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Abstract—In this paper we establish a projection based model
reduction method for multi-agent systems defined on a graph.
Reduced order models are obtained by clustering the vertices
(agents) of the underlying communication graph by means of
suitable graph partitions. In the reduction process the spatial
structure of the network is preserved and the reduced order
models can again be realized as multi-agent systems defined
on a graph. The agents are assumed to have single-integrator
dynamics and the communication graph of the original system
is weighted and undirected. The proposed model reduction
technique reduces the number of vertices of the graph (which is
equal to the dynamic order of the original multi-agent system)
and yields a reduced order multi-agent system defined on a new
graph with a reduced number of vertices. This new graph is
a weighted symmetric directed graph. It is shown that if the
original multi-agent system reaches consensus, then so does the
reduced order model. For the case that the clusters are chosen
using an almost equitable partition of the graph, we obtain an
explicit formula for the H2-norm of the error system obtained by
comparing the input-output behaviors of the original model and
the reduced order model. We also prove that the error obtained
by taking an arbitrary partition of the graph is bounded from
below by the error obtained by using the largest almost equitable
partition finer than the given partition. The proposed results are
illustrated by means of a running example.

Index Terms—Model reduction, Clustering, Graph partitions,
Networks of autonomous agents, Multi-agent systems.

I. INTRODUCTION

Multi-agent systems and distributed control of networks of

dynamic agents have received compelling attention in the last

decade. In particular, reaching an agreement among agents

in a network has been widely studied in terms of consensus

and synchronization; see e.g. [10], [19], [21], [13], [23], [24].

Among numerous research directions in this area we mention

formation control, flocking, placement of mobile sensors, and

controllability analysis of networks; see e.g. [7], [18], [6], [5],

[20], [27].

In order to analyze or control a large-scale system, model

reduction techniques are highly advantageous. Clearly, lower

order models admit easier analysis and provide a better

understanding of the system behavior. Various model reduc-

tion techniques, such as balanced truncation, Hankel-norm
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approximation and Krylov projection are available in the

literature; see e.g. [1]. Naively, one may think of exploiting

these model reduction techniques to deal with analysis or

control of large-scale networks. However, a major drawback

here is that the spatial structure of the network may collapse by

direct application of classical model reduction tools. Of course,

related to this issue, structure preserving model reduction

techniques have been established in the literature. In particular,

preservation of the Lagrangian structure, the second-order

structure, and the interconnection structure of several subsys-

tems have been studied in [11], [12], and [22]. Nevertheless,

multi-agent systems and dynamical networks have their own

structural characteristics and this motivates us to study the

model reduction problem for this class of systems in a more

focused manner. Obviously, the key structure needed to be

preserved in the reduced order model is the network topology.

Some recent work in this direction is [4] and [9], where

clustering based algorithms are proposed for asymptotically

stable networks. In particular, a notion of (relaxed) cluster

reducibility is used in [9] that is closely related to the notions

of leader symmetry and leader-invariant equitable partitions ;

see [20], [15], [27].

In the present paper we consider multi-agent systems

defined on weighted undirected graphs, and we propose a

projection based technique to obtain reduced order models

for these systems. The projection used is formulated in terms

of the characteristic matrix of a graph partition. The reduc-

tion procedure preserves the spatial structure of the network,

meaning that the reduced order model is realized as a new

multi-agent system. The communication graph of the reduced

order multi-agent system is weighted, symmetric and directed,

and has a reduced number of nodes.

Observe that the Laplacian matrix of the communication

graph serves as the state matrix in the model of a typical multi-

agent system with a consensus based feedback protocol. Thus,

inevitably, the system is not asymptotically stable, and hence

most of the aforementioned existing results do not directly

apply to this case. Another issue which is relevant here is

the preservation of consensus in the reduced order model. As

we will observe, clustering the agents does not jeopardize the

consensus property of the original multi-agent system.

In [17] a model reduction scheme was established in which

the dynamic order of the agents is reduced, but the commu-

nication graph remains unchanged. As a counterpart of [17],

in the present paper we consider single integrator dynamics

with a consensus type of protocol, and we aim at reducing

the size of the underlying communication graph. Note that the

problem under study in this paper is inherently different to
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that of [17] as in the current paper we seek for reduction in

the communication graph, whereas in the latter the dynamic

order of the agents is being reduced.

To further justify our work, we mention here two notable

advantages of preserving the network structure in the reduction

process. First, note that the reduced order models obtained are

again realized as new multi-agent systems. Therefore, analysis

and design methods that have already been established in

the literature for this class of systems are still applicable to

the reduced order systems. Consequently, if the approximated

models are “close” to the original models in a certain cense,

one can perform the analysis/design techniques to the reduced

order systems, and expect that the performed analysis/design

would be still “valid” for the original model. Second, as we use

graph partitions in our proposed model reduction method, there

is a tangible relationship between the reduced order system

and the original one. In particular, the agents in the reduced

order system approximate the behavior of the clusters of the

original network. This is particularly interesting in cases where

intra-cluster behaviors are not of crucial importance, but one

is interested rather in a hyper level of behaviors, namely the

interaction between clusters; see e.g. [25] and [26].

An important challenge is to compare the input-output

behavior of the reduced and original network. In this paper,

we work with a leader-follower set up, meaning that some

agents, often called leaders, may receive an external command,

a disturbance, or a reference signal. Moreover, as outputs we

essentially consider the differences among the states of the

communicating agents, as these differences play a crucial role

in the context of distributed control. Then, for the case where

the proposed projection corresponds to an almost equitable

partition, we will establish an explicit expression for the exact

model reduction error in the sense of the H2-norm. The

expression provided for the associated model reduction error is

simple, easy to compute, and can be derived directly from the

graph partition involved in obtaining the reduced order model.

