive performance of the model and the sample size (N) for 

the training data set is shown in the formula (1), which forms the basis of our analytical 

calculations (Methods). Simulation studies confirm the accuracy of the expression (1) 

(Supplementary Figure 1). According to this formula, the predictive performance of a model 

depends upon: (i) the number of true susceptibility SNPs (M1) compared to the total number 

of SNPs under study (M), (ii) the true effect-sizes (βms) for the underlying susceptibility 

SNPs, (iii) the chosen significance level (α) for SNP selection, (iv) the power of the 

underlying association test to reach that significance level, and (v) the expected value of the 

estimated regression coefficients and their squared values for the selected SNPs. The 

sample-size of the training dataset (N) influences both the power of the association test-

statistics and the deviations of the estimated regression coefficients from their true values 

(see Methods for more details). Given an effect-size distribution, since the number of 

underlying susceptibility SNPs (M1) determine the total variability of the trait explainable 

by the underlying model, expression (1) can be also re-written in terms of “narrow sense 

heritability” ( ), which is defined for the purpose of this report to be the heritability of a 

trait due to additive effects of common tagging SNPs included on current, commercially 

available SNP microarrays (see formula 2). In all our subsequent analyses, we assume that 

genotyping platforms based on which most current GWA studies have been conducted to 

contain approximately on average M=200,000 independent SNPs.

As for a model for complex trait, we first investigated the predictive performance of 

polygenic models for adult height. Figure 1 shows that the predictive accuracy of polygenic 

models greatly depends upon the distribution of effect sizes even when all distributions 

result in a total heritability of 45%16. The predictive performance of the model for all 

sample sizes is the highest when an exponential distribution underlies the effect-sizes. The 

performance of the model decreases substantially under a two-component, exponential-
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mixture model, which, compared to the exponential model, provides a much better fit to the 

observed effect sizes of the known SNPs by allowing for the presence of a larger number of 

SNPs, each with smaller effect (Supplementary Table 1). Finally, the performance of the 

model is the lowest under a three component exponential-mixture distribution, which allows 

an even larger number of SNPs with smaller effects and produces results that are most 

consistent with the observed discoveries in the GIANT study6 (Supplementary Table 1). Our 

methods successfully reproduced results from a predictive analysis reported in the GIANT 

study in which distinct polygenic models were built with different significance thresholds 

for SNP selection and their predictive performance were empirically assessed using 

independently held out assessed. Our method, when applied to the three-component mixture 

exponential distribution at the given sample size of the GIANT study (N=130,000), provided 

an accurate approximation for the entire profile of the observed predictive performance of 

these polygenic models (Figure 1).

Expression (1) illustrates the trade-off between specificity and sensitivity of the SNP 

selection criterion on the predictive performance of the model. When a more liberal 

significance threshold (α) is chosen, then the value of the predictive correlation coefficient 

will increase through the power of the association tests, but will decrease as a function of the 

underlying type-I error (α). Figure 1 illustrates the optimal threshold for SNP selection that 

would maximize predictive performance of a model for adult height. Under both the two- 

and three- component mixture distributions for effect sizes, the optimal significance level 

initially increases, with sample size, it reaches a plateau and then remains constant or 

decreases slightly. In contrast, under the single exponential distribution that corresponds to 

stronger effect sizes, the optimal significance level becomes more stringent as sample size 

increases.

We next examined the potential predictive performance of polygenic models for a variety of 

traits that include both quantitative (BMI, TC, HDL, LDL) and qualitative phenotypes (CD, 

T1D, T2D, CAD, PrCA) that together demonstrate a spectrum of estimated heritability 

(Table 1). For most traits, we consider a range for the underlying effect-size distributions 

that are in accord with both reported discoveries from the largest GWAS and recent 

estimates of narrow-sense heritability (Methods, Supplementary Tables 2 and 3). For a few 

traits for which external estimates of  are not available, we considered a range of its values 

within the limits of total heritability and effect-size distributions that can produce results 

consistent with the observed discoveries in the largest GWAS.

For all traits, the expected performance of the polygenic models built based on current 

GWAS (sample size=N) can be predicted fairly accurately (Figure 2 and Figure 3). 

