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Abstract 

Large-scale process fluctuations in nano-scale IC technologies 
suggest applying high-order (e.g., quadratic) response surface 
models to capture the circuit performance variations. Fitting such 
models requires significantly more simulation samples and 
solving much larger linear equations. In this paper, we propose a 
novel projection-based extraction approach, PROBE, to efficiently 
create quadratic response surface models and capture both inter-
die and intra-die variations with affordable computation cost. 
PROBE applies a novel projection scheme to reduce the response 
surface modeling cost (i.e., both the required number of samples 
and the linear equation size) and make the modeling problem 
tractable even for large problem sizes. In addition, a new implicit 
power iteration algorithm is developed to find the optimal 
projection space and solve for the unknown model coefficients. 
Several circuit examples from both digital and analog circuit 
modeling applications demonstrate that PROBE can generate 
accurate response surface models while achieving up to 12x 
speedup compared with the traditional methods. 
 
1. Introduction 

As IC technologies scale to finer feature sizes, it becomes 
increasingly difficult to control the relative process variations, 
particularly due to sub-wavelength photolithography [1]-[2]. The 
increasing fluctuations in manufacturing process have introduced 
unavoidable and significant uncertainty in circuit performance. 
Hence, modeling and analyzing these random process variations 
to ensure manufacturability and improve yield has been identified 
as a top priority for today’s IC design problems. 

In order to address this process variation problem, response 
surface models [3] are utilized to capture the circuit performance 
variations caused by manufacturing fluctuations. The objective of 
response surface modeling is to approximate the circuit 
performance (e.g., delay, gain) as a polynomial (e.g., linear or 
quadratic) function of variational process parameters (e.g., VTH, 
TOX). These models are extensively applied in many applications 
such as statistical timing analysis [1], analog mismatch analysis 
[4], yield optimization [5]-[6], etc. 

Most of the previous response surface models, e.g., [1], utilize 
linear approximations, which are efficient and accurate when 
process variations are sufficiently small. However, two recent 
changes in advanced IC technologies suggest a need to revisit this 
assumption. Firstly, process variations are becoming relatively 
larger. As reported in [1], the gate length variation can reach 
±35% in nano-scale technologies. This, in turn, implies the 
importance of applying high-order (e.g., quadratic) response 
surface models to guarantee high approximation accuracy [3], [6], 
[7]. Applying nonlinear response surface models is especially 
important for analog circuits, since many analog performances 
(e.g., offset voltage) can be strongly nonlinear in the presence of 
large-scale variations. 

Secondly, but most importantly, intra-die variations (i.e., 
mismatches) are becoming increasingly important [2], especially 

for analog circuits [4]. These intra-die variations model the 
individual, but spatially correlated, local variations within the 
same die. The intra-die variations must be modeled by using many 
additional random variables, thereby significantly increasing the 
number of unknown model coefficients. Therefore, more 
simulation samples are required in order to determine all these 
unknown coefficients by solving a larger linear equation. This 
makes model fitting much more expensive, especially when using 
high-order response surface models. For example, the number of 
unknown coefficients (hence the required number of samples and 
the linear equation size) in a quadratic response surface model 
will quadratically increase in the number of random process 
parameters, thereby quickly making the quadratic model fitting 
infeasible. For this reason, generating accurate high-order (e.g., 
quadratic) response surface models with affordable computation 
cost becomes a new challenging problem in nano-scale 
technologies. 

In this paper we propose a novel Projection-Based Extraction 
(PROBE) for quadratic response surface modeling. The novelty of 
PROBE lies in our new formulation of the model fitting problem 
such that quadratic response surface modeling becomes tractable 
even for large-size problems. Instead of fitting a full-rank 
quadratic model, PROBE applies projection operator and attempts 
to find an optimal low-rank model by minimizing the 
approximation error. In PROBE, the modeling accuracy can be 
easily traded for simplicity by increasing or decreasing the 
dimension of the projection space. Most importantly, taking 
advantage of this novel projection scheme, PROBE can 
dramatically reduce the number of unknown coefficients that need 
to be solved, thereby significantly reducing the fitting cost and 
facilitating scaling to much larger problem sizes. 