Moreover, by using the notion of partial ordering of partitions,

we will show how the established model reduction error can

be used to obtain a lower bound on the model reduction error

associated to arbitrary graph partitions, not necessarily almost

equitable.

Note that the underlying idea of the proposed model reduc-

tion technique is to define a projection, based on clustering

the vertices (agents) of the graph, in order to obtain a reduced

order model. Hence, as the proposed projection acts on the

communication graph and not on the dynamics of the agents,

the proposed idea is potentially applicable to other classes

of multi-agent systems where the agents may have general

linear dynamics, or follow a different type of protocol; see

e.g. [13], [14]. In the same vein, the proposed method is

potentially applicable to multi-agent systems with discrete-

time dynamics; see e.g. [10]. However, in order to derive more

explicit results, we will restrict our attention in this paper to

the case of continuous-time leader-follower Laplacian based

dynamics.

The structure of the paper is as follows. In Section II, we

review some basic notions and preliminaries that are needed

in the rest of the paper. The proposed model reduction scheme

is discussed in Section III. The input-output behaviors of

the reduced order and the original multi-agent system are

compared in Section IV. Finally, Section V concludes the

paper.

II. PRELIMINARIES

In this section, we will provide some preliminaries and basic

material needed in the sequel. In particular, we will discuss

some basic notions from graph theory, describe the model used

in this paper for multi-agent systems, and finally recap the

notion of Petrov-Galerkin projection.

A. Graph Theory

In this paper we consider both weighted undirected graphs

and weighted directed graphs. A weighted undirected graph

is a triple G = (V,E,A) where V = {1, 2, . . . , n} is the

vertex set, E is the edge set, and A = [aij ] is the adjacency

matrix, with nonnegative elements aij called the weights. The

edge set of G is a set of unordered pairs {i, j} of distinct

vertices of G. Similarly, a weighted directed graph is a triple

G = (V,E,A) where V = {1, 2, . . . , n} is the vertex set,

E is the arc set, and A = [aij ] is the adjacency matrix with

nonnegative elements aij , again called the weights. The arc set

of G is a set of ordered pairs (i, j) of distinct vertices of G. For

an arc (i, j) 2 E, we say i is the tail, and j is the head of the

arc. In this paper we consider simple graphs meaning that self-

loops and multiple edges (multiple arcs in the same direction)

between one particular pair of vertices are not permitted. We

have aij > 0 whenever there is an edge between i and j (an

arc from j to i). Clearly, aij = aji for undirected graphs.

A directed graph is called symmetric if whenever (i, j) is an

arc also (j, i) is. We note that for symmetric directed graphs

the weights aij and aji can be distinct. Clearly any weighted

undirected graph can be identified with a symmetric directed

graph in which the weights satisfy aij = aji.

Both for undirected and directed graphs the degree ma-

trix of G is the diagonal matrix, denoted by D =
diag(d1, d2, . . . , dn), with

di =

n
X

j=1

aij .

Note that, for directed graphs, the definition above corresponds

to the so-called in-degree matrix of a graph (see e.g. [16, p.

26]). The Laplacian matrix of G is defined as L = D � A.

For directed graphs, the incidence matrix of G, denoted by

R = [rij ], is defined as

rij =

8

>

<

>

:

1 if vertex i is the head of arc j

�1 if vertex i is the tail of arc j

0 otherwise

(1)

for i = 1, 2, . . . , n and j = 1, 2, . . . , k, where k is the total

number of arcs. In order to obtain an incidence matrix for a

given undirected graph, we first assign an arbitrary orientation

to each of the edges and next take the incidence matrix of the
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corresponding directed graph (see [16, p.21]). Corresponding

to the incidence matrix R, let

W = diag(w1, w2, . . . , wk) (2)

be a k⇥k matrix such that wj indicates the weight associated

to the edge (arc) j, for each j = 1, 2, . . . , k. For undirected

graphs, the relationship between the incidence matrix and the

Laplacian matrix is then captured by the following equality:

L = RWR>. (3)

B. Multi-agent systems

Let G = (V,E,A) be a weighted undirected graph where

V = {1, 2, . . . , n}. Let VL = {v1, v2, . . . , vm} be a subset of

V , and let VF = V \ VL. By a leader-follower multi-agent

system, we mean the following dynamical system:

ẋi =

(

zi if i 2 VF

zi + u` if i = v` 2 VL

(4)

where xi 2 R denotes the state of agent i, u` 2 R is the

external input applied to agent v`, and zi 2 R is the coupling

variable for the agent i which is given by

zi =
n
X

j=1

aij(xj � xi). (5)

Let x = col(x1, x2, . . . , xn), u = col(u1, u2, . . . , um), and

the matrix M 2 R
n⇥m be defined as

Mi` =

⇢

1 if i = v`
0 otherwise.

(6)

Then we can write the above leader-follower linearly diffu-

sively coupled multi-agent system associated with the graph

G in a compact form as

ẋ = �Lx+Mu, (7)

where L is the Laplacian matrix of G, and M is given by (6).

