
Projection, Consistency, and George Boole

J. N. Hooker

Carnegie Mellon University, Pittsburgh, USA
jh38@andrew.cmu.edu

Abstract. Although best known for his work in symbolic logic, George
Boole made seminal contributions in the logic of probabilities. He solved
the probabilistic inference problem with a projection method, leading to
the insight that inference (as well as optimization) is essentially a pro-
jection problem. This unifying perspective has applications in constraint
programming, because consistency maintenance is likewise a form of
inference that can be conceived as projection. Viewing consistency in this
light suggests a concept of J-consistency, which is achieved by projection
onto a subset J of variables. We show how this projection problem can
be solved for the satisfiability problem by logic-based Benders decom-
position. We also solve it for among, sequence, regular, and all-different
constraints. Maintaining J-consistency for global constraints can be more
effective than maintaining traditional domain and bounds consistency
when propagating through a richer structure than a domain store, such
as a relaxed decision diagram. This paper is written in recognition of
Boole’s 200th birthday.

1 Introduction

Although George Boole is best known for his work in symbolic logic, he made a
strikingly original contribution to the logic of probabilities [12, 13]. He formulated
the probabilistic inference problem as an optimization problem we now call
linear programming. He solved the problem with a projection method we now
call Fourier-Motzkin elimination. In a single stroke, he linked the concepts of
projection, optimization, and logical inference.

Boole’s insight extends to constraint programming (CP) as well, because
consistency maintenance is a form of projection. Projection is, in fact, the root
idea that unites the other three concepts. Optimization is projection of the
feasible set onto a variable that represents the objective value. Inference, as
we will see, can be understood as projection onto a desired subset of variables.
Consistency maintenance is a form of inference that is likewise equivalent to
projection.

We suggest that this unifying vision can be exploited in CP by addressing
consistency maintenance explicitly as a projection problem. Existing types of
consistency are already forms of projection, but viewing them in this light
suggests a particularly simple type of consistency that has apparently not seen
application. We call it J-consistency, which is achieved by projecting the prob-
lem’s solution set onto a subset J of variables.

2 Projection, Consistency, and George Boole

Our goal is not to solve a particular problem, but to show how projection
is a unifying concept, and to take initial steps in a research program that
applies this insight in inference and CP. We first review how Boole united
optimization, inference, and projection in his treatment of probability logic. We
then turn to propositional logic and note that the resolution procedure, which is
closely related to Fourier-Motzkin elimination, achieves J-consistency. Because
resolution is generally impractical, we propose a more efficient projection method
based on the fact that logic-based Benders decomposition computes a projection.
We illustrate how conflict clauses generated during solution of the satisfiability
problem can deliver the desired projection.

We next discuss the relationship between consistency and projection. We
observe that domain consistency is a particularly simple form of projection,
while k-consistency is a less obvious form. We then indicate how achieving
J-consistency, which is quite different from k-consistency, can reduce backtrack-
ing when the solver propagates through a richer structure than a domain store.
One such structure is a relaxed decision diagram, which recent research suggests
can be a more effective propagation medium than variable domains [7–9, 14, 15].

We next investigate the projection problem for a few popular global con-
straints. We find that projections are easy to compute for among constraints,
relatively easy for sequence constraints, and quite straightforward for regular
constraints. Projection is complicated in principle for all-different constraints,
but it tends to simplify when the domains are small, making it feasible to project
out some of the variables. These results suggest that achieving J-consistency
could have practical application in a solver.

In a concluding section, we propose that a natural generalization of bounds
consistency that parallels J-consistency is projection of the convex hull of the
solution set. This might be called continuous J-consistency. Computing this type
of consistency is closely related to the the project of identifying valid cutting
planes, which has long been pursued in mathematical programming.

2 Probability Logic

Our presentation of Boole’s probability logic largely follows the interpretation
of Hailperin [19]. We are given a set S = {Ci | i ∈ I} of logical clauses, where
each clause Ci has probability πi of being true. The problem is to deduce the
probability of a given clause C0.

Boole formulated this inference problem as what we now call a linear pro-
gramming (LP) problem. Let x = (x1, . . . , xn) be the atomic propositions that
appear in S, and let pv be the (unknown) probability that (x1, . . . , xn) have
truth values v = (v1, . . . , vn). If Vi is the set of truth value assigments v that
make Ci true, then πi =

∑

v∈Vi
pv. The possible range of probabilities π0 of C0

is obtained by minimizing and maximizing π0 subject to these equations and the
facts that the probabilities pv must be nonnegative and sum to one:

{

min /max π0

∣

∣

∣
π0 =

∑

v∈V0

pv;
∑

v∈Vi

pv = πi, i ∈ I;
∑

v∈V

pv = 1; p ≥ 0
}

(1)

Projection, Consistency, and George Boole 3

This is an LP problem in variables π0 and pv for v ∈ V , where V is the set of
all 2n possible truth value assignments to x.

For example, suppose we are given clause set S = {x1, x̄1 ∨ x2, x̄2 ∨ x3} in
which the three clauses have probabilities 0.9, 0.8, and 0.4, respectively. If we
wish to determine a range of probabilities for x3, the LP problem (1) becomes

min /max π0

01010101
00001111
11110011
11011101
11111111

p000
p001
p010
...

p111

=

π0

0.9
0.8
0.4
1

p000, p001, p010, . . . , p111 ≥ 0

The minimum and maximum values of π0 are 0.1 and 0.4, indicating that the
probability of x3 must lie in this range.

Interestingly, the model (1) was reinvented in the AI community in the 1980s
[41], more than a century after an equivalent formulation appeared in Boole’s
work. The number of variables in the model grows exponentially with the number
of atomic propositions, but column generation methods can often overcome this
difficulty in practice by allowing the solver to consider only a tiny fraction of the
variables [20, 24, 32–35].

Boole solved (1) by a method we now call Fourier-Motzkin elimination [16,
40]. Given a general LP problem that minimizes or maximizes y0 subject to
y0 = ay and Ay ≥ b, where y = (y1, . . . , yn), we can compute the projection
onto y0, . . . , yk by eliminating variables yn, yn−1, . . . , yk+1 one at a time. Let S
initially be the set of inequalities ay ≥ y0, ay ≤ y0, and Ay ≥ b. Each variable
yj is eliminated as follows. For each pair of inequalities in S that have the form
cȳ + c0yj ≥ γ and dȳ − d0yj ≥ δ, where c0, d0 > 0 and ȳ = (y1, . . . , yj−1), we
have

−
c

c0
ȳ +

γ

c0
≤ yj ≤

d

d0
ȳ −

δ

d0

or L ≤ yj ≤ U for short. We therefore add inequality L ≤ U to S for each
such pair. This done, we remove from S all inequalities that contain yj . The
inequalities in S at the end of the procedure describe the projection. Eliminating
yn, . . . , y1 leaves bounds ℓ ≤ y0 ≤ u, which tell us that ℓ and u are the minimum
and maximum values of y0.