Another important contribution of PROBE is a new implicit 
power iteration algorithm to find the optimal projection space and 
extract the unknown model coefficients. This iteration solves a 
sequence of over-determined linear equations and exhibits robust 
convergence. Using the proposed implicit power iteration 
algorithm, PROBE can achieve significant speedup for generating 
low-rank quadratic response surface models. As demonstrated by 
the numerical examples from both digital and analog circuit 
modeling applications, PROBE can extract accurate models and 
reduce the computation cost by up to 12x compared with the 
traditional full-rank quadratic modeling. 

The remainder of the paper is organized as follows. In Section 
2 we review the background on response surface modeling. Then, 
we propose our PROBE approach, including both the theoretical 
analysis and the implicit power iteration algorithm, in Section 3. 
The computational efficiency of PROBE is demonstrated by 
several circuit examples in Section 4, followed by the conclusions 
in Section 5. 
 
2. Background 

Given a circuit topology, the circuit performance (e.g., delay, 
gain) is a function of the design parameters (e.g., bias current, 
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transistor sizes), as well as the process parameters (e.g., VTH, TOX). 
The design parameters are optimized and fixed during the design 
process; however, the process parameters must be modeled as 
random variables to account for any uncertain variations. Given a 
set of fixed design parameters, the circuit performance f can be 
approximated by a linear response surface model [1], [3]: 
 ( ) CXBXf T +=  (1) 
where X = [x1,x2,...,xN]T represents the process variations, B ∈ RN 
and C ∈ R stand for the model coefficients and N is the total 
number of the variational process parameters. 

The linear model in (1) is not sufficiently accurate for 
modeling the large-scale process variations that are expected for 
nano-scale technologies. It, in turn, suggests that applying 
quadratic response surface models might be required to improve 
the modeling accuracy [3], [6], [7]: 
 ( ) CXBAXXXf TT ++=  (2) 
where C ∈ R is the constant term, B ∈ RN represents the linear 
coefficients and A ∈ RN×N denotes the quadratic coefficients. The 
unknown model coefficients A, B and C can be determined by 
solving the over-determined linear equation [3]: 
 ( )L,2,1

~
==++ ifCXBAXX ii

T
i

T
i  (3) 

where Xi and f̃i are the value of X and the exact value of f for the i-
th sampling point, respectively. 

It is straightforward to verify that the number of unknown 
coefficients in (3) is O(N2). The overall computation cost for 
determining all these coefficients consists of two portions: 

• Simulation cost: i.e., the cost for running a simulator to 
determine the performance values f̃i at the sampling points Xi. 
The number of simulation samples should be greater than the 
number of unknown coefficients, in order to uniquely solve 
the linear equation in (3). Therefore, at least O(N2) sampling 
points are required for fitting the quadratic model in (2). In 
practical applications, the number of samples is generally 
selected to be significantly larger than the unknown 
coefficient number to avoid over-fitting. 

• Fitting cost: i.e., the cost for solving the over-determined 
linear equation in (3). For the quadratic model in (2), the 
fitting cost is of the order of O(N6). 

The aforementioned high computation cost limits the 
traditional quadratic response surface modeling approach [3] to 
small or medium size applications. This observation, therefore, 
motivates us to propose a novel projection-based response surface 
modeling algorithm, PROBE, which can significantly reduce the 
computation cost. 
 
3. Projection-Based Extraction 
3.1 Mathematic Formulation 

The key disadvantage of the traditional quadratic response 
surface modeling is the need to compute all elements of the matrix 
A in (2). This matrix is often sparse and rank-deficient in many 
practical problems. Therefore, instead of finding the full-rank 
matrix A, PROBE approximates A by another low-rank matrix AL. 
Such a low-rank approximation problem can be stated as follows: 
given a matrix A, find another matrix AL with rank p < rank(A) 
such that their difference ||AL–A||F is minimized. Here, ||•||F 
denotes the Frobenius norm, which is the square root of the sum 
of the squares of all matrix elements. Without loss of generality, 
we assume that A is symmetric in this paper, since any 
asymmetric quadratic form XTAX can be easily converted to an 
equivalent symmetric form 0.5⋅XT(A+AT)X [8]. 

