Projection, Consistency, and George Boole

J. N. Hooker
Carnegie Mellon University, Pittsburgh, USA
jh38@andrew.cmu.edu

Abstract

Although best known for his work in symbolic logic, George Boole made seminal contributions in the logic of probabilities. He solved the probabilistic inference problem with a projection method, leading to the insight that inference (as well as optimization) is essentially a projection problem. This unifying perspective has applications in constraint programming, because consistency maintenance is likewise a form of inference that can be conceived as projection. Viewing consistency in this light suggests a concept of J-consistency, which is achieved by projection onto a subset J of variables. We show how this projection problem can be solved for the satisfiability problem by logic-based Benders decomposition. We also solve it for among, sequence, regular, and all-different constraints. Maintaining J-consistency for global constraints can be more effective than maintaining traditional domain and bounds consistency when propagating through a richer structure than a domain store, such as a relaxed decision diagram. This paper is written in recognition of Boole's 200th birthday.

1 Introduction

Although George Boole is best known for his work in symbolic logic, he made a strikingly original contribution to the logic of probabilities [12, 13]. He formulated the probabilistic inference problem as an optimization problem we now call linear programming. He solved the problem with a projection method we now call Fourier-Motzkin elimination. In a single stroke, he linked the concepts of projection, optimization, and logical inference.

Boole's insight extends to constraint programming (CP) as well, because consistency maintenance is a form of projection. Projection is, in fact, the root idea that unites the other three concepts. Optimization is projection of the feasible set onto a variable that represents the objective value. Inference, as we will see, can be understood as projection onto a desired subset of variables. Consistency maintenance is a form of inference that is likewise equivalent to projection.

We suggest that this unifying vision can be exploited in CP by addressing consistency maintenance explicitly as a projection problem. Existing types of consistency are already forms of projection, but viewing them in this light suggests a particularly simple type of consistency that has apparently not seen application. We call it J-consistency, which is achieved by projecting the problem's solution set onto a subset J of variables.

Our goal is not to solve a particular problem, but to show how projection is a unifying concept, and to take initial steps in a research program that applies this insight in inference and CP. We first review how Boole united optimization, inference, and projection in his treatment of probability logic. We then turn to propositional logic and note that the resolution procedure, which is closely related to Fourier-Motzkin elimination, achieves J-consistency. Because resolution is generally impractical, we propose a more efficient projection method based on the fact that logic-based Benders decomposition computes a projection. We illustrate how conflict clauses generated during solution of the satisfiability problem can deliver the desired projection.

We next discuss the relationship between consistency and projection. We observe that domain consistency is a particularly simple form of projection, while k-consistency is a less obvious form. We then indicate how achieving J-consistency, which is quite different from k-consistency, can reduce backtracking when the solver propagates through a richer structure than a domain store. One such structure is a relaxed decision diagram, which recent research suggests can be a more effective propagation medium than variable domains [7-9, 14, 15].

We next investigate the projection problem for a few popular global constraints. We find that projections are easy to compute for among constraints, relatively easy for sequence constraints, and quite straightforward for regular constraints. Projection is complicated in principle for all-different constraints, but it tends to simplify when the domains are small, making it feasible to project out some of the variables. These results suggest that achieving J-consistency could have practical application in a solver.

In a concluding section, we propose that a natural generalization of bounds consistency that parallels J-consistency is projection of the convex hull of the solution set. This might be called continuous J-consistency. Computing this type of consistency is closely related to the the project of identifying valid cutting planes, which has long been pursued in mathematical programming.

2 Probability Logic

Our presentation of Boole's probability logic largely follows the interpretation of Hailperin [19]. We are given a set $S=\left\{C_{i} \mid i \in I\right\}$ of logical clauses, where each clause C_{i} has probability π_{i} of being true. The problem is to deduce the probability of a given clause C_{0}.

Boole formulated this inference problem as what we now call a linear programming (LP) problem. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be the atomic propositions that appear in S, and let p_{v} be the (unknown) probability that $\left(x_{1}, \ldots, x_{n}\right)$ have truth values $v=\left(v_{1}, \ldots, v_{n}\right)$. If V_{i} is the set of truth value assigments v that make C_{i} true, then $\pi_{i}=\sum_{v \in V_{i}} p_{v}$. The possible range of probabilities π_{0} of C_{0} is obtained by minimizing and maximizing π_{0} subject to these equations and the facts that the probabilities p_{v} must be nonnegative and sum to one:

$$
\begin{equation*}
\left\{\min / \max \pi_{0} \mid \pi_{0}=\sum_{v \in V_{0}} p_{v} ; \sum_{v \in V_{i}} p_{v}=\pi_{i}, i \in I ; \sum_{v \in V} p_{v}=1 ; p \geq 0\right\} \tag{1}
\end{equation*}
$$

This is an LP problem in variables π_{0} and p_{v} for $v \in V$, where V is the set of all 2^{n} possible truth value assignments to x.

For example, suppose we are given clause set $S=\left\{x_{1}, \bar{x}_{1} \vee x_{2}, \bar{x}_{2} \vee x_{3}\right\}$ in which the three clauses have probabilities $0.9,0.8$, and 0.4 , respectively. If we wish to determine a range of probabilities for x_{3}, the LP problem (1) becomes

$$
\begin{aligned}
& \min / \max \pi_{0} \\
& {\left[\begin{array}{c}
01010101 \\
00001111 \\
11110011 \\
11011101 \\
11111111
\end{array}\right]\left[\begin{array}{c}
p_{000} \\
p_{001} \\
p_{010} \\
\vdots \\
p_{111}
\end{array}\right]=\left[\begin{array}{c}
\pi_{0} \\
0.9 \\
0.8 \\
0.4 \\
1
\end{array}\right]} \\
& p_{000}, p_{001}, p_{010}, \ldots, p_{111} \geq 0
\end{aligned}
$$

The minimum and maximum values of π_{0} are 0.1 and 0.4 , indicating that the probability of x_{3} must lie in this range.

Interestingly, the model (1) was reinvented in the AI community in the 1980s [41], more than a century after an equivalent formulation appeared in Boole's work. The number of variables in the model grows exponentially with the number of atomic propositions, but column generation methods can often overcome this difficulty in practice by allowing the solver to consider only a tiny fraction of the variables [20, 24, 32-35].