C. Petrov-Galerkin projections

Consider the input/state/output system

ẋ = Ax+Bu,

y = Cx,
(8)

where x = R
n is the state, u 2 R

m is the input, and y = R
p

is the output of the system. Let W,V 2 R
n⇥r such that

W
>
V = I . By using the projection Γ = VW

>, a reduced

order model (projected model) is obtained as

˙̂x = W
>AVx̂+W

>Bu

y = CVx̂
(9)

where x̂ 2 R
r denotes the state of the reduced model. This

projection is called a Petrov-Galerkin projection. Note that Γ

defines a projection onto the image of V and along the kernel

of W
>. In case that W is equal to V, the projection Γ is

orthogonal and is called a Galerkin projection. The Petrov-

Galerkin projection is a rather general reduction framework
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Fig. 1: G = (V,E,A)

meaning that many of the model reduction techniques includ-

ing Krylov based and truncation methods essentially use this

projection with appropriate choice of matrices V and W. In

particular, depending on the application, one can choose the

matrix V, and consequently W, to preserve stability, passivity,

or to match certain moments and Markov parameters (see [1]

for more details).

III. PROJECTION BY GRAPH PARTITIONS

It is not hard to see that a direct application of Petrov-

Galerkin projection will, in general, destroy the spatial struc-

ture of the network. In particular, the relationship between the

reduced order network and the original one is not transparent,

the structure of the Laplacian matrix may be lost, and the

reduced order model may not be in the form of a leader-

follower multi-agent system as given by (7). Therefore, we

propose to use graph partitions in order to preserve the

structure of the network in the reduced order model. First,

we need to recap the notions of cells and graph partitions.

Let V = {1, 2, . . . , n} be the vertex set of a graph G. We

call any nonempty subset of V a cell of V . We call a collection

of cells, given by π = {C1, C2, . . . , Cr}, a partition of V if

[iCi = V and Ci \ Cj = ∅ whenever i 6= j. With a little

abuse of notation, we say π is a partition of G = (V,E), or

shortly G, meaning that π is a partition of V . We say a vertex

v is a cellmate of a vertex w in π if v and w belong to the

same cell of π. For a cell C ✓ V , the characteristic vector of

C is defined as the n-dimensional column vector p(C) with

pi(C) =

(

1 if i 2 C,

0 otherwise.
(10)

For a partition π = {C1, C2, . . . , Cr}, we define the charac-

teristic matrix of π as

P (π) =
⇥

p(C1) p(C2) · · · p(Cr)
⇤

. (11)

Example 1 As an example, consider the graph G depicted in

Figure 1.

Then,

π = {{1, 2, 3, 4}, {5, 6}, {7}, {8}, {9, 10}} (12)
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is a partition of V = {1, 2, . . . , 10}, and its characteristic

matrix is given by

P (π) =

2

6

4

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1

3

7

5

>

. (13)

⇤

Now, consider again in general the multi-agent system

(7) with associated graph G = (V,E,A). Let π =
{C1, C2, . . . , Cr} be a partition of V , and P (π) be the char-

acteristic matrix of π. Recall the Petrov-Galerkin projection

discussed in Section II-C. We propose the following choices

for the matrices V and W:

W = P (π)(P>(π)P (π))�1 (14a)

V = P (π). (14b)

Note that the columns of P (π) are orthogonal, thus the

matrix P>(π)P (π) is a diagonal matrix. Moreover, its ith

diagonal element is equal to the number of vertices in cell Ci

of π. Hence, P>(π)P (π) is invertible. Also note that W>
V =

I , and the projection Π = VW
> is orthogonal since imV =

(kerW>)?. Then, by applying the Petrov-Galerkin projection

to (7), with the choices of V and W given by (14), we obtain

the reduced order system

˙̂x = �L̂x̂+ M̂u, (15)

where x̂ 2 R
r is the state of the reduced order model, and the

matrices L̂ and M̂ are given by

L̂ = (P>P )�1P>LP, (16)

M̂ = (P>P )�1P>M, (17)

where P (π) is denoted shortly by P .

Next, we show that the reduced model (15) is associated

with a leader-follower multi-agent system defined on a graph,

in a similar form as (7). First, observe that M̂ has a similar

structure as M . More precisely, each column of M̂ contains

exactly one nonzero-element, indicating a leader. The only

difference is that the non-zero elements do not need to be 1
anymore. This can be interpreted by saying that input signals

are now weighted.

It is easy to observe that the matrix L̂ is equal to the Lapla-

cian matrix of a weighted directed graph, say Ĝ = (V̂ , Ê, Â).
In fact, as a consequence of the aforementioned projection, the

underlying graph G is mapped to the graph Ĝ. In particular,

each cell of π in G is mapped to a vertex in Ĝ. Hence, the

number of vertices in Ĝ is equal to the cardinality of π, i.e. the

number of cells in π. Moreover, there is an arc from vertex

p to vertex q in Ĝ if and only if there exist i 2 Cp and

j 2 Cq with p 6= q such that {i, j} 2 E. Therefore, Ĝ is a

symmetric directed graph, i.e. (i, j) 2 Ê , (j, i) 2 Ê. For

the relationship between the matrices A and Â = [âpq], we

have

âpq =
1

|Cp|

X

i2Cp,j2Cq

aij , (18)

for p 6= q, where |.| denotes the cardinality of a set. Observe

that the row sums of L̂ are indeed zero as P (π)11 = 11
and L11 = 0, where 11 denotes the vector of ones of appro-

priate dimension. Note that the matrix L̂ is not necessarily

symmetric, as the number of vertices may differ from cell

to cell in π. However, L̂ is similar to the symmetric matrix

(P>P )�
1

2P>LP (P>P )
1

2 , thus L̂ inherits nice properties of

L, like diagonalizability and having real eigenvalues.