From matrix theory [8], for any symmetric matrix A ∈ RN×N, 
the optimal rank-p approximation with the least Frobenius-norm 
error is: 

 ∑
=

=
p

i

T
iiiL PPA

1

λ  (4) 

where λi is the i-th dominant eigenvalue, and Pi ∈ RN is the i-th 
dominant eigenvector. The eigenvectors in (4) define an 
orthogonal projector P1P1

T+...+PpPp
T, and every column in AL is 

the projection of every column in A onto the subspace 
span{P1,...,Pp}. We use this orthogonal projector for response 
surface modeling in this paper. Fig. 1 intuitively illustrates the 
low-rank projection for quadratic response surface modeling. 

Low-Rank ProjectionLow-Rank Projection

AA ALAL

 
Fig. 1. Illustration of the low-rank projection. 

The main advantage of the rank-p projection is that, for 
approximating the matrix A ∈ RN×N in (2), only λi ∈ R and Pi ∈ RN 
(i = 1,...,p) need to be determined, thus reducing the number of 
problem unknowns to O(pN). In many practical applications, p is 
significantly less than N and the number of unknown coefficients 
that PROBE needs to solve is almost a linear function of N. 
Therefore, compared with the problem size O(N2) in traditional 
quadratic modeling, PROBE is much more efficient and can be 
applied to large-size problems. 
 
3.2 Coefficient Fitting via Implicit Power Iteration 

Since the matrix A in (2) is not known in advance, we cannot 
use the standard matrix computation algorithm to compute the 
dominant eigenvalues λi and eigenvectors Pi that are required for a 
low-rank approximation. One approach for finding the optimal 
rank-p model is to solve the following optimization problem for 
the unknown coefficients λi and Pi (i = 1,2,...,p) and B, C: 
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where ||•||2 denotes the 2-norm of a vector. 
Compared with (2), equation (5) approximates the matrix A by 

λ1P1P1
T+...+λ1PpPp

T. Therefore, we can expect that minimizing the 
cost function Ψ in (5) will converge λi and Pi to the dominant 
eigenvalues and eigenvectors of the original matrix A, 
respectively. Unfortunately, Ψ in (5) is a sixth order polynomial 
and might not be convex. In addition, the constraint set in (5) is 
specified by a quadratic equation and is not convex either. 
Therefore, the optimization in (5) is not a convex programming 
problem and there is no efficient optimization algorithm that can 
guarantee finding the globally optimal solution for Ψ. 

Instead of solving the non-convex optimization problem in 
(5), we propose a novel implicit power iteration method to 
efficiently extract the unknown coefficients λi and Pi. In what 
follows, we first develop the implicit power iteration algorithm for 
rank-one approximation, and then extend it to rank-p 
approximation. 
 
A. Rank-One Approximation 

Fig. 2 outlines the implicit power iteration algorithm for a 
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rank-one approximation. This algorithm repeatedly solves a 
sequence of over-determined linear equations until the 
convergence is identified. Next, we explain why the implicit 
power iteration yields the optimal rank-one approximation AL = 
λ1P1P1

T. Note that Step 4 in Fig. 2 approximates the matrix A by 
QkQk–1

T, where Qk−1 is determined in the previous iteration step. 
Finding such an optimal approximation is equivalent to solving 
the over-determined linear equation: 
 AQQ T

kk =−1  (6) 
The least-square-error solution for (6) is given by [8]: 

 ( ) 1
1

111 −
−

−−− =⋅= kk
T
kkk AQQQAQQ  (7) 

In (7), Qk–1Qk–1
T = ||Qk–1||22 = 1, since Qk−1 is normalized in Step 3 

of Fig. 2. Equation (7) reveals an interesting fact that solving the 
over-determined linear equation in Step 4 “implicitly” computes 
the matrix-vector product AQk−1, which is the basic operation 
required in the traditional power iteration for dominant 
eigenvector computation [8]. 