Although it may be possible to improve the performance of these models by inclusion of 

SNPs that do not achieve strict genome-wide significance levels, the models are expected to 

have low to modest predictive power even after optimization of the SNP selection criterion 

(Table 2). As sample sizes of the future studies increase, the projected performances of the 

models will have a wider range reflecting the uncertainty associated with estimates of 

heritability. Nevertheless it is evident that only very large sample sizes can substantially 

improve the performance of the models, even in some of the best case scenarios. For 

Chatterjee et al. Page 4

Nat Genet. Author manuscript; available in PMC 2013 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prostate cancer (PrCA), for example, while a polygenic model built based on the current 

largest GWAS can be expected to achieve an AUC statistics of about 63%, in the future, a 

model built based on as many as triple that sample size is expected to increase the AUC 

statistic only in the range 64–70% (Figure 3). For all disease traits except coronary artery 

disease (CAD), it appears that the marginal utility of additional sample can be quite small 

after the size of GWAS reaches 100,000–200,000 subjects. In contrast, for CAD, BMI, and 

the lipid traits TC and LDL, the performance of predictive models may continue to improve 

gradually over a much wider range of sample sizes, reaching as high as 500,000 to one 

million subjects.

The predictive performance of a model strongly depends on the degree of heritability. For 

any given sample size, more accurate prediction is possible for more heritable traits, such as 

CD and T1D, than for relatively less heritable traits such as CAD, PrCA and T2D, which is 

in accord with classical estimates of heritability based on sibling and twin studies. 

Accordingly, the ability of the models to identify future cases in “high-risk” group varies 

(Table 3). For example, using models based on current GWAS, the proportion of future 

cases that could be identified among top 20 percentile of subjects with highest polygenic 

risk is 71% for T1D and about 32% for T2D. If the sample size for a future GWAS is 

tripled, then the corresponding proportions would be expected to increase to 75% and 48%, 

respectively. Among the three common chronic diseases, the proportion of the population 

that can be identified to have two-fold or higher risk than an average person ranged from 

1.1% (CAD) to 7.0% (PrCA) for models built based on current sample sizes (Supplementary 

Table 4). If the sample size for future studies could be tripled, then these proportions could 

be elevate to 6.1% (CAD) and 18.8% (T2D).

For all diseases, family history (FH) information alone has low discriminatory ability. 

However, models including both FH and polygenic scores can perform substantially better 

than models using polygenic scores alone especially for rare highly familial conditional such 

as CD and T1D. Even if polygenic scores could be built in the future based on very large 

sample sizes (e.g. sample-size=5×N), FH is expected to remain an important variable for 

identifying high-risk subjects (Table 2 and 3).

Discussion

In summary, our analysis demonstrates that the predictive ability of polygenic models 

depends not only on total heritability, but also on the underlying effect-size distributions 

(Figure 1). The emerging effect size distributions from large GWAS suggest that although 

risk prediction models will continue to improve in the future as total sample size 

accumulates, the improvement will be slow and modest even when common SNPs account 

for a large proportion of heritability of the underlying traits (Figures 2 and 3). Our analysis 

also reveals that under the most likely effect-size distributions, the optimal significance 

threshold for selecting SNPs for prediction models in large GWAS can be more liberal than 

threshold standard (e.g. p < 5 × 10−8) used for discovery.

We observed that for less common, highly familial conditions, like T1D and CD, risk 

models including FH and optimal polygenic scores based on current GWAS can identify a 
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large majority of cases by targeting a small group of high-risk individuals (e.g., subjects who 

fall in the highest quintile of risk). In contrast, for more common conditions with modest 

familial components, such as T2D, CAD and PrCA, risk models based on GWAS with 

current (N) or foreseeable sample sizes in the near future (e.g., triple in size, 3×N) can miss 

a large proportion (>50%) of cases by targeting a small group of high-risk individuals. For 

these common diseases, polygenic models using current GWAS can identify a small 

minority of the population with elevated risk. Based on our model, we suggest that it is 

necessary to augment sample size of current GWAS by at least three times to substantially 

increase the proportion of high-risk populations identified by polygenic models. Perhaps one 

day GWAS or sequencing would be carried out as part of standard clinical care and then 

such information together with electronic medical records (EMR) could be used to build 

polygenic models based on sufficiently large studies.