Boole solved (1) by a method we now call Fourier-Motzkin elimination [16, 40]. Given a general LP problem that minimizes or maximizes y_{0} subject to $y_{0}=a y$ and $A y \geq b$, where $y=\left(y_{1}, \ldots, y_{n}\right)$, we can compute the projection onto y_{0}, \ldots, y_{k} by eliminating variables $y_{n}, y_{n-1}, \ldots, y_{k+1}$ one at a time. Let S initially be the set of inequalities $a y \geq y_{0}, a y \leq y_{0}$, and $A y \geq b$. Each variable y_{j} is eliminated as follows. For each pair of inequalities in S that have the form $c \bar{y}+c_{0} y_{j} \geq \gamma$ and $d \bar{y}-d_{0} y_{j} \geq \delta$, where $c_{0}, d_{0}>0$ and $\bar{y}=\left(y_{1}, \ldots, y_{j-1}\right)$, we have

$$
-\frac{c}{c_{0}} \bar{y}+\frac{\gamma}{c_{0}} \leq y_{j} \leq \frac{d}{d_{0}} \bar{y}-\frac{\delta}{d_{0}}
$$

or $L \leq y_{j} \leq U$ for short. We therefore add inequality $L \leq U$ to S for each such pair. This done, we remove from S all inequalities that contain y_{j}. The inequalities in S at the end of the procedure describe the projection. Eliminating y_{n}, \ldots, y_{1} leaves bounds $\ell \leq y_{0} \leq u$, which tell us that ℓ and u are the minimum and maximum values of y_{0}.

The method is generally impractical because S tends to explode unless special structure prevents it. However, by proposing a projection algorithm to solve the probabilistic inference problem, Boole revealed the connections among projection, optimization, and inference.

3 Inference

Inference can be understood as the process of extracting information that relates to a particular question or topic. For example, if S is a constraint set that describes the operation of a factory, we may wish to deduce facts about a certain product P. Let's suppose the constraints in S collectively contain variables x_{1}, \ldots, x_{n}, and that x_{1}, \ldots, x_{k} are relevant to product P. For example, x_{1} may be the model pf P produced, x_{2} the output level of P, x_{2} its unit manufacturing cost, and so forth up to x_{k}. Then we wish to deduce from S all constraints containing x_{1}, \ldots, x_{k}. We will see that this is a projection problem.

3.1 Inference as Projection

To make the connection between inference and projection more precise, we standardize terminology as follows. For $J \subseteq\{1, \ldots, n\}$, let x_{J} be the tuple of variables in $\left\{x_{j} \mid j \in J\right\}$ arranged in increasing order of indices, and similarly for v_{J}. Let D_{j} be the domain of x_{j}, with $D=D_{1} \times \cdots \times D_{n}$ and $D_{J}=\prod_{j \in J} D_{j}$. Projection can be defined semantically by saying that a set $V^{\prime} \subseteq D_{J}$ of tuples is the projection onto x_{J} of $V \subseteq D$ when $V^{\prime}=\left\{v_{J} \mid v \in V\right\}$. This can be written $V^{\prime}=\left.V\right|_{J}$. However, we are also interested in a syntactic concept that tells us when a constraint set is a projection onto x_{J} of another constraint set.

To this end, we define a constraint to be an object that contains certain variables and is either satisfied or violated by any given assignment of values to those variables. An assignment can satisfy or violate a contraint only when it fixes all variables in the constraint.

Let $D_{J}(S)$ be the set of all $v \in D_{J}$ for which $x_{J}=v$ satifies S (i.e., satisfies all the constraints in S). We say that S is a constraint set over x when it contains only variables in $x=\left(x_{1}, \ldots, x_{n}\right)$, perhaps not all. If S is a constraint set over x, then S implies constraint C if an assignment to x satisfies C whenever it satisfies S, or $D(S) \subseteq D(\{C\})$.

Let S^{\prime} and S be constraint sets over x_{J} and x, respectively. We define S^{\prime} to be a projection onto x_{J} of S when S^{\prime} describes the projection onto x_{J} of S^{\prime} 's satisfaction set, or more precisely, $D_{J}\left(S^{\prime}\right)=\left.D(S)\right|_{J}$. It is easy to show that projection captures exactly what S implies about about x_{J}, in the following sense:

Lemma 1. Let S and S^{\prime} be constraint sets over x and x_{J}, respectively. Then set S^{\prime} is a projection of S onto x_{J} if and only if S^{\prime} implies all and only constraints over x_{J} that are implied by S.

As an example, consider a constraint set S consisting of the logical clauses in Table 1. The clause set $S^{\prime}=\left\{x_{1} \vee x_{2}, x_{1} \vee x_{3}\right\}$ is a projection of S onto $\left(x_{1}, x_{2}, x_{3}\right)$. This means that any clause over $\left(x_{1}, x_{2}, x_{3}\right)$ implied by S is implied by S^{\prime}. The two clauses in S^{\prime} capture all that can be inferred in terms of atoms x_{1}, x_{2}, x_{3}.

Table 1. A set of logical clauses.

x_{1}	$\vee x_{4} \vee x_{5}$
x_{1}	$\vee x_{4} \vee \bar{x}_{5}$
x_{1}	$\vee x_{5} \vee x_{6}$
x_{1}	$\vee x_{5} \vee \bar{x}_{6}$
x_{2}	$\vee \bar{x}_{5} \vee x_{6}$
x_{2}	$\vee \bar{x}_{5} \vee \bar{x}_{6}$
$x_{3} \vee \bar{x}_{4} \vee x_{5}$	
$x_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}$	

3.2 Inference in Propositional Logic

An elimination procedure based on resolution solves the projection problem for logical clauses. The procedure is the same as Fourier-Motzkin elimination, except that when eliminating variable x_{j}, it considers pairs of clauses of the form $C \vee x_{j}$ and $D \vee \bar{x}_{j}$, where no one variable occurs negated in C and posited in D (or vice-versa). Each pair generates a resolvent on x_{j}, namely $C \vee D$. For example, resolving $x_{1} \vee x_{2} \vee x_{4}$ and $x_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}$ on x_{4} yields $x_{1} \vee x_{2} \vee \bar{x}_{3}$. Resolution can in fact be seen as a form of Fourier-Motzkin elimination plus rounding [46].

The following can be shown $[26,28]$ by modifying the classical completeness proof for resolution in [43, 44]:

Theorem 1. Given a clause set S over $x=\left(x_{1}, \ldots, x_{n}\right)$, eliminating variables x_{j} for $j \notin J$ by resolution (in any order) yields a projection of S onto x_{J}.

A projection obtained in this manner will contain all prime implications of S whose variables are the variables in x_{J}.