1. Start from a set of sampling points {Xi, f ̃i}. 
2. Randomly select an initial vector Q0 ∈ RN and set k = 1. 
3. Compute Qk−1 = Qk−1/||Qk−1||2. 
4. Solve the over-determined linear equation for Qk, Bk and Ck: 

( )L,2,1
~

1 ==++− ifCXBXQQX iki
T
ki

T
kk

T
i  

5. If the residue: 

( ) ( )∑ −++= −
i

iki
T
ki

T
kk

T
ikkkk fCXBXQQXCBQ

2
1

~
,,ψ  

  is unchanged, i.e.: 
( ) ( ) εψψ <− −−−− 1111 ,,,, kkkkkkkk CBQCBQ  

  where ε is the pre-defined error tolerance, then go to Step 6. 
Otherwise, k = k+1 and return Step 3. 

6. The rank-one response surface model is: 
( ) k

T
k

T
kk

T CXBXQQXXf ++= −11  

Fig. 2. Implicit power iteration for a rank-one approximation. 

Given an initial vector: 
 L++= 22110 PPQ αα  (8) 
where Q0 is represented as the linear combination of all 
eigenvectors of A, the k-th iteration step yields: 
 L++== 2221110 PPQAQ kkk

k λαλα  (9) 
In (9), we ignore the normalization Qk−1 = Qk−1/||Qk−1||2 which is 
nothing else but a scaling factor. This scaling factor will not 
change the direction of Qk. As long as α1 ≠ 0 in (8), i.e., P1 is not 
orthogonal to the initial vector Q0, α1λ1

kP1 (with |λ1|>|λ2|>...) will 
become more and more dominant over other terms. Qk will 
asymptotically approach the direction of P1. 

After the iteration in Fig. 2 converges, we have Qk−1 = 
Qk−1/||Qk−1||2 = P1 and Qk = AQk−1 = λ1P1. QkQk–1

T is the optimal 
rank-one approximation AL = λ1P1P1

T. Thus the proposed implicit 
power iteration extracts the unknown coefficients λ1 and P1 with 
guaranteed convergence, but in an implicit way (i.e., without 
knowing the full-rank matrix A). This “implicit” property is the 
key difference between the proposed algorithm and the traditional 
power iteration in [8]. 

The above discussion demonstrates that the implicit power 
iteration is provably convergent if A is symmetric. For an 
asymmetric A, Qk−1 and Qk should iteratively converge to the 
directions of the dominant left and right singular vectors of A to 
achieve the optimal rank-one approximation. However, the global 
convergence of the implicit power iteration is difficult to prove in 

that case. 
 
B. Rank-p Approximation 

Fig. 3 shows the implicit power iteration algorithm for a rank-
p approximation. Assuming that the unknown function can be 
approximated by the full-rank quadratic form in (2), the algorithm 
in Fig. 3 first extracts its rank-one approximation: 
 ( ) ( ) CXBXPPXXg TTT ++= 1111 λ  (10) 
Then, the component of g1(X) is subtracted from the full-rank 
quadratic function in Step 3 of Fig. 3, yielding: 

 ( ) ( ) XPPXXgXf
N

i

T
iii

T










=− ∑

=2
1 λ  (11) 

Now, λ2 and P2 become the respective dominant eigenvalue and 
eigenvector of the quadratic function in (11), and they are 
extracted by the rank-one implicit power iteration to generate 
g2(X). The rank-one implicit power iteration and the subtraction 
are repeatedly applied for p times until the rank-p approximation 
fp(X) is achieved. 