Consistent with a previous report23, our analysis of T1D with and without contribution of 

the MHC region highlights the limited incremental discriminatory ability of polygenic 

scores for diseases that have established common and strong risk factors (Tables 2 and 3). 

Nevertheless, for most diseases, polygenic scores are expected to contribute substantially in 

addition to family history. One could also expect that in the foreseeable future, even crude 

family history information such as the presence or absence of the disease in any first degree 

relative, will remain an important contributing factor for predicting disease-risk in the 

general population. More detailed information on extended family history, including age-at-

onset information, could further enhance predictive utility of these models especially for 

applications in high-risk family settings.

Our analysis extends beyond prior reports24–27 to project the predictive performance of 

polygenic models most of which relied on simulation studies. A previous report25 had noted 

that predictive performance of models that include all GWAS SNPs in a polygenic score 

without SNP selection depends only on the sample size of the training dataset and . More 

general theory shows that an algorithm which includes all SNPs in a model, i.e. uses the 

significance level of α=1, could be poor and the predictive performance of more efficient 

algorithms is expected to depend on the underlying effect-size distribution. Previous 

simulation studies often have relied on hypothetical effect size distributions. Here, we use 

the effect-size distributions that are implied by constraints imposed by both known 

discoveries reported from some of the largest GWAS to date and recent estimates of 

heritability to provide a realistic depiction of the future of genetic risk prediction.

Our results are generally consistent with a recent analysis28 that used information on risk in 

monozygotic twins to examine the absolute limits of “personalized medicine” achievable by 

genome sequencing under the assumption that such technology can ultimately lead to an 

ideal model that can capture the full spectrum of genetic risk without possibility of any 

error. In this report, we provide much sharper bounds for what can be achieved in practice 

using current or future GWAS by taking into account the likely error associated with 

estimation of underlying risk that is inevitable because of constraints on sample sizes. 

Emerging effect-size distributions suggest that GWAS will require huge sample size to 

approach the ideal predictive power associated with additive effects of common SNPs. 
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Using a metric used by this report together with the assumption of independent susceptibility 

alleles across traits, for example, we can predict that while GWAS in principle can identify 

55.1% of the population who might have two-fold or higher risk than average for at least one 

of the three common diseases, CAD, T2D and PrCA, the actual proportion which is 

achievable using current GWAS studies is only 10.7% and for future studies that triple e the 

sample size is 33.1%. If the susceptibility alleles across these traits are related, however, 

these proportions could become higher.

In this report, we have made projections based on a simple GWAS polygenic model building 

algorithm6,22 after its optimization with respect to the criteria for SNP inclusion. The 

general framework we constructed (Supplementary Note), however, can be used to assess 

the likely performance of other, possibly even more efficient, model building strategies. 

Using this framework, for example, we project that an algorithm that utilizes LASSO-

type 29 thresholds and can analyze all SNPs simultaneously, may outperform the standard 

GWAS polygenic model building algorithm. This may be particularly interesting for large 

sample sizes and highly heritable traits like height, but we also note that the gains are 

generally modest in scope (Supplementary Figure 2). Simultaneous modeling of correlated 

SNPs within small genomic regions can unmask allelic heterogeneity possibly adding to the 

overall predictive strength of the models8,30. Other strategies may include linear mixed 

modeling16 and Bayesian methods31,32 that can construct polygenic scores based on 

shrinkage estimates for SNP coefficients utilizing specific priors for the effect-size 

distribution. Although the absolute performance of different algorithms could be somewhat 

different across settings, the main results we highlight regarding the order of sample sizes 

required for improvement of risk prediction is intrinsically related to the underlying effect-

sizes and are likely to be observed with other algorithms as well.