The method is generally impractical because S tends to explode unless special
structure prevents it. However, by proposing a projection algorithm to solve the
probabilistic inference problem, Boole revealed the connections among projec-
tion, optimization, and inference.

4 Projection, Consistency, and George Boole

3 Inference

Inference can be understood as the process of extracting information that relates
to a particular question or topic. For example, if S is a constraint set that
describes the operation of a factory, we may wish to deduce facts about a certain
product P . Let’s suppose the constraints in S collectively contain variables
x1, . . . , xn, and that x1, . . . , xk are relevant to product P . For example, x1 may
be the model pf P produced, x2 the output level of P , x2 its unit manufacturing
cost, and so forth up to xk. Then we wish to deduce from S all constraints
containing x1, . . . , xk. We will see that this is a projection problem.

3.1 Inference as Projection

To make the connection between inference and projection more precise, we
standardize terminology as follows. For J ⊆ {1, . . . , n}, let xJ be the tuple
of variables in {xj | j ∈ J} arranged in increasing order of indices, and similarly
for vJ . Let Dj be the domain of xj , with D = D1×· · ·×Dn and DJ =

∏

j∈J Dj .
Projection can be defined semantically by saying that a set V ′ ⊆ DJ of tuples is
the projection onto xJ of V ⊆ D when V ′ = {vJ | v ∈ V }. This can be written
V ′ = V |J . However, we are also interested in a syntactic concept that tells us
when a constraint set is a projection onto xJ of another constraint set.

To this end, we define a constraint to be an object that contains certain
variables and is either satisfied or violated by any given assignment of values to
those variables. An assignment can satisfy or violate a contraint only when it
fixes all variables in the constraint.

Let DJ(S) be the set of all v ∈ DJ for which xJ = v satifies S (i.e., satisfies
all the constraints in S). We say that S is a constraint set over x when it contains
only variables in x = (x1, . . . , xn), perhaps not all. If S is a constraint set over x,
then S implies constraint C if an assignment to x satisfies C whenever it satisfies
S, or D(S) ⊆ D({C}).

Let S′ and S be constraint sets over xJ and x, respectively. We define S′ to
be a projection onto xJ of S when S′ describes the projection onto xJ of S’s
satisfaction set, or more precisely, DJ (S

′) = D(S)|J . It is easy to show that
projection captures exactly what S implies about about xJ , in the following
sense:

Lemma 1. Let S and S′ be constraint sets over x and xJ , respectively. Then set
S′ is a projection of S onto xJ if and only if S′ implies all and only constraints
over xJ that are implied by S.

As an example, consider a constraint set S consisting of the logical clauses
in Table 1. The clause set S′ = {x1 ∨ x2, x1 ∨ x3} is a projection of S onto
(x1, x2, x3). This means that any clause over (x1, x2, x3) implied by S is implied
by S′. The two clauses in S′ capture all that can be inferred in terms of atoms
x1, x2, x3.

Projection, Consistency, and George Boole 5

Table 1. A set of logical clauses.

x1 ∨x4 ∨x5

x1 ∨x4 ∨ x̄5

x1 ∨x5 ∨x6

x1 ∨x5 ∨ x̄6

x2 ∨ x̄5 ∨x6

x2 ∨ x̄5 ∨ x̄6

x3 ∨ x̄4 ∨x5

x3 ∨ x̄4 ∨ x̄5

3.2 Inference in Propositional Logic

An elimination procedure based on resolution solves the projection problem for
logical clauses. The procedure is the same as Fourier-Motzkin elimination, except
that when eliminating variable xj , it considers pairs of clauses of the form C∨xj

and D ∨ x̄j , where no one variable occurs negated in C and posited in D (or
vice-versa). Each pair generates a resolvent on xj , namely C ∨D. For example,
resolving x1 ∨ x2 ∨ x4 and x2 ∨ x̄3 ∨ x̄4 on x4 yields x1 ∨ x2 ∨ x̄3. Resolution can
in fact be seen as a form of Fourier-Motzkin elimination plus rounding [46].

The following can be shown [26, 28] by modifying the classical completeness
proof for resolution in [43, 44]:

Theorem 1. Given a clause set S over x = (x1, . . . , xn), eliminating variables
xj for j 6∈ J by resolution (in any order) yields a projection of S onto xJ .

A projection obtained in this manner will contain all prime implications of S
whose variables are the variables in xJ .

Like Fourier-Motzkin elimination, resolution tends to be impractical unless
there is special structure, particularly when J is small (so that a large number
of variables must be eliminated). However, an alternative procedure can be
much more efficient, especially when J is small. It is based on the fact that
Benders decomposition [6] can generate a projection of the constraint set onto
the variables in the master problem. The classical Benders method applies only to
problems with an LP subproblem, but we use logic-based Benders decomposiiton,
which is suitable for general constraint solving and optimization [27–30].

We apply Benders decomposition to a clause set S as follows. The master
problem (initially empty) consists of Benders cuts in the form of clauses over xJ .
Each iteration of the Benders method begins by checking if the master problem
is infeasible, in which case the procedure terminates. Otherwise a solution x̄J

of the master problem is obtained. This defines a subproblem S(x̄J) that is the
result of fixing xJ to x̄J in S. If S(x̄J) is infeasible, a nogood clause (Benders cut)
is generated that excludes x̄J , as well as perhaps other values of xJ for which
S(xJ) is infeasible for similar reasons. If S(x̄J) is feasible, a clause (enumerative
Benders cut) is generated that excludes only x̄J . (The cut is “enumerative”
in the sense that it allows the Benders algorithm to eumerate distinct feasible
solutions.) In either case, the Benders cut is added to the master problem, and

6 Projection, Consistency, and George Boole

the process repeats. At termination, the nogood clauses in the master problem
define the projection of S onto xJ [28].

This procedure can be implemented by a single depth-first branching algo-
rithm that generates conflict clauses. Let the variables in xJ be first in the
branching order. When unit propagation detects unsatisfiability at a node of
the tree, generate conflict clauses and backtrack (see [4] for a survey of these
concepts). Subsequent branches must be consistent with the conflict clauses so
far generated. When a feasible node is reached, backtrack to the last variable
in xJ . When enumeration is complete, the conflict clauses over xJ define the
projection of S onto xJ . Because the search backtracks to level |J | when a
satisfying solution is found, the algorithm can be practical when J is not too
large.