As observed, the reduced order model (15) is associated

with a new multi-agent system where the diffusive coupling

rule is defined based on the graph Ĝ. The idea behind the

proposed projection is that the partition π clusters some

vertices (agents) together, and these vertices are mapped to

a single vertex in the reduced order (projected) model. In

addition, note that the components of the reduced state x̂

approximate the averages of the states of the agents that are

cellmates in π. In case the agents that are cellmates in π have

a “similar” interconnection to the rest of the network, then

this approximation tends to be exact. We will clarify what we

mean by “similar” in the next section.

Example 2 We will now return to our example in Figure 1.

Suppose that agents (vertices) 6 and 7 are leaders. Then the

multi-agent system associated with the graph G is given by:

ẋ = �Lx+Mu (19)

where

L =

2

6

6

6

6

6

6

6

4

5 0 0 0 0 �5 0 0 0 0
0 5 0 0 �3 �2 0 0 0 0
0 0 6 �1 �2 �3 0 0 0 0
0 0 �1 6 �5 0 0 0 0 0
0 �3 �2 �5 25 �2 �6 �7 0 0
�5 �2 �3 0 �2 25 �6 �7 0 0
0 0 0 0 �6 �6 15 �1 �1 �1
0 0 0 0 �7 �7 �1 15 0 0
0 0 0 0 0 0 �1 0 1 0
0 0 0 0 0 0 �1 0 0 1

3

7

7

7

7

7

7

7

5

,

M =

2

6

6

6

6

6

6

6

4

0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0

3

7

7

7

7

7

7

7

5

.

Let P (π), given by (13), be denoted in short by P . Then,

the reduced order model obtained by clustering the agents

according to π, given by (12), is given by

˙̂x = �L̂x̂+ M̂u, (20)

where L̂ and M̂ are computed as

L̂ = (P>P )�1P>LP =











5 −5 0 0 0
−10 23 −6 −7 0
0 −12 15 −1 −2
0 −14 −1 15 0
0 0 −1 0 1











,

M̂ = (P>P )�1P>M =











0 0
0.5 0
0 1
0 0
0 0











.
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Fig. 2: Ĝ = (V̂ , Ê, Â)

The graph Ĝ associated with the reduced order system (20)

is shown in Figure 2.

Observe that Ĝ has 5 vertices, each of which corresponds

to a cell in π. For instance, vertex 1 in Ĝ corresponds to the

cell C1 = {1, 2, 3, 4}, and vertex 2 corresponds to the cell

C2 = {5, 6}. Then the arcs (1, 2) and (2, 1) of Ĝ account

for the coupling between C1 and C2 in the graph G given

by Figure 1. In particular, the weight associated to the arc

(2, 1) 2 Ê is indeed equal to the average of the weights of

the edges {i, j} 2 E with i 2 C1 and j 2 C2, as given by

(18). Observe that the input weights indicated by M̂ depend

on the cardinality of the cells in π. For instance, x̂2 receives

half of u1 in the reduced order model (20). This value indeed

indicates the average of the input signals received by the agents

in C2 = {5, 6}. ⇤

Before proceeding, we point out another useful relationship

between the Laplacian matrices L and L̂. We need to recap

the notion of interlacing first. Let X be a real symmetric n⇥n

matrix, and let λ1,λ2, . . . ,λn denote the eigenvalues of X in

an increasing order. Also let Y be a real symmetric m ⇥ m

matrix, where m 6 n. Moreover, let µ1, µ2, . . . , µm denote

the eigenvalues of Y in an increasing order. Then we say that

the eigenvalues of Y interlace the eigenvalues of X if

λi 6 µi 6 λn�m+i (21)

for each i = 1, 2, . . . ,m.

The eigenvalues of L̂, given by (16), interlace the eigenval-

ues of L as stated in the following lemma.

Lemma 3 Let L be a symmetric matrix, and let L̂ be given

by (16) for a given partition π. Then the eigenvalues of L̂

interlace the eigenvalues of L.

Proof. Recall that P>P is a diagonal matrix with strictly

positive diagonal elements. Clearly, the matrix L̂ is similar

to the matrix F>LF for F = P (P>P )�
1

2 . Now, noting that

F>F = I , the result immediately follows by [8, Thm. 9.5.1].

⌅

Next, we discuss consensus and convergence rate preserva-

tion in the reduced order model. Roughly speaking, consensus

means that the agents agree on a certain quantity of interest.

Consensus is defined in the absence of the external input, thus

we deal with the following multi-agent system:

ẋi =

n
X

j=1

aij(xj � xi). (22)

We say that the multi-agent system (22) reaches consensus if

for any arbitrary initial condition we have:

lim
t!1

xi(t)� xj(t) = 0 for all i, j 2 V (23)

Now, suppose that the original multi-agent system reaches

consensus, and hence (23) holds. Then, consensus is preserved

in the reduced order system:

Theorem 4 Consider the multi-agent system (7) with u = 0,

i.e.

ẋ = �Lx, (24)

and suppose that consensus is reached for this system. For any

given partition π, the reduced order multi-agent system

˙̂x = �L̂x̂ (25)

also reaches consensus, where L̂ is given by (16).