Like Fourier-Motzkin elimination, resolution tends to be impractical unless there is special structure, particularly when J is small (so that a large number of variables must be eliminated). However, an alternative procedure can be much more efficient, especially when J is small. It is based on the fact that Benders decomposition [6] can generate a projection of the constraint set onto the variables in the master problem. The classical Benders method applies only to problems with an LP subproblem, but we use logic-based Benders decomposiiton, which is suitable for general constraint solving and optimization [27-30].

We apply Benders decomposition to a clause set S as follows. The master problem (initially empty) consists of Benders cuts in the form of clauses over x_{J}. Each iteration of the Benders method begins by checking if the master problem is infeasible, in which case the procedure terminates. Otherwise a solution \bar{x}_{J} of the master problem is obtained. This defines a subproblem $S\left(\bar{x}_{J}\right)$ that is the result of fixing x_{J} to \bar{x}_{J} in S. If $S\left(\bar{x}_{J}\right)$ is infeasible, a nogood clause (Benders cut) is generated that excludes \bar{x}_{J}, as well as perhaps other values of x_{J} for which $S\left(x_{J}\right)$ is infeasible for similar reasons. If $S\left(\bar{x}_{J}\right)$ is feasible, a clause (enumerative Benders cut) is generated that excludes only \bar{x}_{J}. (The cut is "enumerative" in the sense that it allows the Benders algorithm to eumerate distinct feasible solutions.) In either case, the Benders cut is added to the master problem, and
the process repeats. At termination, the nogood clauses in the master problem define the projection of S onto x_{J} [28].

This procedure can be implemented by a single depth-first branching algorithm that generates conflict clauses. Let the variables in x_{J} be first in the branching order. When unit propagation detects unsatisfiability at a node of the tree, generate conflict clauses and backtrack (see [4] for a survey of these concepts). Subsequent branches must be consistent with the conflict clauses so far generated. When a feasible node is reached, backtrack to the last variable in x_{J}. When enumeration is complete, the conflict clauses over x_{J} define the projection of S onto x_{J}. Because the search backtracks to level $|J|$ when a satisfying solution is found, the algorithm can be practical when J is not too large.

Suppose, for example, that we wish to project the clause set in Table 1 onto x_{J} for $J=\{1,2,3\}$. A branching tree appears in Fig. 1. Each branch first attempts to set $x_{j}=\mathrm{F}$ and then $x_{j}=\mathrm{T}$. Conflict clause $x_{1} \vee x_{5}$ is generated at the leftmost leaf node, which means that setting $x_{1}=x_{5}=\mathrm{F}$ results in failure, and similarly at the other infeasible leaf nodes. When all clauses in Table 1 are satisfied at a node, the search backtracks to level $|J|=3$. Upon completion of the search, the set of conflict clauses over $\left(x_{1}, x_{2}, x_{3}\right)$ is a projection onto x_{J}, in this case $\left\{x_{1} \vee x_{2}, x_{1} \vee x_{3}\right\}$.

We assume that conflict clauses are resolved on the last variable x_{j} in the clauses when this is possible. In the example, $x_{1} \vee x_{5}$ and $x_{2} \vee \bar{x}_{5}$ are resolved to create conflict clause $x_{1} \vee x_{2}$, and $x_{1} \vee x_{4}$ and $x_{3} \vee \bar{x}_{4}$ are resolved to yield $x_{1} \vee x_{3}$.

Fig. 1. Branching tree for a SAT instance. Dashed arcs indicate $x_{j}=\mathrm{F}$ and solid arcs $x_{j}=\mathrm{T}$. Conflict clauses are shown at failure nodes. Solutions are found at remaining leaf nodes, from which the search backtracks to x_{3}.

Theorem 2. The set of conflict clauses over x_{J} generated as above defines a projection of S onto x_{J}.

Proof. We will show that the tree search implements a Benders algorithm in which the nogood Benders cuts are conflict clauses over x_{J}. The conflict clauses therefore define the projection of S into x_{J}.

For any node N of the search tree, let $x_{J}(N)$ be the assignment to variables in x_{J} along the path from the root node to N. Whenever an infeasible node N generates a conflict clause $C(N)$ over x_{J}, we add $C(N)$ to the master problem as a nogood clause. Whenever a feasible solution is found at a node N, we may suppose that a clause $C(N)$ excluding precisely $x_{J}(N)$ is added to the master problem, because the backtracking mechanism ensures that this value of x_{J} will not be encountered again.

If a node N that generates $C(N)$ is at level $|J|$ or lower, then $x_{J}(N)$ is a solution of the current master problem, and $C(N)$ a nogood that excludes it. If N is above level $|J|$, then some completion down to level $|J|$ of the assignment $x_{J}(N)$ is a solution of the master problem, because otherwise resolution of conflict clauses would have produced a conflict clause that excludes N. In either case, N can be regarded as generating a nogood $C(N)$ that excludes a solution of the master problem. A feasible node N gives rise to a feasible solution \bar{x} of S, in which case \bar{x}_{J} is a solution of the master problem that is excluded by $C(N)$.

Because conflict clauses are resolved, all values of x_{J} that have no feasible extension are excluded by some conflict clause. This means that the tree search terminates precisely when the master problem no longer has a solution. The search therefore implements a Benders algorithm, and the projection of S onto x_{j} is defined by the conflict clauses $C(N)$.

Other adaptations of resolution and Fourier-Motzkin elimination can be used to compute projections for cardinality clauses [23], 0-1 linear inequalities [25], and general integer linear inequalities [47]. Polyhedral projection methods have been studied in the AI community as well [31].

4 Consistency

Popular forms of consistency maintenance already compute projections, but viewing them from this perspective can suggest new and possibly useful forms of consistency.

4.1 Consistency Maintenance as Projection

Domain consistency is achieved by projecting the solution set onto each individual variable. A constraint set S over x is domain consistent when for each variable x_{j} and each value $v \in D_{j}$, the assignment $x_{j}=v$ is part of some assignment $x=v$ that satisfies S. This is equivalent to saying that $\left\{x_{j} \in D_{j}\right\}$ is a projection of S onto x_{j}, or $D_{j}=\left.D(S)\right|_{\{j\}}$, for $j=1, \ldots, n$.

Achieving domain consistency for S at each node of the search tree avoids backtracking, because it allows us to assign any value in D_{j} to x_{j} when branching on x_{j} (if S is satisfiable) without creating an infeasible subtree. Since it is generally impractical to achieve domain consistency for S as a whole, solvers typically maintain domain consistency (or an approximation of it) for some individual constraints in S and propagate the reduced domains through a domain store. This tends to reduce the search tree due to smaller domains.