1. Start from a set of sampling points {Xi, f ̃i}. 
  For k = 1, 2, ..., p 
2.  Apply the implicit power iteration algorithm in Fig. 2 to 

compute the rank-one approximation gk(X). 
3.  Update the sampling points: 

( ) ( )L,2,1
~~

=−= iXgff ikii  
  End For 
4. The rank-p response surface model is: 

( ) ( ) ( )XgXgXf pp ++= L1  

Fig. 3. Implicit power iteration for a rank-p approximation. 

The algorithm in Fig. 3 assumes a given approximation rank 
p. In practical applications, the value of p can be iteratively 
determined based on the approximation error. For example, 
starting from a low-rank approximation, p should be iteratively 
increased if the modeling error remains large. 

The rank-p implicit power iteration in Fig. 3 requires running 
the rank-one implicit power iteration for p times. Each rank-one 
approximation needs to solve 2N+1 unknown coefficients, for 
which the required number of samples is of the order of O(N), and 
solving the over-determined linear equation in Step 4 of Fig. 2 has 
a complexity of O(N3). Therefore, a rank-p approximation 
requires O(pN) simulation samples in total and the overall 
computation cost for the rank-p implicit power iteration in Fig. 3 
is O(pN3). In many practical applications, p is much less than N 
and, therefore, PROBE is much more efficient than the traditional 
full-rank quadratic modeling which requires O(N2) simulation 
samplings and has a fitting cost of O(N6) for solving the over-
determined linear equation. 
 
3.3 Comparison with Traditional Techniques 

There are several traditional techniques, such as principal 
component analysis [9], variable screening [10] or projection 
pursuit [11], which aim to reduce the computation cost of 
response surface modeling. In this subsection, we compare 
PROBE with these traditional techniques and highlight their 
differences. 

Principal component analysis (PCA) [9] is a statistical method 
for reducing the number of random variables that are required to 
represent the process variations. Given N normally distributed 
process parameters X = [x1,x2,...,xN]T and their correlation matrix 
R, PCA computes the dominant eigenvalues and eigenvectors of 
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R, and then constructs a set of new random variables Y = 
[y1,y2,...,yM]T, where M < N, to approximate the original N-
dimensional random space. The essence of PCA can be 
interpreted as the coordinate rotation of the original random space 
X followed by a low-rank projection onto the low-dimensional 
space Y. The new random variables yi are called the principal 
components or factors. After PCA, the circuit performances can 
be approximated as functions of the new random variables yi using 
response surface modeling. Since the number of new variables yi 
is less than the number of original variables xi, PCA reduces the 
number of unknown model coefficients. 

Such a PCA approach, however, is substantially different 
from our proposed PROBE method. The PCA operation is 
completely determined by the statistical characteristics, i.e., the 
correlation matrix R, of random process variations, without 
depending on a specific circuit performance f. In contrast, PROBE 
reduces the modeling cost by carefully analyzing a specific 
performance f. In other words, PROBE will eliminate (or keep) 
one eigenvector Pi if f is strongly (or weakly) dependent on Pi. 
Therefore, PCA and PROBE rely on completely different 
mechanisms to minimize the computation cost. In practical 
applications, both PCA and PROBE should be simultaneously 
applied to achieve the minimal modeling cost, as shown in Fig. 4. 
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Low-Dimensional 
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Response Surface 
Model  

Fig. 4. Combination of PCA and PROBE to reduce cost. 

Variable screening is another traditional approach for 
reducing the response surface modeling cost [10]. Given a circuit 
performance f, variable screening applies fractional factorial 
experimental design and tries to identify a subset (hopefully 
small) of the random process parameters that have much greater 
influence on f than the others. Compared with variable screening, 
PROBE also do a similar “variable screening”, but with an 
additional coordinate rotation, as shown in Fig. 5. The additional 
coordinate rotation offers more flexibility in filtering out 
insignificant components, thereby achieving better modeling 
accuracy and/or cheaper modeling cost. From this point of view, 
the proposed PROBE can be considered as a generalized variable 
screening which is an extension of the traditional variable 
screening in [10]. 
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Fig. 5. Comparison of PROBE with variable screening. 