Suppose, for example, that we wish to project the clause set in Table 1
onto xJ for J = {1, 2, 3}. A branching tree appears in Fig. 1. Each branch first
attempts to set xj = F and then xj = T. Conflict clause x1 ∨ x5 is generated at
the leftmost leaf node, which means that setting x1 = x5 = F results in failure,
and similarly at the other infeasible leaf nodes. When all clauses in Table 1 are
satisfied at a node, the search backtracks to level |J | = 3. Upon completion of
the search, the set of conflict clauses over (x1, x2, x3) is a projection onto xJ , in
this case {x1 ∨ x2, x1 ∨ x3}.

We assume that conflict clauses are resolved on the last variable xj in the
clauses when this is possible. In the example, x1 ∨ x5 and x2 ∨ x̄5 are resolved
to create conflict clause x1 ∨ x2, and x1 ∨ x4 and x3 ∨ x̄4 are resolved to yield
x1 ∨ x3.

x1

x2

x3

x4

x5

t.............
.............

.............
.............

.............
.............

.............

..t.............
.............

.............
.............

.............
...........

..t.............
.............

.............
.............

.......t.............
.............

.............
.............t.............

.............

.............

.........

...t

x1∨ x5

t

x2∨ x̄5
x1∨ x2

t.............
.............

.............
.............

.......

..t.............
.............

.............
.............

..t

x1∨ x4

t

x3∨ x̄4
x1∨ x3

t...t...t

t.............
.............

.............

.........

..t.............
.............

.............

.........

..t.............
.............

.............

....t.............
.............

.............

..t

t.............
.............

.............

....t.............
.............

.............

..t

t.............
.............

.............

.........

..t.............
.............

.............

....t

t

Fig. 1. Branching tree for a SAT instance. Dashed arcs indicate xj = F and solid arcs
xj = T. Conflict clauses are shown at failure nodes. Solutions are found at remaining
leaf nodes, from which the search backtracks to x3.

Projection, Consistency, and George Boole 7

Theorem 2. The set of conflict clauses over xJ generated as above defines a
projection of S onto xJ .

Proof. We will show that the tree search implements a Benders algorithm in
which the nogood Benders cuts are conflict clauses over xJ . The conflict clauses
therefore define the projection of S into xJ .

For any node N of the search tree, let xJ (N) be the assignment to variables
in xJ along the path from the root node to N . Whenever an infeasible node N
generates a conflict clause C(N) over xJ , we add C(N) to the master problem
as a nogood clause. Whenever a feasible solution is found at a node N , we may
suppose that a clause C(N) excluding precisely xJ (N) is added to the master
problem, because the backtracking mechanism ensures that this value of xJ will
not be encountered again.

If a node N that generates C(N) is at level |J | or lower, then xJ (N) is a
solution of the current master problem, and C(N) a nogood that excludes it. If
N is above level |J |, then some completion down to level |J | of the assignment
xJ (N) is a solution of the master problem, because otherwise resolution of
conflict clauses would have produced a conflict clause that excludes N . In either
case, N can be regarded as generating a nogood C(N) that excludes a solution
of the master problem. A feasible node N gives rise to a feasible solution x̄ of S,
in which case x̄J is a solution of the master problem that is excluded by C(N).

Because conflict clauses are resolved, all values of xJ that have no feasible
extension are excluded by some conflict clause. This means that the tree search
terminates precisely when the master problem no longer has a solution. The
search therefore implements a Benders algorithm, and the projection of S onto
xj is defined by the conflict clauses C(N). �

Other adaptations of resolution and Fourier-Motzkin elimination can be used
to compute projections for cardinality clauses [23], 0–1 linear inequalities [25],
and general integer linear inequalities [47]. Polyhedral projection methods have
been studied in the AI community as well [31].

4 Consistency

Popular forms of consistency maintenance already compute projections, but
viewing them from this perspective can suggest new and possibly useful forms
of consistency.

4.1 Consistency Maintenance as Projection

Domain consistency is achieved by projecting the solution set onto each indi-
vidual variable. A constraint set S over x is domain consistent when for each
variable xj and each value v ∈ Dj, the assignment xj = v is part of some
assignment x = v that satisfies S. This is equivalent to saying that {xj ∈ Dj} is
a projection of S onto xj , or Dj = D(S)|{j}, for j = 1, . . . , n.

8 Projection, Consistency, and George Boole

Achieving domain consistency for S at each node of the search tree avoids
backtracking, because it allows us to assign any value inDj to xj when branching
on xj (if S is satisfiable) without creating an infeasible subtree. Since it is
generally impractical to achieve domain consistency for S as a whole, solvers
typically maintain domain consistency (or an approximation of it) for some
individual constraints in S and propagate the reduced domains through a domain
store. This tends to reduce the search tree due to smaller domains.

Another type of consistency related to backtracking is k-consistency. It is
again achieved by projection, but not by projecting the entire constraint set.
It projects only subsets of constraints over k variables onto subsets of k − 1
variables.

A constraint set S over x is k-consistent when for every J ⊆ {1, . . . , n} with
|J | = k − 1, every assignment xJ = vJ ∈ DJ that does not violate S, and
every variable xj not in xJ , there is an assignment xj = vj ∈ Dj for which
(xJ , xj) = (vJ , vj) does not violate S. A constraint set S is strongly k-consistent
when it is ℓ-consistent for ℓ = 1, . . . , k.

To relate k-consistency to projection, we define SJ to be the set of constraints
in S that are over xJ . Then xJ satisfies SJ if and only if xJ violates no constraints
in S. This implies the following:

Lemma 2. A constraint set S over x is k-consistent if and only if DJ(SJ) =
DJ∪{j}(SJ∪{j})|J for all J ⊆ {1, . . . , n} with |J | = k − 1 and all j 6∈ J .

k-consistency is not an obvious generalization of domain consistency, because
1-consistency is not achieved by projecting the constraint set onto individual
variables.

Strong k-consistency avoids backtracking when one branches on x1, . . . , xn

if the primal graph of S has width less than k with respect to this ordering
[17]. However, it is impractical to maintain strong k-consistency (k > 1) for
S as a whole. Furthermore, when propagation is through a domain store as
in standard solvers, there is no point in maintaining k-consistency rather than
domain consistency for individual constraints.

4.2 J-Consistency

We propose a type of consistency that is more directly related to projection
and naturally generalizes domain consistency. Let S be J-consistent when some
S′ ⊆ S is a projection of S onto xJ . That is, S contains constraints that
describe its projection onto xJ , or DJ(SJ) = D(S)|J . If we view S as containing
the in-domain constraints xj ∈ Dj , S is domain consistent if and only if it is
{j}-consistent for j = 1, . . . , n.