Another type of consistency related to backtracking is k-consistency. It is again achieved by projection, but not by projecting the entire constraint set. It projects only subsets of constraints over k variables onto subsets of $k-1$ variables.

A constraint set S over x is k-consistent when for every $J \subseteq\{1, \ldots, n\}$ with $|J|=k-1$, every assignment $x_{J}=v_{J} \in D_{J}$ that does not violate S, and every variable x_{j} not in x_{J}, there is an assignment $x_{j}=v_{j} \in D_{j}$ for which $\left(x_{J}, x_{j}\right)=\left(v_{J}, v_{j}\right)$ does not violate S. A constraint set S is strongly k-consistent when it is ℓ-consistent for $\ell=1, \ldots, k$.

To relate k-consistency to projection, we define S_{J} to be the set of constraints in S that are over x_{J}. Then x_{J} satisfies S_{J} if and only if x_{J} violates no constraints in S. This implies the following:

Lemma 2. A constraint set S over x is k-consistent if and only if $D_{J}\left(S_{J}\right)=$ $\left.D_{J \cup\{j\}}\left(S_{J \cup\{j\}}\right)\right|_{J}$ for all $J \subseteq\{1, \ldots, n\}$ with $|J|=k-1$ and all $j \notin J$.
k-consistency is not an obvious generalization of domain consistency, because 1-consistency is not achieved by projecting the constraint set onto individual variables.

Strong k-consistency avoids backtracking when one branches on x_{1}, \ldots, x_{n} if the primal graph of S has width less than k with respect to this ordering [17]. However, it is impractical to maintain strong k-consistency $(k>1)$ for S as a whole. Furthermore, when propagation is through a domain store as in standard solvers, there is no point in maintaining k-consistency rather than domain consistency for individual constraints.

4.2 J-Consistency

We propose a type of consistency that is more directly related to projection and naturally generalizes domain consistency. Let S be J-consistent when some $S^{\prime} \subseteq S$ is a projection of S onto x_{J}. That is, S contains constraints that describe its projection onto x_{J}, or $D_{J}\left(S_{J}\right)=\left.D(S)\right|_{J}$. If we view S as containing the in-domain constraints $x_{j} \in D_{j}, S$ is domain consistent if and only if it is $\{j\}$-consistent for $j=1, \ldots, n$.

Due to Theorem 1, resolution on variables x_{j} for $j \notin J$ achieves J-consistency for SAT. The Benders procedure described in the previous section also achieves J-consistency, due to Theorem 2.

As in the case of domain consistency, we focus on maintaining J-consistency for individual constraints. If we branch on variables in the order x_{1}, \ldots, x_{n}, a
natural strategy is to project out variables in reverse order x_{n}, x_{n-1}, \ldots until the computational burden becomes excessive. We will see below that for some important global constraints, it is relatively easy to project out some or all of the variables.

As in the case of k-consistency, there is no point in maintaining J-consistency for individual constraints when propagation is through a domain store. However, recent research shows that propagation through relaxed decision diagrams can be substantially more effective than domain propagation [7-9, 14, 15]. Maintaining J-consistency could have a significant effect on propagation in this context.

For a simple example of this phenomenon, suppose S consists of the constraints

$$
\begin{align*}
& \operatorname{among}\left(\left(x_{1}, x_{2}\right),\{c, d\}, 1,2\right) \tag{2}\\
& \left(x_{1}=c\right) \Rightarrow\left(x_{2}=d\right) \tag{3}\\
& \operatorname{alldiff}\left(x_{1}, \ldots, x_{4}\right) \tag{4}
\end{align*}
$$

where (2) requires that at least 1 and at most 2 of the variables x_{1}, x_{2} take a value in $\{c, d\}$, and (4) is an all-different constraint. The variable domains are $D_{1}=D_{2}=\{a, b, c, d\}, D_{3}=\{a, b\}$, and $D_{4}=\{c, d\}$. No domain reduction is possible for the individual constraints, and so we must branch on all 4 values of x_{1} at the top of the search tree.

However, suppose we propagate through a relaxed decision diagram of width 2 rather than a domain store (which is a decision diagram of width 1). Let's suppose we have already constructed a relaxed decision diagram for constraints (2) and (3), shown in Fig. 2(a). The 52 paths from r to t in the diagram represent assignments to $\left(x_{1}, \ldots, x_{4}\right)$. Thirty-six of these paths represent all of the solutions of (2)-(3), indicating that the diagram in fact represents a relaxation of these constraints.

When branching on x_{1}, we need only consider values that label outgoing arcs from the root node r of the diagram. Unfortunately, all 4 values appear on these arcs. However, we can reduce branching if we project out x_{3}, x_{4} for the alldiff constraint (4). We will see later that the resulting projection is a constraint set consisting of

$$
\operatorname{alldiff}\left(x_{1}, x_{2}\right), \operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{a, b\}, 1\right), \operatorname{atmost}\left(\left(x_{1}, x_{2}\right),\{c, d\}, 1\right)
$$

where the constraint $\operatorname{atmost}(x, V, u)$ is equivalent to $\operatorname{among}(x, V, 0, u)$. We can propagate the second atmost constraint in a downward pass through the first 2 variables of the relaxed decision diagram of Fig. 2(a). To do so, we let the length of a path be the number of arcs on the path with labels in $\{c, d\}$. Then we indicate, on each arc, the length of the shortest path from r ending with that arc. This allows us to delete any arc assigned a number greater than 1, and any other arcs that lie on no $r-t$ path as a result. We eliminate two arcs, resulting in the smaller decision diagram of Fig. 2(b). We therefore need only branch on values a, b, and d. A fuller discussion of propagation through relaxed decision diagrams can be found in $[1,9,21]$.

Fig. 2. (a) Relaxed decision diagram for an among constraint. Arcs with multiple labels represent multiple arcs connecting the same endpoints, each arc with one of the labels. The numbers are part of a mechanism for propagating a projected alldiff constraint. (b) Decision diagram after propagating the projected alldiff constraint.

Aside from any advantages in accelerating search, computing projections can infer valuable information from a constraint set. To return to the earlier example of a factory, it may be useful to know what characteritics of a particular product are consistent with the constraint set describing the factory. A projection yields constraints that the product must satisfy. Or if certain variables represent key decisions that are made in the early stages of a project, it may be important to know what options are available for these decisions. Again, projection can answer this question.