Proof. Clearly, as the multi-agent system (24) reaches con-

sensus, zero is a simple eigenvalue of the Laplacian matrix

L. In addition, note that L̂11 = 0. By Lemma 3, we conclude

that zero is also a simple eigenvalue of L̂, and the rest of the

eigenvalues are real and strictly positive. This implies that the

reduced order model (25) reaches consensus. ⌅

Note that, because of the interlacing property provided in

Lemma 3, the rate of convergence in the reduced order model

is at least as fast as that of the original model.

IV. INPUT-OUTPUT APPROXIMATION OF MULTI-AGENT

SYSTEMS

We have observed that by applying an appropriate projection

to the original multi-agent system defined on G, we obtain

a reduced-order model that represents a multi-agent system

defined on a new graph Ĝ. Moreover, consensus and the

convergence rate are preserved by this model reduction. In

this section, we discuss appropriate choices of partitions such

that the behavior, in particular the input-output behavior, of the

reduced and the original multi-agent system are “close” in a

certain sense. Without loss of generality, assume that graph G

is connected. Obviously, in case G is not connected, one can

apply the proposed model reduction technique on disconnected

components of G, individually.

We first include some output variables in system (7). Note

that in the context of distributed control, differences of the

states of the agents play a crucial role. In fact, these dif-

ferences reflect the disagreement among the agents, and the

network reaches consensus if this disagreement vanishes as

time evolves. Observe that the differences of the states of

communicating agents are embedded in the incidence matrix.

Therefore, we choose the output variables as

y = W
1

2R>x, (26)

where W is given by (2). Hence, the disagreement in the states

of a pair of agents is reflected in the output variables (26)

in accordance with the weight of the edge connecting those

agents (vertices). Furthermore note that, as G is connected,

the multi-agent system (7) reaches consensus if and only
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if limt!1 y(t) = 0 for all initial states x(0). It is also

worth mentioning that, by (3), we have kyk2 = x>Lx =
1
2

P

i,j aij(xi�xj)
2 which is a measure of group disagreement

(see e.g. [19]).

Consequently, we obtain the following input/state/output

model for the original multi-agent system defined on the graph

G:

ẋ = �Lx+Mu, (27a)

y = W
1

2R>x, (27b)

where x 2 R
n, L is the Laplacian, and R is the incidence

matrix of G. Now, let again π be a partition of G. Then,

the input/state/output model for the reduced order (projected)

model is obtained as

˙̂x = �L̂x̂+ M̂u, (28a)

y = W
1

2 R̂>x̂, (28b)

where x̂ 2 R
r with r 6 n, L̂ is given by (16), M̂ is given by

(17), and R̂ = P>R.

Recall that L̂ is the Laplacian matrix of the weighted

symmetric directed graph Ĝ. It is worth mentioning that the

matrix R̂ is closely related to the incidence matrix of the graph

Ĝ, which we denote by R0. Indeed, it can be shown that each

column of R̂ is either equal to zero or is equal to a column

of R0. Consequently, the output equation (28b) captures the

(weighted) differences of the states of communicating agents

in the reduced order multi-agent system (28). Note that the

zero columns of R̂ indeed correspond to the difference of

the states of cellmate agents, which are approximated to be

identical in deriving the reduced order model.

Clearly, different choices of graph partitions lead to dif-

ferent reduced order models, and one may think of choosing

an appropriate partition to approximate the behavior of the

original multi-agent system relatively well. Note that we have

two trivial partitions here, one is taking each vertex (agent)

as a singleton and the other one is π = {V }. In the first

case, no order reduction occurs and the corresponding model

reduction error is zero. In the latter case, the network topology

is neglected, and the reduced model is a single agent with

a zero transfer matrix from u to y. Thus, these two trivial

partitions indicate the finest and the coarsest approximation

by graph partitions. Clearly, similar to model reduction in

ordinary linear systems, this leads to a compromise between

the order of the reduced model and the accuracy of the

approximation.

Recall that the dynamics of the individual nodes are the

same. So, an appropriate partitioning (clustering) decision

solely depends on the graph topology. Hence, in order to

achieve a better approximation, it is expected that the agents

(vertices) that are connected to the rest of the network in a

“similar” fashion should be clustered in one cell. In order to

formalize this heuristic idea, in what follows we distinguish

a class of partitions, namely almost equitable partitions, from

other partitions. An easily computable model reduction error

in the sense of the H2-norm will be provided for this class of

partitions. The notion of almost equitability is recapped next.

Let G = (V,E) be an unweighted undirected graph. For a

given cell C ✓ V , we write N(i, C) = {j 2 C | {i, j} 2 E}.

We call a partition π = {C1, C2, . . . , Cr} an almost equitable

partition (AEP) of G if for each p, q 2 {1, 2, · · · , r} with

p 6= q there exists an integer dpq such that |N(i, Cq)| = dpq
for all i 2 Cp.

An almost equitable partition, say π, has the key property

that imP (π) is L-invariant (see e.g. [27, Lem. 2]). Note that

we call a subspace X ✓ R
n
A-invariant if AX ✓ X where

A : Rn ! R
n. To incorporate the case of weighted graphs,

the notion of almost equitability can be extended as follows.

Let G = (V,E,A) be a weighted undirected graph. Recall

that aij indicates the weight associated to the edge {i, j}. We

call a partition π = {C1, C2, . . . , Cr} an almost equitable

partition (AEP) of G if for each p, q 2 {1, 2, · · · , r} with p 6=
q there exists an integer dpq such that

P

j2N(i,Cq)
aij = dpq

for all i 2 Cp.

As an example consider the graph G in Figure 1. It is easy

to verify that π given by (12) is an AEP of G.