Our proposed theoretical framework can be used to speculate on the predictive performance 

of polygenic models that could be built based on rare variants. In an additional illustration 

(Supplementary Figure 3), under a model that allows large number of susceptibility loci 

each containing sets of low-penetrant rare variants, we assessed how polygenic models 

might perform if variants are included in a model as individual cofactors versus using a 

gene-collapsing strategy that has been advocated for improving power for association 

tests33. We observed that up to a certain range of sample sizes for the training dataset, 

models based on collapsed variables often can perform better, apparently due to the 

improved power for detection of the underlying susceptibility loci. For larger sample sizes, 

however, their performance might fall short compared to models based on individual 

variants as collapsed variables possibly including neutral variants can cause substantial 

dilution of effects for the susceptibility loci and the magnitude of such dilution may not 

diminish with increasing sample size for naive collapsing methods. In the future, it will be of 

great importance to determine the sample sizes at which such inflection point would occur 

for different traits depending on the underlying genetic architecture.

In this report, we use a flexible class of mixture-exponential models to specify effect-size 

distributions. One could specify effect-size distributions using alternative parametric models 

such as Weibull, Gamma or Beta distributions all of which can generate L-shaped 

distributions that appear to be natural for specification of effect-sizes of common SNPs. 
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Although the performance of polygenic models could differ widely in principle under 

different effect-size distributions, additional analyses (data not shown) indicate that when 

such alternative models were restricted so that they can also explain discoveries and 

estimates of heritabilities reported from current GWAS, each produced results that are 

qualitatively similar to what we report using the mixture of exponential distributions. For 

future studies of rare variants, however, the range of plausible models for effect-size 

distributions is substantial and thus evaluating the likely performance of polygenic models 

based on such variants remains challenging (Supplementary Figure 3).

In conclusion, we have used novel theory together with empirical observations from large 

GWAS to provide a comprehensive evaluation of future of polygenic risk models using 

common susceptibility SNPs. Although our analysis points toward the challenges for 

achieving high-discriminatory34 power for polygenic risk models especially for common 

diseases, it is noteworthy that even models with modest discriminatory power can provide 

important stratification for absolute risk, thus providing a rationale for potential public 

health applications such as for weighing risks and benefits for a treatment or an 

intervention34. For most common disease, existing models based on established 

environmental risk factors, if any, also has modest discriminatory power and faces 

additional challenges for long-term risk prediction as risk-factor history, unlike 

susceptibility status, can change over lifetime of an individual. In the future, development of 

robust prediction models will need to integrate a spectrum of alleles, from rare to common 

variants, and other risk factors as well. The framework outlined in this paper could be used 

to identify challenges and opportunities for public health application as well as the required 

resources needed for development of such models.

Methods

Underlying polygenic model

We assume Y is the outcome variable of and X1,…,XM are a set of independent covariates 

that are potentially predictive of Y. Without loss of generality, we will assume all variables 

are standardized, so that E(Y) = 0 and Var(Y) = 1 and similarly E(Xm) = 0 and Var(Xm) = 1 

for each m.

We assume that the true relationship between outcome and the set of covariates can be 

described by the underlying model ( )

where M1 out the M covariates are truly predictive of Y. We also assume ε, the residual 

term, to be independently distributed of X=(X1,…,XM).
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Measure of predictive performance of a model

Now suppose an “estimated” prediction model ( ) is built base on “training” dataset of 

sample size N to predict Y using the formula

where γm is indicator of whether the variable is selected (γm = 1) or not (γm = 0) and βm̂ is 

the estimate of βm for selected variables. We will denote λ to be a generic threshold 

parameter for the underlying model selection algorithm.

We will define the predictive correlation for the model  to be

where the subscript X and ε signify that the correlation coefficient is computed with respect 

to the distribution of X and ε in the the underlying population for which prediction is desired 

while the estimated model  and its associated parameter estimates (β̂
ms and γms), are held 

fixed. The only source of variation of RN( ) is due to the randomness of the original 

training dataset based on which  is built. For any fixed N and λ, the expected value of 

RN( ) can be approximated as (see Supplementary Note)

where em(N, λ) = EN,λ(β̂
m|γm = 1), pm(N, λ) = PrN,λ(γm = 1) and 

.