4.3 Projection of Among Constraint

Projecting out variables in an among constraint [5] is quite simple because each variable elimination yields another among constraint. If $x=\left(x_{1}, \ldots, x_{n}\right)$, the constraint $\operatorname{among}(x, V, \ell, u)$ requires that at least ℓ and at most u of the variables in x take a value in V. Variable x_{n} is projected out as follows. Let $\alpha^{+}=\max \{\alpha, 0\}$.

Theorem 3. If $0 \leq \ell \leq u \leq n$, the projection of $\operatorname{among}(x, V, \ell, u)$ onto $\bar{x}=$ $\left(x_{1}, \ldots, x_{n-1}\right)$ is $\operatorname{among}\left(\bar{x}, V, \ell^{\prime}, u^{\prime}\right)$, where

$$
\left(\ell^{\prime}, u^{\prime}\right)= \begin{cases}\left((\ell-1)^{+}, u-1\right), & \text { if } D_{n} \subseteq V \\ (\ell, \min \{u, n-1\}), & \text { if } D_{n} \cap V=\emptyset \\ \left((\ell-1)^{+}, \min \{u, n-1\}\right), & \text { otherwise }\end{cases}
$$

Proof. In case (a), x_{n} must take a value in V, which means that the upper bound u is reduced by 1 and the lower bound ℓ by 1 (unless it is already 0). In
case (b), x_{n} cannot take a value in V, which means that the lower bound ℓ is unchanged. The upper bound u is also unchanged, but if $u=n$ it can be reduced by 1 since there are now only $n-1$ variables. In case (c), x_{n} can take a value in V, which means that ℓ is modified as in case (a). However, x_{n} can fail to take a value in V, which means that u is treated as in case (b).

Variables $x_{n}, x_{n-1}, \ldots, x_{1}$ are projected out sequentially by applying the theorem recursively. The original constraint is feasible if and only if $\ell^{\prime} \leq u^{\prime}$ after projecting out all variables.

As an example, let $x=\left(x_{1}, \ldots, x_{5}\right)$, let $V=\{c, d\}$, and let the domains D_{1}, \ldots, D_{5} be $\{a, b\},\{a, b, c\},\{a, d\},\{c, d\}$, and $\{d\}$. Then while sequentially projecting out x_{5}, \ldots, x_{1}, the original lower bound ℓ becomes $\ell^{\prime}=(\ell-1)^{+}$, $(\ell-2)^{+},(\ell-3)^{+},(\ell-4)^{+}$, and $(\ell-4)^{+}$, while the upper bound u becomes $u^{\prime}=u-1, u-2, \min \{u-2,2\}, \min \{u-2,1\}$, and $\min \{u-2,0\}$. The constraint is feasible if and only if $(\ell-4)^{+} \leq \min \{u-2,0\}$.

4.4 Projection of Sequence Constraint

Fourier-Motzkin elimination provides a fast and convenient method for projecting a sequence constraint. The constraint has an integrality property that makes a polyhedral projection technique adequate, and Fourier-Motzkin simplifies to the point that a single generalized sequence constraint describes the projection after each variable elimination.

Following standard convention, we assume without loss of generality that the sequence constraint applies to $0-1$ variables $x_{1}, \ldots, x_{n}[22,45]$. It enforces overlapping constraints of the form

$$
\begin{equation*}
\operatorname{among}\left(\left(x_{\ell-q+1}, \ldots, x_{\ell}\right),\{1\}, L_{\ell}, U_{\ell}\right) \tag{5}
\end{equation*}
$$

for $\ell=q, \ldots, n$, where L_{ℓ}, U_{ℓ} are nonnegative integers, and where domain D_{j} is defined by $\alpha_{j} \leq x_{j} \leq \beta_{j}$ for $\alpha_{j}, \beta_{j} \in\{0,1\}$. Note that we allow different bounds for different positions ℓ in the sequence. The following theorem provides a recursion for eliminating x_{n}, \ldots, x_{1} :
Theorem 4. Given any $k \in\{0, \ldots, n\}$, the projection of the sequence constraint defined by (5) onto $\left(x_{1}, \ldots, x_{k}\right)$ is described by a generalized sequence constraint that enforces constraints of the form

$$
\begin{equation*}
\operatorname{among}\left(\left(x_{i}, \ldots, x_{\ell}\right),\{1\}, L_{\ell-i+1}^{\ell}, U_{\ell-i+1}^{\ell}\right) \tag{6}
\end{equation*}
$$

where $i=\ell-q+1, \ldots, \ell$ for $\ell=q, \ldots, k$ and $i=1, \ldots, \ell$ for $\ell=1, \ldots, q-1$. The projection of the sequence constraint onto $\left(x_{1}, \ldots, x_{k-1}\right)$ is given by (6) with $L_{\ell-i+1}^{\ell}$ replaced by $\hat{L}_{\ell-i+1}^{\ell}$ and $U_{\ell-i+1}^{\ell}$ by $\hat{U}_{\ell-i+1}^{\ell}$, where

$$
\begin{align*}
& \hat{L}_{i}^{\ell}=\left\{\begin{array}{l}
\max \left\{L_{i}^{\ell}, L_{i+k-\ell}^{k}-U_{k-\ell}^{k}\right\}, \text { for } i=1, \ldots, q-k+\ell, \\
L_{i}^{\ell}, \text { for } i=q-k+\ell+1, \ldots, q
\end{array}\right. \tag{7}\\
& \hat{U}_{i}^{\ell}=\left\{\begin{array}{l}
\min \left\{U_{i}^{\ell}, U_{i+k-\ell}^{k}-L_{k-\ell}^{k}\right\}, \text { for } i=1, \ldots, q-k+\ell, \\
U_{i}^{\ell}, \text { for } i=q-k+\ell+1, \ldots, q
\end{array}\right.
\end{align*}
$$