Note that the definition of almost equitability for weighted

graphs includes the case of unweighted graphs as a special

case. In fact, for unweighted graphs, aij = 1 whenever

{i, j} 2 E. Hence, the quantity
P

j2N(i,Cq)
aij coincides

with the cardinality of N(i, Cq). Moreover, the L-invariance

property remains valid for weighted graphs, as stated in the

following lemma.

Lemma 5 Let π be a partition of a weighted undirected graph

G, and let L denote the Laplacian matrix of G. Then π is

almost equitable if and only if imP (π) is L-invariant, i.e.

L imP (π) ✓ imP (π) (29)

Proof. The proof is analogous to that of [3, Prop. 1]. ⌅

Now, assume that π = {C1, C2, . . . , Cr} is an AEP of a

weighted undirected graph G, and suppose that the reduced

order model (28) is obtained from (27) by choosing the

partition π. Moreover, recall that VL = {v1, v2, . . . , vm}, and

for each i = {1, 2, . . . ,m}, let ki be an integer such that

vi 2 Cki
. Then, the (normalized) model reduction error

involved in obtaining the reduced order model (28) is provided

in the following theorem.

Theorem 6 Let G be a weighted undirected graph, and as-

sume G is connected. Let π = {C1, C2, . . . , Cr} be an almost

equitable partition of G. Suppose that the reduced order multi-

agent system (28) is obtained from (27) by choosing the

partition π. Also, let S and Ŝ denote the transfer matrices

from u to y in (27) and (28), respectively. Let Ξ(π) :=
kS�Ŝk2

2

kSk2

2

denote the normalized model reduction error associated to π.

Then, we have

Ξ(π) =

Pm

i=1(1�
1

|Cki
| )

m(1� 1
n
)

, (30)

where n is the number of vertices (agents) in G , m is the

number of leaders, and the integers kis are defined as before.
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Proof. Note that the columns of P (π) form an orthogonal set

of vectors in R
n. We complete this set to an orthogonal basis

for Rn. In particular, we construct a matrix T as T =
⇥

P Q
⇤

,

where P (π) is denoted in short by P , and Q is an n⇥ (n�k)
matrix such that the columns of T are orthogonal. Observe

that we have

P>Q = 0. (31)

Now, we apply the state space transformation x = T x̃

to system (27). Consequently, we obtain the following in-

put/state/output system:



˙̃x1

˙̃x2

�

= �



(P>P )�1P>LP (P>P )�1P>LQ
(Q>Q)�1Q>LP (Q>Q)�1Q>LQ

� 

x̃1

x̃2

�

+



(P>P )�1P>M
(Q>Q)�1Q>M

�

u (32a)

y =
⇥

W
1

2R>P W
1

2R>Q
⇤



x̃1

x̃2

�

(32b)

Clearly, the transfer matrices from u to y in (27) and (32)

are identical. Moreover, observe that the reduced order model

(28) is the system obtained by truncating the state components

x̃2 in (32). Since π is an AEP of G, imP is L-invariant by

Lemma 5. Thus, there exists a matrix X such that LP = PX .

Hence, we obtain

Q>LP = 0. (33)

Therefore, the transfer matrices S and Ŝ of the original system

(27) and its reduced order model (28), respectively, are related

by:

S(s) = Ŝ(s) +∆(s), (34)

where

∆(s) = W
1

2R>Q(sI+(Q>Q)�1Q>LQ)�1(Q>Q)�1Q>M.

(35)

By using (3) and (33), we have Ŝ>(�s)∆(s) = 0. Hence, we

have

kSk22 = kŜk22 + k∆k22. (36)

Now, let the matrices X1 2 R
n⇥n and Y1 2 R

r⇥r be defined

as:

X1 =

Z 1

0

e�LtLe�Ltdt, (37)

Y1 =

Z 1

0

e�L̂>tP>LPe�L̂tdt, (38)

where

L̂ = (P>P )�1P>LP.

Of course, one should address the issue of convergence of

these improper integrals. Since the original model reaches

consensus we have e�LtLe�Lt ! 0 as t ! 1. Hence, since

the components of e�LtLe�Lt are products of polynomials

and exponentials, the integral defining X1 exists. Similarly,

by Theorem 4 the reduced order model (25) also reaches

consensus and therefore the integral defining Y1 exists as well.

Let L = UΛU> be a spectral decomposition of the

Laplacian, where Λ = diag(λ1,λ2, . . . ,λn) with 0 = λ1 <

λ2 6 λ3 6 . . . 6 λn are the eigenvalues of L and U is an

orthogonal matrix. Note that λ2 > 0, due to the connectedness

of G. Moreover, the first column of the matrix U is equal to

the normalized vector of ones, i.e. 1p
n
11. Thus X1 is computed

as

X1 =

Z 1

0

e�LtLe�Ltdt =

Z 1

0

Le�2Ltdt

= �
1

2
e�2Lt |10 dt = �

1

2
Ue�2ΛtU> |10 =

1

2
In�

1

2n
1111>.

(39)

In addition, with T given as above, we have

T>X1T =

Z 1

0

T>e�LtLe�LtTdt

=

Z 1

0

e�(T�1LT )>tT>LTe�T�1LTtdt

=

Z 1

0

e
�
"

L̂> 0
0 ∗

#

th
P>LP 0

0 ∗

i

e
�
"

L̂ 0
0 ∗

#

t

dt,

where we have used (33) to derive the last equality, and where

“ ⇤ ” denotes values that are not of interest. Hence, we obtain

that

T>X1T =



Y1 0
0 ⇤

�

.