GWAS polygenic model building algorithm

Suppose in a GWAS study, independent SNPs are included in a prediction model depending 

on whether the corresponding marginal trend-test for association achieves a specified 

significance level α or not. Let Zm denote the association test-statistics for the m-th SNP and 

Cα/2 denote the critical level for a two-sided test at level α. For any SNP that achieves the 

required significance level, i.e. γm = 1, its corresponding coefficient in the prediction model 

could be taken as β̂
m, i.e. the estimated regression coefficient from the marginal analysis of 

the SNP.
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Based on general theory developed in Supplementary Note, we show that in the above 

setting the expected value of predictive correlation coefficient of the above polygenic model 

building algorithm over different GWAS datasets of sample size N can be written as

(1)

where pow(N, βm, α) denotes the power of the study of size N for detecting an effect-size of 

βm at level α, eN(βm) = E(β̂
m||Zm| > Cα/2), and . Based on the 

formula for eN(βm) and νN(βm) given in Suppementary Note, it is easy to see that as N → ∞, 

eN(βm) → βm and . Thus, it follows that as N → ∞,

(2)

Since  is the variance of the trait due to the total additive effects of all 

susceptibility SNPs, , where  is the total heritability in narrow sense.

Evaluation of AUC statistics and other performance measures for binary disease 
outcomes

Previously, several reports2,43,44 have established the relationship between measures of 

discrminatory ability of risk models and the genetic variance explained by the true 

underlying polygenic score associated with a set of SNPs. To generalize such results when 

the polygenic score associated with a set of SNPs may be estimated with error, we assume 

that the true relationship between the risk of a binary disease outcome D and a set of 

covariates X1,…,XM is given by an underlying logistic model of the form

We assume that a risk-prediction model is built base on a training dataset of sample-size N 

using the formula

where γm is indicator of whether the variable is selected (γm = 1) or not (γm = 0) and βm̂ is 

the estimate of βm for selected variables. Let  be the estimated risk for a 

person with covariate profile X in the underlying logistic scale. Without loss of generality, 
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we assume each covariate Xm has been standardized with respect to its mean and variance of 

disease free population so that E(Xm|D = 0) = 0 and Var(Xm|D = 0) = 1. In the 

Supplementary Note, we show that the distribution of Û in controls (D=0) and cases (D=1) 

for large M, M1, and N can be approximated by normal distributions as

where  and . It is 

noteworthy that while the characterization of the distributions of true risk (U) for cases and 

controls requires a single parameter, namely the variance of U2,43,44, the characterizations 

for the corresponding distributions for estimated risk (Û) requires two parameters, namely 

the variance of Û and its covariance with the true risk U.

Now, the area under the curve (AUC), i.e., the probability that value of risk-score will be 

greater for a randomly selected case than that of a randomly selected control, can be 

approximated as

where RN = CN/SN is the predictive correlation measure defined earlier for continous 

outcome. Similarly, using above results, other measures of discreminatory performance of 

models, such as proportion of cases followed (PCF)2, can be also characterized in terms of 

RN.

In the Supplementary Note, we further show that the distribution of estimated risk Û for 

subjects conditional on both his/her own disease status D and that of a relative DR can be 

approximately characterized as:

where kR = 2−R is the coefficient of relationship. Based on these distributions, we further 

derive discriminatory ability of risk models that include both polygenic risk scores and 

family-history.

Estimation of effect-size distribution

We extend our previous methods14,15,45 to obtain realistic estimates of effect-size 

distribution for all underlying susceptibility SNPs for individual traits by combining 

information from both known discoveries from largest GWAS and estimates of  that have 

recently become available for most of the traits we studied. The major steps are: (1) identify 

the largest GWAS, termed the “current study”, for each of the traits and list “observed 
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susceptibility SNPs” that are discovered through these studies; (2) following the design of 

the discovery studies (Supplementary Table 2), compute the power to detect SNPs with 

given effect-sizes; (3) obtain an estimate effect size distribution by fitting parametric 

mixture-exponential distribution to observed susceptibility SNPs after accounting for 

statistical power for their discovery and (4) incorporate an additional mixture component to 

the effect-size distribution that can allow a larger number of SNPs with very small effects so 

that the overall distribution can explain both estimate of heritability due to common variants 

( ) and the number of observed discoveries and genetic variances explained in current 

studies. Below we describe the details for each step.