Due to Theorem 1, resolution on variables xj for j 6∈ J achieves J-consistency
for SAT. The Benders procedure described in the previous section also achieves
J-consistency, due to Theorem 2.

As in the case of domain consistency, we focus on maintaining J-consistency
for individual constraints. If we branch on variables in the order x1, . . . , xn, a

Projection, Consistency, and George Boole 9

natural strategy is to project out variables in reverse order xn, xn−1, . . . until
the computational burden becomes excessive. We will see below that for some
important global constraints, it is relatively easy to project out some or all of
the variables.

As in the case of k-consistency, there is no point in maintaining J-consistency
for individual constraints when propagation is through a domain store. However,
recent research shows that propagation through relaxed decision diagrams can be
substantially more effective than domain propagation [7–9, 14, 15]. Maintaining
J-consistency could have a significant effect on propagation in this context.

For a simple example of this phenomenon, suppose S consists of the con-
straints

among((x1, x2), {c, d}, 1, 2) (2)

(x1 = c) ⇒ (x2 = d) (3)

alldiff(x1, . . . , x4) (4)

where (2) requires that at least 1 and at most 2 of the variables x1, x2 take a
value in {c, d}, and (4) is an all-different constraint. The variable domains are
D1 = D2 = {a, b, c, d}, D3 = {a, b}, and D4 = {c, d}. No domain reduction is
possible for the individual constraints, and so we must branch on all 4 values of
x1 at the top of the search tree.

However, suppose we propagate through a relaxed decision diagram of width
2 rather than a domain store (which is a decision diagram of width 1). Let’s
suppose we have already constructed a relaxed decision diagram for constraints
(2) and (3), shown in Fig. 2(a). The 52 paths from r to t in the diagram
represent assignments to (x1, . . . , x4). Thirty-six of these paths represent all
of the solutions of (2)–(3), indicating that the diagram in fact represents a
relaxation of these constraints.

When branching on x1, we need only consider values that label outgoing arcs
from the root node r of the diagram. Unfortunately, all 4 values appear on these
arcs. However, we can reduce branching if we project out x3, x4 for the alldiff
constraint (4). We will see later that the resulting projection is a constraint set
consisting of

alldiff(x1, x2), atmost((x1, x2), {a, b}, 1), atmost((x1, x2), {c, d}, 1)

where the constraint atmost(x, V, u) is equivalent to among(x, V, 0, u). We can
propagate the second atmost constraint in a downward pass through the first
2 variables of the relaxed decision diagram of Fig. 2(a). To do so, we let the
length of a path be the number of arcs on the path with labels in {c, d}. Then
we indicate, on each arc, the length of the shortest path from r ending with that
arc. This allows us to delete any arc assigned a number greater than 1, and any
other arcs that lie on no r–t path as a result. We eliminate two arcs, resulting
in the smaller decision diagram of Fig. 2(b). We therefore need only branch on
values a, b, and d. A fuller discussion of propagation through relaxed decision
diagrams can be found in [1, 9, 21].

10 Projection, Consistency, and George Boole

x1

x2

x3

x4

r
t...

a,b,d
0,0,1

...

c
1

t...

a,b,c,d
0,0,1,1

t...

d
2

t..

a,b
t..

c,d
t

t

x1

x2

x3

x4

r
t...

a,b,d

t...

a,b,c,d
t..

a,b
t..

c,d
t

t
(a) (b)

Fig. 2. (a) Relaxed decision diagram for an among constraint. Arcs with multiple labels
represent multiple arcs connecting the same endpoints, each arc with one of the labels.
The numbers are part of a mechanism for propagating a projected alldiff constraint.
(b) Decision diagram after propagating the projected alldiff constraint.

Aside from any advantages in accelerating search, computing projections can
infer valuable information from a constraint set. To return to the earlier example
of a factory, it may be useful to know what characteritics of a particular product
are consistent with the constraint set describing the factory. A projection yields
constraints that the product must satisfy. Or if certain variables represent key
decisions that are made in the early stages of a project, it may be important
to know what options are available for these decisions. Again, projection can
answer this question.

4.3 Projection of Among Constraint

Projecting out variables in an among constraint [5] is quite simple because
each variable elimination yields another among constraint. If x = (x1, . . . , xn),
the constraint among(x, V, ℓ, u) requires that at least ℓ and at most u of the
variables in x take a value in V . Variable xn is projected out as follows. Let
α+ = max{α, 0}.

Theorem 3. If 0 ≤ ℓ ≤ u ≤ n, the projection of among(x, V, ℓ, u) onto x̄ =
(x1, . . . , xn−1) is among(x̄, V, ℓ′, u′), where

(ℓ′, u′) =

((ℓ− 1)+, u− 1), if Dn ⊆ V (a)

(ℓ,min{u, n− 1}), if Dn ∩ V = ∅ (b)

((ℓ− 1)+,min{u, n− 1}), otherwise (c)

Proof. In case (a), xn must take a value in V , which means that the upper
bound u is reduced by 1 and the lower bound ℓ by 1 (unless it is already 0). In

Projection, Consistency, and George Boole 11

case (b), xn cannot take a value in V , which means that the lower bound ℓ is
unchanged. The upper bound u is also unchanged, but if u = n it can be reduced
by 1 since there are now only n− 1 variables. In case (c), xn can take a value in
V , which means that ℓ is modified as in case (a). However, xn can fail to take a
value in V , which means that u is treated as in case (b). �

Variables xn, xn−1, . . . , x1 are projected out sequentially by applying the
theorem recursively. The original constraint is feasible if and only if ℓ′ ≤ u′

after projecting out all variables.
As an example, let x = (x1, . . . , x5), let V = {c, d}, and let the domains

D1, . . . , D5 be {a, b}, {a, b, c}, {a, d}, {c, d}, and {d}. Then while sequentially
projecting out x5, . . . , x1, the original lower bound ℓ becomes ℓ′ = (ℓ − 1)+,
(ℓ − 2)+, (ℓ − 3)+, (ℓ − 4)+, and (ℓ − 4)+, while the upper bound u becomes
u′ = u−1, u−2, min{u−2, 2}, min{u−2, 1}, and min{u−2, 0}. The constraint
is feasible if and only if (ℓ− 4)+ ≤ min{u− 2, 0}.

4.4 Projection of Sequence Constraint

Fourier-Motzkin elimination provides a fast and convenient method for project-
ing a sequence constraint. The constraint has an integrality property that makes
a polyhedral projection technique adequate, and Fourier-Motzkin simplifies to
the point that a single generalized sequence constraint describes the projection
after each variable elimination.