Proof. Constraint (5) is equivalent to

$$
\begin{equation*}
L \leq \sum_{j=\ell-q+1}^{\ell} x_{j} \leq U \tag{8}
\end{equation*}
$$

and $x_{j} \in\{0,1\}$ for $j=\ell-q+1, \ldots, \ell$, while (6) is equivalent to

$$
\begin{equation*}
L_{\ell-i+1}^{\ell} \leq \sum_{j=i}^{\ell} x_{j} \leq U_{\ell-j+1}^{\ell} \tag{9}
\end{equation*}
$$

and $x_{j} \in\{0,1\}$ for $j=i, \ldots, \ell$. As pointed out in [38], the constraint matrix for inequalities (8) has the consecutive ones property. The inequalities therefore describe an integral polyhedron. Imposing 0-1 bounds $L_{j} \leq x_{j} \leq U_{j}$ has no effect on integrality, so that inequalities (8) and domain bounds describe an integral polyhedron P_{n}. Because the projection of an integral polyhedron onto any subspace is integral, the projection P_{k} of P_{n} onto $\left(x_{1}, \ldots, x_{k}\right)$ is integral for $k=1, \ldots, n-1$. The projection of the feasible set of the sequence constraint is therefore described by P_{k} and $x_{j} \in\{0,1\}$ for $j=1, \ldots, k$.
P_{k-1} can be derived by applying Fourier-Motzkin elimination to P_{k}. To show that each P_{k} is described by inequalities of the form (9), note first that P_{n} is described by inequalities (8) and domain bounds, which correspond to a subset of inequalities (9). Specifically, $\left(L_{q}^{\ell}, U_{q}^{\ell}\right)=\left(L_{\ell}, U_{\ell}\right)$ for $\ell=q, \ldots, n$ and $\left(L_{1}^{\ell}, U_{1}^{\ell}\right)=$ $\left(\alpha_{\ell}, \beta_{\ell}\right)$ for $\ell=1, \ldots, n$. The remaining inequalities (9) can be assumed to be present with nonbinding upper and lower bounds. Now assuming that P_{k} is described by inequalities of form (9), a tedious but straightforward application of Fourier-Motzkin elimination to (9) shows that inequalities of precisely the same form describe P_{k-1}. It follows by induction that inequalities of form (9) describe P_{k} for all k. Furthermore, the resulting bounds in the inequalities describing P_{k-1} are given by (7). This proves the theorem.

The worst-case complexity of projecting out each variable x_{k} is $\mathcal{O}(k q)$. We can illustrate the theorem with an example from [28]. Suppose we have a sequence constraint that imposes (5) with $n=6, q=4$, and $L_{\ell}=U_{\ell}=2$ for each ℓ. Variables x_{1}, x_{3}, x_{4}, and x_{6} have domain $\{0,1\}$, while x_{2} and x_{5} have domain $\{1\}$. There is one feasible solution, namely $x=(1,1,0,0,1,1)$. Initially the bounds in (6) are $L_{4}^{\ell}=U_{4}^{\ell}=2$ for $\ell=4,5,6,\left(L_{1}^{\ell}, U_{1}^{\ell}\right)=(0,1)$ for $\ell=1,3,4,6$, and $\left(L_{1}^{\ell}, U_{1}^{\ell}\right)=(1,1)$ for $\ell=2,5$, with all other $L_{i}^{\ell}=-\infty$ and all other $U_{i}^{\ell}=\infty$. Projecting out x_{6} yields

$$
\operatorname{among}\left(\left(x_{3}, x_{4}, x_{5}\right),\{1\}, 1,1\right)
$$

in addition to the original among constraints and domains for variables x_{1}, \ldots, x_{5}. Projecting out x_{5} yields

$$
\operatorname{among}\left(\left(x_{2}, x_{3}, x_{4}\right),\{1\}, 1,1\right), \quad \operatorname{among}\left(\left(x_{3}, x_{4}\right),\{1\}, 0,0\right)
$$

in addition to the original constraints on $x_{1}, \ldots x_{4}$. The second constraint fixes $x_{3}=x_{4}=0$, which makes the first constraint redundant because x_{2} has the

Fig. 3. Finite deterministic automaton for a shift scheduling problem instance. State 0 is the initial state, and accepting states are circled.
singleton domain $\{1\}$. Projecting out x_{4} yields

$$
\begin{aligned}
& \operatorname{among}\left(\left(x_{1}\right),\{1\}, 1,1\right), \quad \operatorname{among}\left(\left(x_{1}, x_{2}, x_{3}\right),\{1\}, 1,2\right), \\
& \operatorname{among}\left(\left(x_{2}, x_{3}\right),\{1\}, 0,1\right), \quad \operatorname{among}\left(\left(x_{3}\right),\{1\}, 0,0\right)
\end{aligned}
$$

in addition to the original constraints on x_{1}, x_{2}, x_{3}, where the second and third constraints are redundant. This and the domain of x_{2} fix $\left(x_{1}, x_{2}, x_{3}\right)=(1,1,0)$. Projecting out x_{3} similarly fixes $\left(x_{1}, x_{2}\right)=(1,1)$, and projecting out x_{2} fixes $x_{1}=1$.

4.5 Projection of Regular Constraint

The regular constraint [42] can be projected onto $x^{k}=\left(x_{1}, \ldots, x_{k}\right)$ in a straightforward manner by constructing and truncating the associated state transition graph. The idea is best conveyed by illustration, such as a shift scheduling example from [28]. Suppose we wish to assign a worker to shift a, b, or c on each of 7 days. The worker must work any given shift at least 2 and at most 3 days in a row, and the worker may not transition directly between shifts a and c. The relevant constraint is regular $\left(x^{7}, A\right), A$ is the deterministic finite automaton in Fig. 3. A regular expression that encodes the automaton is

$$
\left(((a a \mid a a a)(b b \mid b b b))^{*} \mid((c c \mid c c c)(b b \mid b b b))^{*}\right)^{*}(\epsilon|(a a \mid a a a)|(c c \mid c c c))
$$

The domains may be filtered by constructing the state transition graph of Fig. 4, where the original domain D_{j} and the filtered domains D_{j}^{\prime} are as shown in the figure. Dashed arcs lead to states that are not backward reachable from accepting states in stage 7 and therefore can be deleted. Each D_{j}^{\prime} consists of shifts on solid arcs leading states in stage j of the graph.

A projection onto x^{k} can be obtained simply by truncating the state transition graph at stage $k+1$ and imposing the resulting graph as a constraint. Such
a constraint is easily propagated in a relaxed decision diagram. For example, the projection onto x^{3} has 2 solutions, $x^{3}=a a b$ and $c c b$, corresponding to the two feasible paths to state 7 . If we rely solely on domain filtering, x^{3} can take any of 4 values. The worst-case complexity of projecting onto any x^{k} is the same as for projecting onto all x^{k}, namely $\mathcal{O}\left(n m^{2}\right)$, where m is the number of states in the automaton.