In step 1, for each trait, we identified the largest GWAS to date (Supplementary Table 2) 

and constructed a list of observed susceptibility SNPs that could be considered to have been 

“detected” from this study. All independent SNPs that reach genome-wide significance 

according to specified criteria for these studies are included in the list of known 

susceptibility SNPs. Some studies used multistage designs and did not follow-up previously 

established susceptibility SNPs beyond the first stage. We included such previously 

established SNPs in our list if they reached the required threshold for follow-up in the first 

stage of the current study, on the assumption that these SNPs would have reached genome-

wide significance had they been followed up like all other SNPs meeting the same criterion. 

For each observed susceptibility SNP, we obtained the effect-size as es = ψ2 × 2f(1 − f) 

where ψ is linear or logistic regression coefficient depending on quantitative or qualitative 

traits and f is the allele frequency. In the GWAS context, a covariate X in a polygenic model 

is the number of risk alleles associated with a SNP and thus following the notation in the 

main text where a covariate X is assumed to be standardized, it follows that 

 and es = β2. To minimize bias from the winner’s curse, we estimated 

effect-sizes by excluding discovery stage data whenever replication phase data were 

available. Otherwise, we corrected for possible bias using statistical techniques46.

In step 2, we evaluated power for detection for each susceptibility SNP at their observed 

effect-sizes following the exact design of the original discovery studies (see Supplementary 

Table 2).

In step 3, we obtained estimate of effect-size distribution by fitting a parametric model to the 

effect-sizes for observed susceptibility SNPs. In our previous work14,15,45, we have 

described non-parametric methods for estimating effect-size distribution within the range of 

effect-sizes for observed susceptibility SNPs. In this report, we considered use of parametric 

models that can be used to describe distribution of effect-sizes beyond the range of known 

discoveries. Specifically, we used the class of mixture of exponential distributions that 

allows specification of effect-size distribution in a flexible, weakly parametric fashion. The 

model is very natural as it allows for increasingly large number of susceptibility SNPs with 

decreasingly smaller effects, a common pattern that is emerging from GWAS. 

Mathematically, we assumed that the distribution of effect-sizes for all underlying 

susceptibility SNPs are given by
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where θ =(p1, …, pH, λ1, …, λH) with ph being the mixture weight for the h-th component, h 

= 1, …, H and g(es|λh) is an exponential distribution with mean 1/λh. Noting that the set of 

K observed susceptibility SNPs can be viewed as a random sample from the set of all 

underlying susceptibility SNPs with probability of sampling for each SNP is proportional to 

its power for discovery, we constructed a likelihood as

where powstudy(esi|N, α) is the power to detect a SNP with effect size es in the current 

GWAS of size N at a significance level of α. We use Bayesian methods to estimate the 

parameters of the mixture model based on the above likelihood and non-informative priors 

for the parameter vectors p=(p1, …, pH) and λ =(λ1, …, λH). Specifically, we assumed a 

discrete Dirichlet distribution for p that leads to uniform prior for each of the ph, h = 1, .., H 

marginally. We assumed λh, h = 1, …, H to be independently distributed each following a 

Gamma distribution with shape and scale parameters a = 0.5 and b = 2× 104, respectively. 

Posterior means for all parameters were obtained based on MCMC algorithms. For each 

trait, among several fitted mixture models with varying H (up to 3), we selected the best 

mixture model on the basis of the DIC model selection criterion47. For all traits except PrCA 

and CAD, a two-component (H = 2) mixture model was found to be the best fitted 

distribution. For PrCA and CAD, a single exponential distribution (H = 1) was found to be 

adequate.