Following standard convention, we assume without loss of generality that
the sequence constraint applies to 0-1 variables x1, . . . , xn [22, 45]. It enforces
overlapping constraints of the form

among((xℓ−q+1, . . . , xℓ), {1}, Lℓ, Uℓ) (5)

for ℓ = q, . . . , n, where Lℓ, Uℓ are nonnegative integers, and where domain Dj

is defined by αj ≤ xj ≤ βj for αj , βj ∈ {0, 1}. Note that we allow different
bounds for different positions ℓ in the sequence. The following theorem provides
a recursion for eliminating xn, . . . , x1:

Theorem 4. Given any k ∈ {0, . . . , n}, the projection of the sequence constraint
defined by (5) onto (x1, . . . , xk) is described by a generalized sequence constraint
that enforces constraints of the form

among
(

(xi, . . . , xℓ), {1}, L
ℓ
ℓ−i+1, U

ℓ
ℓ−i+1

)

(6)

where i = ℓ − q + 1, . . . , ℓ for ℓ = q, . . . , k and i = 1, . . . , ℓ for ℓ = 1, . . . , q − 1.
The projection of the sequence constraint onto (x1, . . . , xk−1) is given by (6) with
Lℓ
ℓ−i+1 replaced by L̂ℓ

ℓ−i+1 and U ℓ
ℓ−i+1 by Û ℓ

ℓ−i+1, where

L̂ℓ
i =

{

max{Lℓ
i , L

k
i+k−ℓ − Uk

k−ℓ}, for i = 1, . . . , q − k + ℓ,

Lℓ
i , for i = q − k + ℓ+ 1, . . . , q

Û ℓ
i =

{

min{U ℓ
i , U

k
i+k−ℓ − Lk

k−ℓ}, for i = 1, . . . , q − k + ℓ,

U ℓ
i , for i = q − k + ℓ+ 1, . . . , q

(7)

12 Projection, Consistency, and George Boole

Proof. Constraint (5) is equivalent to

L ≤
ℓ

∑

j=ℓ−q+1

xj ≤ U (8)

and xj ∈ {0, 1} for j = ℓ− q + 1, . . . , ℓ, while (6) is equivalent to

Lℓ
ℓ−i+1 ≤

ℓ
∑

j=i

xj ≤ U ℓ
ℓ−j+1 (9)

and xj ∈ {0, 1} for j = i, . . . , ℓ. As pointed out in [38], the constraint matrix
for inequalities (8) has the consecutive ones property. The inequalities therefore
describe an integral polyhedron. Imposing 0-1 bounds Lj ≤ xj ≤ Uj has no
effect on integrality, so that inequalities (8) and domain bounds describe an
integral polyhedron Pn. Because the projection of an integral polyhedron onto
any subspace is integral, the projection Pk of Pn onto (x1, . . . , xk) is integral for
k = 1, . . . , n− 1. The projection of the feasible set of the sequence constraint is
therefore described by Pk and xj ∈ {0, 1} for j = 1, . . . , k.

Pk−1 can be derived by applying Fourier-Motzkin elimination to Pk. To show
that each Pk is described by inequalities of the form (9), note first that Pn is
described by inequalities (8) and domain bounds, which correspond to a subset of
inequalities (9). Specifically, (Lℓ

q, U
ℓ
q) = (Lℓ, Uℓ) for ℓ = q, . . . , n and (Lℓ

1, U
ℓ
1) =

(αℓ, βℓ) for ℓ = 1, . . . , n. The remaining inequalities (9) can be assumed to be
present with nonbinding upper and lower bounds. Now assuming that Pk is
described by inequalities of form (9), a tedious but straightforward application of
Fourier-Motzkin elimination to (9) shows that inequalities of precisely the same
form describe Pk−1. It follows by induction that inequalities of form (9) describe
Pk for all k. Furthermore, the resulting bounds in the inequalities describing
Pk−1 are given by (7). This proves the theorem. �

The worst-case complexity of projecting out each variable xk isO(kq). We can
illustrate the theorem with an example from [28]. Suppose we have a sequence
constraint that imposes (5) with n = 6, q = 4, and Lℓ = Uℓ = 2 for each ℓ.
Variables x1, x3, x4, and x6 have domain {0, 1}, while x2 and x5 have domain {1}.
There is one feasible solution, namely x = (1, 1, 0, 0, 1, 1). Initially the bounds
in (6) are Lℓ

4 = U ℓ
4 = 2 for ℓ = 4, 5, 6, (Lℓ

1, U
ℓ
1) = (0, 1) for ℓ = 1, 3, 4, 6, and

(Lℓ
1, U

ℓ
1) = (1, 1) for ℓ = 2, 5, with all other Lℓ

i = −∞ and all other U ℓ
i = ∞.

Projecting out x6 yields

among((x3, x4, x5), {1}, 1, 1)

in addition to the original among constraints and domains for variables x1, . . . , x5.
Projecting out x5 yields

among((x2, x3, x4), {1}, 1, 1), among((x3, x4), {1}, 0, 0)

in addition to the original constraints on x1, . . . x4. The second constraint fixes
x3 = x4 = 0, which makes the first constraint redundant because x2 has the

Projection, Consistency, and George Boole 13

0
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
......
.......
.......
.......
.......
.......................

...................

a

...
...........
......
.....
.....
...

c

1 ..
.................

..
a

9
......
.........

...
......
.....
.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....................

...................

a

..

.....

.....
....

.....

.....

.....
....

c

2 ..
.................

..
c

3
......
.........

...
......
.....
...

.................
..

a
...

...........
......
.....
.....
...

b

8
......
.........

...
......
.....
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
......
.......
.......
.......
.......
.......................
...................

a

..
..

...................

b
...

.....
.....
...

........
...........

c

4
......
.........

...
......
.....
.

.......
.......
.......
......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
......
.......
.......
.......
........................

...................

b

..
.................

..
c

5
......
.........

...
......
.....
.

..

.....
.....
....

.....

.....

.....
....

b

7..
..

...................

b

6
......
.........

...
......
.....
.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....................

...................

b

Fig. 3. Finite deterministic automaton for a shift scheduling problem instance. State
0 is the initial state, and accepting states are circled.

singleton domain {1}. Projecting out x4 yields

among((x1), {1}, 1, 1), among((x1, x2, x3), {1}, 1, 2),

among((x2, x3), {1}, 0, 1), among((x3), {1}, 0, 0)

in addition to the original constraints on x1, x2, x3, where the second and third
constraints are redundant. This and the domain of x2 fix (x1, x2, x3) = (1, 1, 0).
Projecting out x3 similarly fixes (x1, x2) = (1, 1), and projecting out x2 fixes
x1 = 1.