Projection pursuit [11] tries to approximate the unknown 
high-dimensional nonlinear function by the sum of several smooth 
low-dimensional functions. The authors in [11] utilize the one-
dimensional projection: 
 ( ) ( ) ( ) L++= XPgXPgXf TT

2211  (12) 
where gi(•) is the pre-defined one-dimensional nonlinear function 

and Pi ∈ RN defines the projection space. One of the main 
difficulties in traditional projection pursuit is to find the optimal 
projection vectors Pi. The authors in [11] apply local optimization 
with heuristics to search for the optimal Pi. Such an optimization 
can easily get stuck at a local minimum. Our proposed PROBE 
algorithm is actually a special case of the traditional projection 
pursuit, where all gi(•) are quadratic functions. In such cases, the 
theoretical solution of the optimal projection vectors Pi is known, 
i.e., they are determined by the dominant eigenvalues and 
eigenvectors of the original full-rank matrix A. These dominant 
eigenvalues and eigenvectors can be extracted by the proposed 
implicit power iteration algorithm quickly and robustly. Such a 
special advantage of using the quadratic gi(•), however, has not 
been explored in traditional projection pursuit. 
 
3.4 Application of PROBE Models 

The low-rank quadratic models extracted by PROBE can be 
generally applied to any applications that require quadratic 
response surface modeling, such as [3]-[7]. In addition to these 
general applications, we emphasize a special link between our 
PROBE modeling and the APEX algorithm proposed in [7]. In 
APEX, the most expensive computation is the binomial moment 
evaluation, which requires diagonalizing the quadratic coefficient 
matrix A by eigen-decomposition. Using our PROBE modeling, 
however, the matrix A is approximated by a low-rank one AL. The 
eigen-decomposition of the low-rank matrix AL is much cheaper 
than finding the eigenvalues/eigenvectors of the full-rank matrix 
A. Therefore, the complexity of the APEX algorithm can be 
significantly reduced if using the PROBE model as its input. The 
detailed implementation for combining PROBE and APEX is 
beyond the scope of this paper and, therefore, is not discussed in 
detail. 
 
4. Numerical Examples 

In this section we demonstrate the computational efficiency of 
PROBE using several circuit examples. For each example, two 
independent sampling sets, called training set and testing set 
respectively, are generated. The training set is created by Latin 
hypercube sampling [12], which picks the most important samples 
based on statistical analysis; this is used for coefficient fitting. For 
testing and comparison, we collect 500 random samples as the 
testing set and use them to measure the modeling error. All 
numerical experiments are performed on a SUN ― 1GHz server. 
 
4.1 ISCAS’89 S27 

 
Fig. 6. Longest path in ISCAS’89 S27. 

We create a physical implementation for the ISCAS’89 S27 
benchmark circuit using the ST CMOS 90 nm process. Given a set 
of fixed gate sizes, the longest path delay in the benchmark circuit 
(shown in Fig. 6) is a function of the process variations (e.g., 
∆VTH, ∆TOX, ∆L, etc.). Since the circuit only consists of six gates 
which can be put close to each other in the layout, inter-die 
variations will dominate over intra-die variations, and gate delays 
will dominate over (local) interconnect delays in this example. 
Therefore, for simplicity, we only consider inter-die variations for 
CMOS transistors in this example. The probability distributions 
and the correlation information of the inter-die transistor 
variations are obtained from the ST Microelectronics design kit. 
After PCA analysis, 6 principal random factors are identified to 
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represent these process variations. We should note, however, that 
nothing precludes us from including more detailed intra-die and/or 
interconnect variation models in PROBE as well. 
 
A. Robust Convergence of Implicit Power Iteration 

In order to test the convergence of the proposed implicit 
power iteration algorithm, we pick 100 random initial vectors Q0 
and use them for running power iteration in coefficient fitting. We 
find that all 100 experiments reliably converge without a single 
failure. 
 
B. Modeling Accuracy 
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Fig. 7. Response surface modeling error for path delay. 