In step 4, we incorporated an additional mixture component to the effect-size distribution 

estimated in step 3 so that the overall distribution can be used to describe the effect-sizes for 

all SNPs that contribute to narrow-sense heritability . We observed that if we 

had assumed that the parametric effect-size distribution estimated based on known loci can 

be extrapolated to describe the effect-sizes for all susceptibility loci explaining , then the 

expected number of discoveries and the corresponding heritabilities explained in the current 

GWAS will be substantially larger than those empirically observed in these studies 

(Supplementary Table 1). Thus it is very likely that the true effect-size distribution for all 

susceptibility SNPs contributing to narrow-sense heritability is more skewed toward smaller 

effects. To obtain a properly calibrated effect-size distribution for all susceptibility SNPs, 

we thus added an additional mixture component to the fitted effect-size distribution that we 

estimated based on known loci. We assumed
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where the summation in the right side corresponds to the fitted mixture model based on 

known loci. For any given value of , we found the value of parameters pH+1 and λH+1 for 

the additional component by equating the expected and observed number of discoveries and 

the corresponding heritability explained in the current largest GWAS by solving the 

equations

(3)

and

(4)

where α is the genome-wide significance level used for discovery and M1 is defined by

We solved for pH+1 and λH+1 by performing a grid-search within the ranges 0.01≤ 

pH+1≤0.99 and λ̂
H ≤ λH+1 ≤ 20 × λ̂

H where the latter constraint is imposed to allow the mean 

of the new component to be smaller than that of the smallest component of the fitted 

distribution by a factor of up to 20-fold. For traits for which estimates of  and associated 

confidence intervals were available, values of  were chosen to be at their point estimates 

(Tables 2 and 3) or varied within the range of their CIs (Figures 2 and 3) and for each such 

value of  a corresponding effect-size distribution was obtained by solving the above 

equations. For TC, LDL and CAD, for which direct estimates of  were not available, we 

varied the value of  to be within 20–80% of the range of total heritability of these traits 

that are available from family studies. For CAD, however, the range of  for which 

solutions could be found for the equations (3) and (4) were severely restricted. In particular, 

it appears that the limited number of findings (21 SNPs) from the very large existing GWAS 

(N=75,000) of this trait automatically imposes major constraint on the upper bound of , at 

least for the class of effect-size distributions we considered.

Characteristics of largest GWAS and associated discoveries are obtained from published 

reports6–8,10,36–39. For each trait, an effect-size sample size is calculated for a single-stage 

study that has equivalent power as the original study taking into accounting multi-stage 
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genotyping and selective sampling by family history for PrCA. For HT, sample size and 

reported discoveries correspond to only first-stage of the GIANT study.

The number of discoveries reported takes into account any genomic control adjustment used 

in the original study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Predictive correlation coefficient (PCC) for polygenic models and corresponding 
optimal significance level for SNP selection under three models for polygenic architectures for 
adult height
Each model assumes a total of 45% of phenotypic variance of adult height can be explained 

by common SNPs included in standard GWAS platforms involving M=200,000 independent 

SNPs. The effect size distribution for susceptibility SNPs are assumed to follow an 

exponential distribution (black line), a mixture of two exponential distributions (red line) or 

a mixture of three exponential distributions (blue line). Panel (a) and (b) show expected 

value of squared PCC and corresponding optimal significance level (αopt), respectively, as a 

function of sample size (N). Panel (c) compares PCC values reported in a predictive analysis 

of the GIANT study (dashed line) with corresponding theoretical expected values under the 

three different models.
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Figure 2. 
Expected predictive correlation coefficient (PCC) for polygenic models at optimal 

significance level for SNP selection for four quantitative traits.

For HDL and BMI, range of performance is shown corresponding to estimate of  (yellow 

line) and associated 95% confidence interval (dark blue region). For LDL and TC, for which 

direct estimate of  is not available, a range of values are chosen based on constraints 

imposed by the observed discoveries. For all traits, the underlying effect-size distribution is 

assumed to follow a mixture of three exponential distributions, which together with  is 

calibrated to explain observed discoveries from the largest GWAS (see Methods).
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Figure 3. Expected AUC statistics at optimal significance level for SNP selection for five disease 
traits.

For all diseases except CAD, range of performance is shown corresponding to estimate of 

(yellow line) and associated 95% confidence intervals (dark blue region). For CAD, for 

which direct estimate of  is not available, a range of its values are chosen based on 

constraints imposed by the observed discoveries. For all traits, the underlying effect-size 

distribution is assumed to follow a mixture of two or three exponential distribution, which 

together with  is calibrated to explain observed discoveries from the largest GWAS (see 

Methods).
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