This yields, Y1 = P>X1P . Therefore, by (39), Y1 is computed

as

Y1 =
1

2
P>P �

1

2n
P>1111>P.

Next we compute the values kSk22 and kŜk22. From the

definition of the H2-norm, it readily follows that

kSk22 = traceM>X1M.

Hence, by (39), kSk22 is computed as

kSk22 = traceM>X1M =
1

2
traceM>(In �

1

n
1111>)M

=
1

2
traceMM>(In �

1

n
1111>).

Note that MM> is a diagonal matrix, where the diagonal

elements are either zero or 1. In particular, the ith diagonal

element is equal to 1 if i 2 VL, and is equal to zero otherwise.

Thus, we conclude that

kSk22 =
m

2
(1�

1

n
), (40)

where m is the cardinality of VL as before. Moreover, we

have

kŜk2

2
= traceM

>
P (P

>
P )

�1
Y1(P

>
P )

�1
P

>
M

=
1

2
traceM

>
P (P

>
P )

�1
(P

>
P � 1

n
P

>
1111

>
P )(P

>
P )

�1
P

>
M

=
1

2
traceMM

>
(P (P

>
P )

�1
P

> � 1

n
P (P

>
P )

�1
P

>
1111

>
P (P

>
P )

�1
P

>
)

It is easy to verify that P (P>P )�1P>11 = 11. Hence, we

obtain that

kŜk22 =
1

2
traceMM>(P (P>P )�1P> �

1

n
1111>) (41)
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Recall the diagonal structure of MM>. Also recall that vi 2
Cki

for each vi 2 VL. Then it is straightforward to check that

(41) yields

kŜk22 =
1

2

m
X

i=1

1

|Cki
|
�

m

2n
. (42)

Therefore, by (36) and (40) we obtain that

k∆k22 =
m

2
(1�

1

n
)�

1

2

m
X

i=1

1

|Cki
|
+

m

2n
=

1

2

m
X

i=1

(1�
1

|Cki
|
).

(43)

This together with (40) completes the proof. ⌅

Theorem 6 provides a simple and easily computable ex-

pression for the model reduction error in case π is an AEP

of G. Depending on the structure of π, the normalized model

reduction error (30) takes a value between 0 and 1. Moreover,

for a given multi-agent system, this value is determined by

the population, i.e. cardinality, of those cells of π containing

the leaders. Clearly, the less populated these cells are, the

less model reduction error we have. An interesting case is

when all the leaders appear as singleton in π. Then, the

corresponding model reduction error is zero by (30). This is

formally formulated in the following corollary.

Corollary 7 Let VL = {v1, v2, . . . , vm} as before. Suppose

that π⇤ is an almost equitable partition of G with the property

that {vi} 2 π
⇤ for each i = 1, 2, . . . ,m. Then we have

Ξ(π⇤) = 0, where Ξ(π⇤) is the normalized model reduction

error corresponding to π
⇤, as defined in the statement of

Theorem 6.

Note that almost equitable partitions with each leader ap-

pearing as a singleton are typically studied in the context

of controllability of multi-agent systems (see e.g. [15] and

[27]). In particular, by [27, Thm. 3], it is easy to observe

that any π
⇤ in Corollary 7 yields an upper bound for the

reachable subspace of (7). Therefore the proposed model re-

duction technique in this case, in fact, corresponds to removing

uncontrollable modes. Consequently, the input-output behavior

remains unchanged, which is in accordance with the model

reduction error being zero in (30).

Example 8 As an example, consider again the multi-agent

system (19) corresponding to the graph G given in Figure 1,

and the reduced order model (20) obtained from the partition

π given by (12). For system (19), include output variables as

in (27b). The output equations for the reduced order system

(20) are given in (28b). Recall that π is an AEP of G. Also

recall that the leader set is {6, 7} in this case. Clearly, we have

6 2 C2 = {5, 6} and 7 2 C3 = {7}. As in the statement of

Theorem 6, let Ξ(π) denote the normalized model reduction

error corresponding to the partition π. Then, by Theorem 6,

the normalized model reduction error Ξ(π) in our example is

computed as:

Ξ(π) =
(1� 1

|C2|
) + (1� 1

|C3|
)

2(1� 1
10 )

= 0.2778.

Remark 9 As mentioned in Subsection III, the reduced order

model (15) approximates the dynamics of the average of the

states of the agents that are cellmates in π. By (32a) and (33),

it can be observed that this approximation is exact in case

π is an almost equitable partition of G. That is, (15) indeed

describes the dynamics of the average of the states of cellmates

agents.

Previously, we have established an explicit formula for the

model reduction error in case clustering is performed with

respect to an almost equitable partition. Of course we are

also interested in computing or estimating the errors associated

with arbitrary partitions of the graph.

In order to attack this issue, we will first compare the model

reduction error corresponding to an almost equitable partition,

say π0, to that of an arbitrary, not necessarily almost equitable,

partition, say π. We restrict our attention to the case in which

the partitions π and π0 are comparable in the sense that one

is finer than the other.

Given two partitions π1 and π2 of the graph G, we call π1

finer than π2 if each cell of π1 is a subset of some cell of π2

and we write π1 6 π2. Alternatively, π2 is called coarser than

π1. It is immediate that

π1 6 π2 () imP (π2) ✓ imP (π1). (44)

Now, we have the following result.