4.5 Projection of Regular Constraint

The regular constraint [42] can be projected onto xk = (x1, . . . , xk) in a straight-
forward manner by constructing and truncating the associated state transition
graph. The idea is best conveyed by illustration, such as a shift scheduling
example from [28]. Suppose we wish to assign a worker to shift a, b, or c on
each of 7 days. The worker must work any given shift at least 2 and at most 3
days in a row, and the worker may not transition directly between shifts a and c.
The relevant constraint is regular(x7, A), A is the deterministic finite automaton
in Fig. 3. A regular expression that encodes the automaton is

(((aa|aaa)(bb|bbb))∗|((cc|ccc)(bb|bbb))∗)∗(ǫ|(aa|aaa)|(cc|ccc))

The domains may be filtered by constructing the state transition graph of
Fig. 4, where the original domain Dj and the filtered domains D′

j are as shown
in the figure. Dashed arcs lead to states that are not backward reachable from
accepting states in stage 7 and therefore can be deleted. Each D′

j consists of
shifts on solid arcs leading states in stage j of the graph.

A projection onto xk can be obtained simply by truncating the state transi-
tion graph at stage k+1 and imposing the resulting graph as a constraint. Such

14 Projection, Consistency, and George Boole

a constraint is easily propagated in a relaxed decision diagram. For example, the
projection onto x3 has 2 solutions, x3 = aab and ccb, corresponding to the two
feasible paths to state 7. If we rely solely on domain filtering, x3 can take any
of 4 values. The worst-case complexity of projecting onto any xk is the same as
for projecting onto all xk, namely O(nm2), where m is the number of states in
the automaton.

If desired, one can convert the truncated transition graph to an automaton
A′ that correctly describes the projection onto xk. This expression can then be
imposed through a constraint regular(xk, A′). For example, the projection onto
x3 is described by the regular expression (aab)|(ccb).

4.6 Projection of Alldiff Constraint

Projection of an all-different constraint is inherently complicated but tends to
simplify when the domains are small. The projection onto xk = (x1, . . . , xk)
takes the form of a disjunction of constraint sets, each of which consists of an
alldiff constraint and a family of atmost constraints. Such a disjunction can be
straightforwardly propagated through a relaxed decision diagram. The number
of disjuncts can grow quite large in principle, but the disjuncts tend to simplify
and/or disappear as variable elimination proceeds, particularly if the domains
are small. In practice, one can eliminate variables until the disjunction grows
too large, at which point propagating the projection is likely to have little effect
in any case.

The projection onto xk is a disjunction of constraint sets, each of which has
the form

alldiff(xk); atmost(xk, Vi, bi) for i ∈ I; xj ∈ Dj for j = 1, . . . , k (10)

where bi < k for i ∈ I. When k = n there are no atmost constraints. Since
the projection of a disjunction is the disjunction of the projected disjuncts, it
suffices to project each constraint set (10) separately and take the disjunction
of the projections.

0..........
..........
..........
..........
..........
..........
..........
..........
.............................

...................a

...
......
.....

c

1 ..
.................

..a

2 ..
.................

..c

3
a

..
...........
......
.....
.....
...

b

4 ..
.................

..b

5
b

7 ..
.................

..b

7

8
.......
......
.......
.......
......
.......
.......
......
.......
.......
......
.......
.......
......
.......
.......
..........................

...................

a

.............
c

1 ..
.................

..a

2

3 ..
.................

..a
.............

.............
.............

.............
.....................
.....
......
.....
..

b

5

7

j = 1 2 3 4 5 6 7 8

Dj = {a, c} {a, b, c} {a, b} {b, c} {a, c} {a, b} {a, b}

D′

j = {a, c} {a, c} {b} {b} {a} {a} {a}

Fig. 4. State transition graph for the shift scheduling problem instance.

Projection, Consistency, and George Boole 15

To simplify matters, we note that atmost(xk, Vi, bi) is redundant if the num-
ber of variables in xk whose domains intersect Vi is at most bi, or in particular
if k ≤ bi.

The projection of (10) onto xk−1 consists of a disjunction of one or more
constraint sets having a form similar to (10). We first remove redundant atmost
constraints from (10). We then consider several cases, corresponding to possible
values of xk, where each case can give rise to a constraint set.

First we consider cases in which xk takes a value in Vi for some i ∈ I. In each
such case, only bi−1 values in Vi are available for variables in xk−1 to take. So the
constraint atmost(xk, Vi, bi) becomes atmost(xk−1, Vi, bi− 1). If bi− 1 = 0, then
the values in Vi are forbidden, which means we can delete the atmost constraint
and remove the values in Vi from all domains and all sets Vi′ for i′ 6= i. The
constraints atmost(xk, Vi′ , bi′) for i′ 6= i become atmost(xk−1, Vi′ , bi′), except
that we omit redundant constraints.

Now we consider the case in which xk takes a value that is in none of the
sets Vi. Let R = Dk \

⋃

i∈I Vi be the set of xk’s domain values that lie outside
these sets. If R is empty, there is no need to consider this case. If R contains
at least 2 values, then since xk is taking a value in R, the variables in xk−1 can
take at most |R| − 1 values in R, and so we impose an additional constraint
atmost(xk−1, R, |R| − 1). The atmost constraints in (10) carry over without a
change in bounds. If R is a singleton {v}, then we know xk takes the value v. This
means that v is unavailable in the projection and can be removed from domains
D1, . . . , Dk−1 as well as from Vi for all i ∈ I. If a domain becomes empty, then
we create no constraint set. Otherwise we carry over the nonredundant atmost
constraints in (10). A precise statement of the algorithm appears in Fig. 1. Due
to the above argument, we have

Theorem 5. The algorithm for Fig. 1 correctly computes the projection of (10)
onto xk−1. Furthermore, the projection of alldiff(x) onto xk is a disjunction P
of constraint sets of the form (10). Thus the projection of alldiff(x) onto xk−1 is
the disjunction of all constraint sets generated by applying the algorithm to the
disjuncts of P.

As an example, suppose we wish to project alldiff(x5), where the domains
D1, . . . , D5 are {a, b, c}, {c, d, e}, {d, e, f}, {e, f, g}, and {a, f, g}, respectively.
To project onto x4, we note that R = {a, f, g}, which yields the constraint set

alldiff(x4), atmost(x4, {a, f, g}, 2) (11)

When projecting (11) onto x3, we first consider the case x4 ∈ V1 = {a, f, g},
which yields the constraint set

alldiff(x3), atmost(x3, {a, f, g}, 1) (12)

There is one other case, in which R = {e}, which allows us to remove e from
the domains. We generate the atmost constraint atmost(x3, {a, f, g}, 2), which
is redundant, yielding the constraint set

alldiff(x3), D1, . . . , D3 = {a, b, c}, {c, d}, {d, f} (13)

16 Projection, Consistency, and George Boole

Algorithm 1 Given a projection of alldiff(xn) onto xk, this algorithm computes
a projection onto xk−1. The projection onto xk is assumed to be a disjunction of
constraint sets, each of which has the form (10). The above algorithm is applied
to each disjunct, after which the disjunction of all created constraint sets forms
the projection onto xk−1.