If desired, one can convert the truncated transition graph to an automaton A^{\prime} that correctly describes the projection onto x^{k}. This expression can then be imposed through a constraint regular $\left(x^{k}, A^{\prime}\right)$. For example, the projection onto x^{3} is described by the regular expression $(a a b) \mid(c c b)$.

4.6 Projection of Alldiff Constraint

Projection of an all-different constraint is inherently complicated but tends to simplify when the domains are small. The projection onto $x^{k}=\left(x_{1}, \ldots, x_{k}\right)$ takes the form of a disjunction of constraint sets, each of which consists of an alldiff constraint and a family of atmost constraints. Such a disjunction can be straightforwardly propagated through a relaxed decision diagram. The number of disjuncts can grow quite large in principle, but the disjuncts tend to simplify and/or disappear as variable elimination proceeds, particularly if the domains are small. In practice, one can eliminate variables until the disjunction grows too large, at which point propagating the projection is likely to have little effect in any case.

The projection onto x^{k} is a disjunction of constraint sets, each of which has the form

$$
\begin{equation*}
\operatorname{alldiff}\left(x^{k}\right) ; \operatorname{atmost}\left(x^{k}, V_{i}, b_{i}\right) \text { for } i \in I ; \quad x_{j} \in D_{j} \text { for } j=1, \ldots, k \tag{10}
\end{equation*}
$$

where $b_{i}<k$ for $i \in I$. When $k=n$ there are no atmost constraints. Since the projection of a disjunction is the disjunction of the projected disjuncts, it suffices to project each constraint set (10) separately and take the disjunction of the projections.

j	$=1$	2	3	4	5	6	7	8
D_{j}	$=\{a, c\}$	$\{a, b, c\}$	$\{a, b\}$	$\{b, c\}$	$\{a, c\}$	$\{a, b\}$	$\{a, b\}$	
D_{j}^{\prime}	$=\{a, c\}$	$\{a, c\}$	$\{b\}$	$\{b\}$	$\{a\}$	$\{a\}$	$\{a\}$	

Fig. 4. State transition graph for the shift scheduling problem instance.

To simplify matters, we note that $\operatorname{atmost}\left(x^{k}, V_{i}, b_{i}\right)$ is redundant if the number of variables in x^{k} whose domains intersect V_{i} is at most b_{i}, or in particular if $k \leq b_{i}$.

The projection of (10) onto x^{k-1} consists of a disjunction of one or more constraint sets having a form similar to (10). We first remove redundant atmost constraints from (10). We then consider several cases, corresponding to possible values of x_{k}, where each case can give rise to a constraint set.

First we consider cases in which x_{k} takes a value in V_{i} for some $i \in I$. In each such case, only $b_{i}-1$ values in V_{i} are available for variables in x^{k-1} to take. So the constraint $\operatorname{atmost}\left(x^{k}, V_{i}, b_{i}\right)$ becomes atmost $\left(x^{k-1}, V_{i}, b_{i}-1\right)$. If $b_{i}-1=0$, then the values in V_{i} are forbidden, which means we can delete the atmost constraint and remove the values in V_{i} from all domains and all sets $V_{i^{\prime}}$ for $i^{\prime} \neq i$. The constraints atmost $\left(x^{k}, V_{i^{\prime}}, b_{i^{\prime}}\right)$ for $i^{\prime} \neq i$ become $\operatorname{atmost}\left(x^{k-1}, V_{i^{\prime}}, b_{i^{\prime}}\right)$, except that we omit redundant constraints.

Now we consider the case in which x_{k} takes a value that is in none of the sets V_{i}. Let $R=D_{k} \backslash \bigcup_{i \in I} V_{i}$ be the set of x_{k} 's domain values that lie outside these sets. If R is empty, there is no need to consider this case. If R contains at least 2 values, then since x^{k} is taking a value in R, the variables in x^{k-1} can take at most $|R|-1$ values in R, and so we impose an additional constraint $\operatorname{atmost}\left(x^{k-1}, R,|R|-1\right)$. The atmost constraints in (10) carry over without a change in bounds. If R is a singleton $\{v\}$, then we know x_{k} takes the value v. This means that v is unavailable in the projection and can be removed from domains D_{1}, \ldots, D_{k-1} as well as from V_{i} for all $i \in I$. If a domain becomes empty, then we create no constraint set. Otherwise we carry over the nonredundant atmost constraints in (10). A precise statement of the algorithm appears in Fig. 1. Due to the above argument, we have

Theorem 5. The algorithm for Fig. 1 correctly computes the projection of (10) onto x^{k-1}. Furthermore, the projection of alldiff (x) onto x^{k} is a disjunction \mathcal{P} of constraint sets of the form (10). Thus the projection of alldiff(x) onto x^{k-1} is the disjunction of all constraint sets generated by applying the algorithm to the disjuncts of \mathcal{P}.

As an example, suppose we wish to project alldiff $\left(x^{5}\right)$, where the domains D_{1}, \ldots, D_{5} are $\{a, b, c\},\{c, d, e\},\{d, e, f\},\{e, f, g\}$, and $\{a, f, g\}$, respectively. To project onto x^{4}, we note that $R=\{a, f, g\}$, which yields the constraint set

$$
\begin{equation*}
\operatorname{alldiff}\left(x^{4}\right), \quad \operatorname{atmost}\left(x^{4},\{a, f, g\}, 2\right) \tag{11}
\end{equation*}
$$

When projecting (11) onto x^{3}, we first consider the case $x_{4} \in V_{1}=\{a, f, g\}$, which yields the constraint set

$$
\begin{equation*}
\operatorname{alldiff}\left(x^{3}\right), \operatorname{atmost}\left(x^{3},\{a, f, g\}, 1\right) \tag{12}
\end{equation*}
$$