Fig. 7 shows the response surface modeling error when the 
path delays of both rising and falling transitions for the circuit are 
approximated by the linear, rank-p quadratic (by PROBE) and 
traditional full-rank quadratic models. All response surface 
models are fitted using 578 training samples. It is shown in Fig. 7 
that as p increase, the rank-p modeling error asymptotically 
approaches the full-rank quadratic modeling error. However, after 
p > 2, further increases in p do not have a significant impact on 
reducing error. It, in turn, implies that a rank-2 model, instead of 
the full-rank quadratic model with rank 6, is sufficiently accurate 
in this example. 
 
4.2 Low Noise Amplifier 

 
Fig. 8. Circuit schematic for LNA. 

As a second example, we consider a low noise amplifier 
designed in the IBM BiCMOS 0.25 µm process, as shown in Fig. 
8. In this example, the variations on both MOS transistors and 
passive components (resistors, capacitors and inductors) are 
considered. The probability distributions and the correlation 
information of these variations are provided in the IBM design kit. 
After PCA analysis, 8 principal factors are identified to represent 
the process variations. 
 
A. Effect of Training Set Size 

Fig. 9 shows the relation between the modeling error and the 
training set size for three modeling approaches. From Fig. 9 we 

observe that the number of training samples should be around 3~4 
times greater than the number of unknown coefficients to avoid 
over-fitting. Further increasing the size of training set does not 
have a significant impact on reducing fitting error. This 
observation implies that the required number of training samples 
depends on the number of unknown coefficients. As the unknown 
coefficient number is reduced in PROBE, we not only decrease 
the computation time for coefficient fitting, but also save a large 
portion of circuit simulation cost because of the smaller training 
set. 
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Fig. 9. Effect of the training set size for LNA. (a) Linear fitting 
error. (b) Rank-one PROBE fitting error. (c) Full-rank 

quadratic fitting error. 
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B. Modeling Accuracy and Cost 
Table 1 compares the fitting errors for the linear, rank-one 

PROBE and full-rank quadratic models. As we would expect, the 
rank-one PROBE modeling error is smaller than the linear 
modeling error, but larger than the full-rank quadratic modeling 
error. 

Table 2 compares the response surface modeling cost for these 
three modeling approaches. The training set size in Table 2 is 
selected to be sufficiently large to avoid over-fitting. Since the 
rank-one PROBE model contains substantially fewer unknown 
coefficients and, therefore, requires much less training samples 
than the full-rank quadratic model, PROBE achieves 2.6x speedup 
in simulation cost due to the smaller training set. Compared with 
the simulation cost, the fitting cost is almost neglectable in this 
example, since the problem size is small and solving the over-
determined linear equations only takes a few seconds for all 
performance metrics. 

Table 1. Response surface modeling error for LNA 

Performance Linear PROBE 
(Rank-1) 

Quad 
(Rank-8) 

F0 1.04% 0.25% 0.11% 
S11 3.04% 0.81% 0.79% 
S12 2.39% 0.84% 0.77% 
S21 2.35% 1.28% 0.22% 
S22 2.72% 2.68% 1.80% 
NF 1.64% 0.97% 0.19% 
IIP3 2.55% 1.07% 0.46% 

Power 2.16% 0.47% 0.41% 

Table 2. Response surface modeling cost for LNA 

Performance Linear PROBE 
(Rank-1) 

Quad 
(Rank-8) 

Unknown Coeff # 9 17 45 
Training Sample # 36 68 180 

Simulation Cost (Sec.) 2620 4949 13100 
 

Table 1 and Table 2 reveal an important fact that PROBE can 
easily facilitate the tradeoff between accuracy and cost during 
response surface modeling. Traditionally, if the linear model 
cannot provide sufficient accuracy, the full-rank quadratic model 
is immediately utilized which might provide over-accurate results 
and require expensive modeling cost. PROBE, however, offers an 
intermediate step between linear modeling and full-rank quadratic 
modeling. Depending on the modeling accuracy requirement, 
PROBE can iteratively select a correct p value and create a rank-p 
model. In this example, the rank-one PROBE model already 
provides sufficient accuracy, as shown in Table 1. 
 