For all i ∈ I : if atmost(xk, Vi, bi) is redundant then remove i from I .
For all i ∈ I :

If Dk ∩ Vi 6= ∅ then
If bi > 1 then

Create a constraint set consisting of alldiff(xk−1),

atmost(xk−1, Vi′ , bi′) for i′ ∈ I \ {i}, and atmost (xk−1, Vi, bi − 1).
Let R = Dk \

⋃
i∈I

Vi.
If |R| > 1 then

Create a constraint set consisting of alldiff(xk−1),

atmost(xk−1, Vi′ , bi′) for i
′ ∈ I , and atmost (xk−1, R, |R| − 1).

Else if |R| = 1 then
Let R = {v} and remove v from Dj for j = 1, . . . , k − 1 and from Vi for i ∈ I .
If Dj is nonempty for j = 1, . . . , k − 1 then

For all i′ ∈ I : if atmost(xk−1, Vi′ , bi′) is redundant then remove i′ from i.

Create a constraint set consisting of alldiff(xk−1) and

atmost(xk−1, Vi′ , bi′) for i′ ∈ I .

The projection onto x3 is the disjunction of (12) and (13).
To project (12) onto x2, we first consider the case x3 ∈ V1 = {a, f, g}, which

reduces b1 = 1 to zero. This allows us to drop the atmost constraint and remove
values a, f, g from all domains, leaving the constraint

alldiff(x2), D1, D2 = {b, c}, {c, d, e} (14)

In the other case, we have R = {d, e}, which yields the redundant constraint
atmost(x2, {d, e}, 1). The projection onto x2 is therefore simply alldiff(x2), and
there is no need to compute the projection of (13). Further projection onto x1

has no effect on the domain of x1.

5 Concluding Remarks

Following George Boole’s lead, we have identified projection as a unifying ele-
ment of optimization, logical inference, and consistency maintenance. We have
also begun to explore a research program that addresses inference and constraint
satisfaction problems from the perspective of projection, particularly by achiev-
ing J-consistency. We showed how to achieve J-consistency for propositional
satisfiability, as well as for satisfiability among, sequence, regular, and alldiff
constraints.

Projection, Consistency, and George Boole 17

An obvious next step is to investigate the projection problem for additional
global constraints. Even if computing the exact projection is laborious, it may
be practical to derive a partial description of the projection, much as solvers
often only approximate domain consistency. It is also important to find efficient
procedures for propagating projections through a relaxed decision diagram or
other structure.

We have not discussed bounds consistency from the perspective of projection,
but projection is clearly the essence of the matter. Bounds consistency is most
naturally defined when variable domains can be embedded in the real numbers.
Then a constraint set S is bounds consistent when the real interval spanned by
the domain of each variable xj is the projection onto xj of the convex hull of
S’s satisfaction set. This suggests a natural extension of bounds consistency to
an analogue of J-consistency that might be called continuous J-consistency. It
is achieved by projecting the convex hull of S’s satisfaction set onto xJ .

Projecting a convex hull is closely related to optimization in integer and linear
programming [39]. In particular, it is equivalent to finding all valid linear inequal-
ities or cutting planes over a subset of variables. The identification of cutting
planes is a project that has occupied the mathematical programming community
for decades. Cutting planes normally serve a different purpose, namely to tighten
the continuous relaxation of a set of integer linear inequalities, and the commu-
nity is generally satisfied to find a few effective cuts, since deriving all valid cuts
is generally impractical. Yet a few cuts can partially describe the projection as
well as tighten the continuous relaxation.

In fact, cutting planes can serve both purposes in both fields. In CP, they
can be propagated through a linear programming relaxation of the problem,
which can be effective for bounding the objective function, as well as achieving
consistency. In integer programming, they can reduce backtracking even if a
continuous relaxation is not used, by improving the degree of consistency of the
constraint set, although this phenomenon appeares not to have been investigated.

One difference in the two fields, however, is that cutting plane theory in
integer programming focuses on 0–1 variables, as well as general integer variables
that appear in inequality constrants, while CP is primarily interested in finite-
domain variables that appear in other kinds of combinatorial constraints. In
many cases, it is practical to reformulate a problem with 0–1 variables for
purposes of relaxation, but ideally one would generate cuts in the original finite-
domain variables. Finite-domain cuts have been derived for a few constraints,
such as alldiff systems (graph coloring) [2, 3, 10, 11, 36, 37], the circuit constraint
(traveling salesman) [18], and disjunctive scheduling [28]. Yet much remains to
be done.

References

1. Andersen, H.R., Hadžić, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessiere, C. (ed.) Principles and Practice of
Constraint Programming (CP 2007). Lecture Notes in Computer Science, vol. 4741,
pp. 118–132. Springer (2007)

18 Projection, Consistency, and George Boole

2. Appa, G., Magos, D., Mourtos, I.: Linear programming relaxations of multiple all-
different predicates. In: Régin, J.C., Rueher, M. (eds.) CPAIOR 2004 Proceedings.
Lecture Notes in Computer Science, vol. 3011, pp. 364–369. Springer (2004)

3. Appa, G., Magos, D., Mourtos, I.: On the system of two all-different predicates.
Information Processing Letters 94, 99–105 (2004)

4. Beame, P., Kautz, H., Sabharwal, A.: Understanding the power of clause learning.
In: International Joint Conference on Artificial Intelligence (IJCAI 2003) (2003)

5. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathemat-
ical and Computer Modelling 12, 97–123 (1994)

6. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4, 238–252 (1962)

7. Bergman, D., Cire, A., Sabharwal, A., Samulowitz, H., Sarswat, V., van Hoeve,
W.J.: Parallel combinatorial optimization with decision diagrams. In: CPAIOR
2012 Proceedings. LNCS, vol. 8451, pp. 351–367. Springer (2014)

8. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with binary decision diagrams. INFORMS Jorunal on Computing (to appear)

9. Bergman, D., van Hoeve, W.J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.S. (eds.) CPAIOR 2011
Proceedings. Lecture Notes in Computer Science, vol. 6697, pp. 20–35. Springer
(2011)

10. Bergman, D., Hooker, J.N.: Graph coloring facets from all-different systems,. In:
Jussien, N., Petit, T. (eds.) CPAIOR Proceedings. pp. 50–65. Springer (2012)