Theorem 10 Let π0 be an almost equitable partition of G.

Then for every partition π that is coarser than π0 we have

Ξ(π0) 6 Ξ(π).

Proof. Suppose that π is a partition of G and π > π0. Let S0

and S̃ denote the transfer matrices from u to y in the reduced

order model (28) corresponding to the partitions π0 and π,

respectively. Also let S denote the transfer matrix from u to

y in (27), as before. Then, clearly, it suffices to show that

kS � S̃k22 > kS � S0k
2
2. (45)

We have

kS � S̃k22 = kS � S0 + S0 � S̃k22

= kS � S0k
2
2 + kS0 � S̃k22 + 2hS � S0, S0 � S̃i

> kS � S0k
2
2 + 2hS � S0, S0i � 2hS � S0, S̃i,

where hS1, S2i =
R1
�1 trace S>

1 (�iω)S2(iω)dω is the inner

product in H2.

Since π0 is an AEP of G, by Lemma 5 we have

L imP (π0) ✓ imP (π0). (46)

In addition, as π > π0, the subspace inclusion imP (π) ✓
imP (π0) holds. Hence, by (46), we obtain that L imP (π) ✓
L imP (π0) ✓ imP (π0). Therefore, there exist matrices X

and Y such that

LP (π0) = P (π0)X (47)

and

LP (π) = P (π0)Y. (48)
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Now, recall that S(s) � S0(s) = ∆(s) where ∆ is given

by (35). Then, by using (3), (31), (47), and (48), it is easy to

verify that hS�S0, S0i = 0 and hS�S0, S̃i = 0. Hence, (45)

holds which completes the proof. ⌅

As a consequence of the above, if, starting from a given

AEP, we choose an arbitrary partition that is coarser than this

AEP and perform the reduction based upon the latter, then the

error will be at least as big as the error associated with the

AEP.

Using the previous result, we are now able to estimate a

lower bound for the error associated with an arbitrary, not

necessarily almost equitable, partition. Let π be an arbitrary

partition of G. Consider the set

ΠAEP(π) = {π0 | π0 is an AEP of G and π0 6 π }

of all almost equitable partitions of G that are finer than π.

As shown in [27], this set contains a unique maximal element,

which we will call the maximal almost equitable partition finer

than π, and that will be denoted by π
⇤
AEP(π). In fact, we

have π
⇤
AEP(π) = _ΠAEP(π), where _ΠAEP(π) denotes the

least upper bound of the set ΠAEP(π) and is identified by the

following property:

π0 6 _ΠAEP(π), for all π0 2 ΠAEP(π) (49a)

9π̃ 2 Π s.t. π0 6 π̃ for all π0 2 ΠAEP(π) ) _ΠAEP(π) 6 π̃

(49b)

with Π denoting the set of all partitions of G. This least upper

bound always exists since, with the partial ordering “6”, the

set Π becomes a complete lattice (see [2]) meaning that every

subset of Π has both its greatest lower bound and least upper

bound within Π. In addition, the uniqueness of _ΠAEP(π)
readily follows from (49b), and the fact that _ΠAEP(π) 2
ΠAEP(π) is shown in [27, Lemma 4].

It follows from Theorem 10 that a lower bound on the

model reduction error associated with a given partition π

is obtained by taking the error associated with the maximal

almost equitable partition finer than π, as stated by the

following corollary.

Corollary 11 Let π be a partition of G, and π
⇤
AEP(π) denote

the maximal element of the set ΠAEP(π). Then, we have

Ξ(π⇤
AEP(π)) 6 Ξ(π).

An algorithm to actually compute π
⇤
AEP(π) for a given

partition π was given in [27]. Note that Ξ(π⇤
AEP(π)) can then

be computed using Theorem 6.

Remark 12 The problem of finding all almost equitable parti-

tions of a given graph is in general a very difficult problem and

computationally expensive, typically requiring an exhaustive

search in the set of all partitions. In contrast, given an initial

partition π, the almost equitable partition π
⇤
AEP(π) can be

computed in an efficient manner (see [27]). In particular, the

algorithm proposed in [27] generates a sequence of partitions

converging to π
⇤
AEP in n�m steps, where n is the number of

agents and m is the number of leaders. Note that the partition

π
⇤
AEP(π) is, in fact, a “finer” almost equitable approximation

of π.

V. CONCLUSIONS

In this paper, by means of graph partitions we have estab-

lished a projection based model reduction method for multi-

agent systems defined on a graph. Reduced order models are

obtained by clustering the vertices (agents) of the underly-

ing communication graph in accordance with suitable graph

partitions. In particular, the states of the vertices that are

clustered together are approximated to be identical in deriving

the reduced order models. As observed, the spatial structure

of the network is preserved in this reduction process, and

the reduced order models are realized as multi-agent systems

defined on a new graph of smaller size. We have shown that

if the original multi-agent system reaches consensus, then so

does the reduced order model. As observed the underlying

intuitive idea is to cluster together the vertices (agents) which

are connected to the rest of the network in a similar fashion.

This heuristic idea is formally formulated in terms of almost

equitable partitions. Corresponding to an almost equitable

partition, an explicit formula for the H2-norm of the error

system has been provided. The proposed formula is simple,

easy to compute, and can be derived directly from the graph

partition involved in the reduction procedure. We also have

shown that the error obtained by taking an arbitrary partition

of the graph is at least as big as the one obtained by using

the maximal almost equitable partition finer than the given

partition. We have adopted a running example for illustration

of the proposed results.
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