4.3 Scaling with Problem Size 

 
Fig. 10. Circuit schematic of a two-stage Op Amp. 

Next, we consider a two-stage folded-cascode operational 
amplifier designed in the IBM BiCMOS 0.25 µm process, as 
shown in Fig. 10. In this example, 49 principal random factors are 
extracted by PCA analysis to represent the process variations, 
including both inter-die variations and device mismatches. The 
probability distributions and the correlation information of these 
random variations are obtained from the IBM design kit. 

Due to the inclusion of mismatches, the problem size becomes 
significantly larger in this example. However, modeling 
mismatches is extremely important for the Op Amp in Fig. 10, 
since the device mismatches can significantly impact the 
performance of the input differential pair. 

Table 3. Response surface modeling error for Op Amp 

Performance Linear PROBE 
(Rank-1) 

Quad 
(Rank-49) 

Gain 4.20% 2.00% 1.74% 
Offset 24.83% 10.28% 9.09% 
UGF 1.23% 0.48% 0.48% 

Gain Margin 1.03% 0.55% 0.55% 
Phase Margin 1.20% 0.44% 0.44% 
Slew Rate (+) 0.92% 0.93% 0.70% 
Slew Rate (−) 1.38% 0.53% 0.48% 

Power 1.05% 0.77% 0.68% 

Table 4. Response surface modeling cost for Op Amp 

Performance Linear PROBE 
(Rank-1) 

Quad 
(Rank-49) 

Unknown Coeff # 50 99 1275 
Training Sample # 200 396 5100 

Simulation Cost (Sec.) 7.88 × 103 1.56 × 104 2.01 × 105 
Fitting Cost (Sec.) 12.68 54.13 5192.06 

 
Table 3 compares the response surface modeling errors for 

three different approaches: linear approximation, rank-one 
approximation by PROBE and traditional full-rank 
approximation. As we would expect, the Op Amp offset is 
strongly nonlinear in device mismatches. Therefore, the simple 
linear approximation yields an extremely large error (i.e., 24.83%) 
as shown in Table 3. Compared with the linear modeling, both the 
rank-one PROBE modeling and the full-rank quadratic modeling 
achieve more than 2x error reduction. Although higher-order (e.g., 
cubic) response surface models can be applied to further improve 
the accuracy, these higher-order models are rarely utilized in 
practical applications as they will inevitably lead to an 
unaffordable computation cost. 

Table 4 shows the response surface modeling cost for these 
three approaches. The training set size in Table 4 is selected to be 
sufficiently large to avoid over-fitting. As shown in Table 4, while 
the full-rank quadratic modeling takes more than 2 days to 
generate all training samples, PROBE reduces the simulation cost 
to 4.3 hours (12x smaller). In addition, 96x additional speedup is 
achieved by PROBE for coefficient fitting (i.e., solving the 
unknown model coefficients) compared with the full-rank 
quadratic modeling, although the fitting cost is not the dominant 
one in this example. 
 
5. Conclusions 

We propose a novel projection-based extraction approach, 
PROBE, for quadratic response surface modeling of circuit 
performances with consideration of both inter-die and intra-die 
process variations. PROBE utilizes a new projection scheme to 
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facilitate the tradeoff between modeling accuracy and cost. In 
addition, a novel implicit power iteration algorithm is developed 
to find the optimal projection space and solve the unknown model 
coefficients. By using the proposed implicit power iteration 
algorithm, PROBE significantly reduces the modeling cost (i.e., 
both the required number of samples and the linear equation size), 
thereby facilitating scaling to much larger problem sizes. As 
demonstrated by numerical examples in this paper, PROBE can 
generate accurate response surface models and achieve up to 12x 
speedup compared with the traditional quadratic modeling 
approach. The response surface models generated by PROBE can 
be incorporated into a statistical analysis/optimization 
environment for accurate and efficient yield analysis/optimization. 
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