11. Bergman, D., Hooker, J.: Graph coloring inequalities for all-different systems.
Constraints 19, 404–433 (2014)

12. Boole, G.: An Investigation of the Laws of Thought, On Which are Founded the
Mathematical Theories of Logic and Probabilities. Walton and Maberly, London
(1854)

13. Boole, G.: Studies in Logic and Probability (ed. by R. Rhees). Open Court
Publishing Company, La Salle, IL (1952)

14. Ciré, A.A., van Hoeve, W.J.: MDD propagation for disjunctive scheduling. In: Pro-
ceedings of the International Conference on Automated Planning and Scheduling
(ICAPS). pp. 11–19. AAAI Press (2012)

15. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing prob-
lems. Operations Research 61, 1411–1428 (2013)

16. Fourier, L.B.J.: Analyse des travaux de l’Académie Royale des Sciences, pendant
l’année 1824, partie mathématique (report of 1824 transactions of the Royal
Academy of Sciences, containing Fourier’s work on linear inequalities). Histoire
de l’Académie Royale des Sciences de l’Institut de France 7, xlvii–iv (1827)

17. Freuder, E.C.: A sufficient condition for backtrack-free search. Communications of
the ACM 29, 24–32 (1982)

18. Genç-Kaya, L., Hooker, J.N.: The Hamiltonian circuit polytope. Manuscript,
Carnegie Mellon University (2013)

19. Hailperin, T.: Boole’s Logic and Probability, Studies in Logic and the Foundations
of Mathematics, vol. 85. North-Holland, Amsterdam (1976)

20. Hansen, P., Perron, S.: Merging the local and global approaches to probabilistic
satisfiability. International Journal of Approximate Reasoning 47, 125–140 (2008)

21. Hoda, S., van Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Proceedings of the 16th International Conference on
Principles and Practices of Constraint Programming. Lecture Notes in Computer
Science, Springer (2010)

Projection, Consistency, and George Boole 19

22. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the
sequence constraint. In: Benhamou, F. (ed.) Principles and Practice of Constraint
Programming (CP 2006). Lecture Notes in Computer Science, vol. 4204, pp. 620–
634. Springer (2006)

23. Hooker, J.N.: Generalized resolution and cutting planes. Annals of Operations
Research 12, 217–239 (1988)

24. Hooker, J.N.: A mathematical programming model for probabilistic logic. Working
paper 05-88-89, Graduate School of Industrial Administration, Carnegie Mellon
University (1988)

25. Hooker, J.N.: Generalized resolution for 0-1 linear inequalities. Annals of Mathe-
matics and Artificial Intelligence 6, 271–286 (1992)

26. Hooker, J.N.: Logical inference and polyhedral projection. In: Computer Science
Logic Conference (CSL 1991). Lecture Notes in Computer Science, vol. 626, pp.
184–200. Springer (1992)

27. Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition.
Operations Research 55, 588–602 (2007)

28. Hooker, J.N.: Integrated Methods for Optimization, 2nd ed. Springer (2012)
29. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical

Programming 96, 33–60 (2003)
30. Hooker, J.N., Yan, H.: Logic circuit verification by Benders decomposition. In:

Saraswat, V., Hentenryck, P.V. (eds.) Principles and Practice of Constraint Pro-
gramming: The Newport Papers. pp. 267–288. MIT Press, Cambridge, MA (1995)

31. Huynh, T., Lassez, C., Lassez, J.L.: Practical issues on the projection of polyhedral
sets. Annals of Mathematics and Artificial Intelligence 6, 295–315 (1992)

32. Jaumard, B., Hansen, P., Aragão, M.P.: Column generation methods for proba-
bilistic logic. INFORMS Journal on Computing 3, 135–148 (1991)

33. Kavvadias, D., Papadimitriou, C.H.: A linear prorgamming approach to reasoning
about probabilities. Annals of Mathematics and Artificial Intelligence 1, 189–206
(1990)

34. Klinov, P., Parsia, B.: A hybrid method for probabilistic satisfiability. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) 23rd International Conference on Automated
Deduction (CADE 2011). Lecture Notes in AI, vol. 6803, pp. 354–368. Springer
(2011)

35. Klinov, P., Parsia, B.: Pronto: A practical probabilistic description logic reasoner.
In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey,
K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) Uncertainty Reasoning for the
Semantic Web II (URSW 2008–2010). LNAI, vol. 7123, pp. 59–79. Springer (2013)

36. Magos, D., Mourtos, I.: On the facial structure of the alldifferent system. SIAM
Journal on Discrete Mathematics pp. 130–158 (2011)

37. Magos, D., Mourtos, I., Appa, G.: A polyhedral approach to the alldifferent system.
Mathematical Programming 132, 209–260 (2012)

38. Maher, M.J., Narodytska, N., Quimper, C.G., Walsh, T.: Flow-based propagators
for the SEQUENCE and related global constraints. In: Stuckey, P.J. (ed.) Principles
and Practice of Constraint Programming (CP 2008). Lecture Notes in Computer
Science, vol. 5202, pp. 159–174. Springer (2008)

39. Martin, R.K.: Large Scale Linear and Integer Optimization: A Unified Approach.
Springer, New York (1999)

40. Motzkin, T.S.: Beiträge zur Theorie der linearen Ungleichungen. Ph.D. thesis,
University of Basel (1936), English translation: Contributions to the theory of
linear inequalities, RAND Corporation Translation 22, Santa Monica, CA (1952),

20 Projection, Consistency, and George Boole

reprinted in D. Cantor, B. Gordon and B. Rothschild, eds., Theodore S. Motzkin:
Selected Papers, Birkhäuser, Boston, 1–80 (1983).

41. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)
42. Pesant, G.: A regular language membership constraint for finite sequences of

variables. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming
(CP 2004). Lecture Notes in Computer Science, vol. 3258, pp. 482–495. Springer
(2004)

43. Quine, W.V.: The problem of simplifying truth functions. American Mathematical
Monthly 59, 521–531 (1952)

44. Quine, W.V.: A way to simplify truth functions. American Mathematical Monthly
62, 627–631 (1955)

45. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints. In:
Smolka, G. (ed.) Principles and Practice of Constraint Programming (CP 1997).
Lecture Notes in Computer Science, vol. 3011, pp. 32–46. Springer (1997)

46. Williams, H.P.: Linear and integer programming applied to the propositional
calculus. International Journal of Systems Research and Information Science 2,
81–100 (1987)

47. Williams, H.P., Hooker, J.N.: Integer programming as projection. Working paper
LSEOR 13.143, London School of Economics (2014)