There is one other case, in which $R=\{e\}$, which allows us to remove e from the domains. We generate the atmost constraint atmost $\left(x^{3},\{a, f, g\}, 2\right)$, which is redundant, yielding the constraint set

$$
\begin{equation*}
\operatorname{alldiff}\left(x^{3}\right), \quad D_{1}, \ldots, D_{3}=\{a, b, c\},\{c, d\},\{d, f\} \tag{13}
\end{equation*}
$$

```
Algorithm 1 Given a projection of alldiff \(\left(x^{n}\right)\) onto \(x^{k}\), this algorithm computes
a projection onto \(x^{k-1}\). The projection onto \(x^{k}\) is assumed to be a disjunction of
constraint sets, each of which has the form (10). The above algorithm is applied
to each disjunct, after which the disjunction of all created constraint sets forms
the projection onto \(x^{k-1}\).
For all \(i \in I\) : if \(\operatorname{atmost}\left(x^{k}, V_{i}, b_{i}\right)\) is redundant then remove \(i\) from \(I\).
For all \(i \in I\) :
    If \(D_{k} \cap V_{i} \neq \emptyset\) then
        If \(b_{i}>1\) then
            Create a constraint set consisting of alldiff \(\left(x^{k-1}\right)\),
            \(\operatorname{atmost}\left(x^{k-1}, V_{i^{\prime}}, b_{i^{\prime}}\right)\) for \(i^{\prime} \in I \backslash\{i\}\), and atmost \(\left(x^{k-1}, V_{i}, b_{i}-1\right)\).
Let \(R=D_{k} \backslash \bigcup_{i \in I} V_{i}\).
If \(|R|>1\) then
    Create a constraint set consisting of alldiff \(\left(x^{k-1}\right)\),
    \(\operatorname{atmost}\left(x^{k-1}, V_{i^{\prime}}, b_{i^{\prime}}\right)\) for \(i^{\prime} \in I\), and atmost \(\left(x^{k-1}, R,|R|-1\right)\).
Else if \(|R|=1\) then
    Let \(R=\{v\}\) and remove \(v\) from \(D_{j}\) for \(j=1, \ldots, k-1\) and from \(V_{i}\) for \(i \in I\).
    If \(D_{j}\) is nonempty for \(j=1, \ldots, k-1\) then
        For all \(i^{\prime} \in I\) : if \(\operatorname{atmost}\left(x^{k-1}, V_{i^{\prime}}, b_{i^{\prime}}\right)\) is redundant then remove \(i^{\prime}\) from \(i\).
        Create a constraint set consisting of \(\operatorname{alldiff}\left(x^{k-1}\right)\) and
        \(\operatorname{atmost}\left(x^{k-1}, V_{i^{\prime}}, b_{i^{\prime}}\right)\) for \(i^{\prime} \in I\).
```

The projection onto x^{3} is the disjunction of (12) and (13).
To project (12) onto x^{2}, we first consider the case $x_{3} \in V_{1}=\{a, f, g\}$, which reduces $b_{1}=1$ to zero. This allows us to drop the atmost constraint and remove values a, f, g from all domains, leaving the constraint

$$
\begin{equation*}
\text { alldiff }\left(x^{2}\right), \quad D_{1}, D_{2}=\{b, c\},\{c, d, e\} \tag{14}
\end{equation*}
$$

In the other case, we have $R=\{d, e\}$, which yields the redundant constraint $\operatorname{atmost}\left(x^{2},\{d, e\}, 1\right)$. The projection onto x^{2} is therefore simply alldiff $\left(x^{2}\right)$, and there is no need to compute the projection of (13). Further projection onto x_{1} has no effect on the domain of x_{1}.

5 Concluding Remarks

Following George Boole's lead, we have identified projection as a unifying element of optimization, logical inference, and consistency maintenance. We have also begun to explore a research program that addresses inference and constraint satisfaction problems from the perspective of projection, particularly by achieving J-consistency. We showed how to achieve J-consistency for propositional satisfiability, as well as for satisfiability among, sequence, regular, and alldiff constraints.

An obvious next step is to investigate the projection problem for additional global constraints. Even if computing the exact projection is laborious, it may be practical to derive a partial description of the projection, much as solvers often only approximate domain consistency. It is also important to find efficient procedures for propagating projections through a relaxed decision diagram or other structure.

We have not discussed bounds consistency from the perspective of projection, but projection is clearly the essence of the matter. Bounds consistency is most naturally defined when variable domains can be embedded in the real numbers. Then a constraint set S is bounds consistent when the real interval spanned by the domain of each variable x_{j} is the projection onto x_{j} of the convex hull of S 's satisfaction set. This suggests a natural extension of bounds consistency to an analogue of J-consistency that might be called continuous J-consistency. It is achieved by projecting the convex hull of S 's satisfaction set onto x_{J}.

Projecting a convex hull is closely related to optimization in integer and linear programming [39]. In particular, it is equivalent to finding all valid linear inequalities or cutting planes over a subset of variables. The identification of cutting planes is a project that has occupied the mathematical programming community for decades. Cutting planes normally serve a different purpose, namely to tighten the continuous relaxation of a set of integer linear inequalities, and the community is generally satisfied to find a few effective cuts, since deriving all valid cuts is generally impractical. Yet a few cuts can partially describe the projection as well as tighten the continuous relaxation.

In fact, cutting planes can serve both purposes in both fields. In CP, they can be propagated through a linear programming relaxation of the problem, which can be effective for bounding the objective function, as well as achieving consistency. In integer programming, they can reduce backtracking even if a continuous relaxation is not used, by improving the degree of consistency of the constraint set, although this phenomenon appeares not to have been investigated.

One difference in the two fields, however, is that cutting plane theory in integer programming focuses on $0-1$ variables, as well as general integer variables that appear in inequality constrants, while CP is primarily interested in finitedomain variables that appear in other kinds of combinatorial constraints. In many cases, it is practical to reformulate a problem with $0-1$ variables for purposes of relaxation, but ideally one would generate cuts in the original finitedomain variables. Finite-domain cuts have been derived for a few constraints, such as alldiff systems (graph coloring) $[2,3,10,11,36,37]$, the circuit constraint (traveling salesman) [18], and disjunctive scheduling [28]. Yet much remains to be done.

References

1. Andersen, H.R., Hadžić, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessiere, C. (ed.) Principles and Practice of Constraint Programming (CP 2007). Lecture Notes in Computer Science, vol. 4741, pp. 118-132. Springer (2007)
2. Appa, G., Magos, D., Mourtos, I.: Linear programming relaxations of multiple alldifferent predicates. In: Régin, J.C., Rueher, M. (eds.) CPAIOR 2004 Proceedings. Lecture Notes in Computer Science, vol. 3011, pp. 364-369. Springer (2004)
3. Appa, G., Magos, D., Mourtos, I.: On the system of two all-different predicates. Information Processing Letters 94, 99-105 (2004)
4. Beame, P., Kautz, H., Sabharwal, A.: Understanding the power of clause learning. In: International Joint Conference on Artificial Intelligence (IJCAI 2003) (2003)
5. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathematical and Computer Modelling 12, 97-123 (1994)
6. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238-252 (1962)
7. Bergman, D., Cire, A., Sabharwal, A., Samulowitz, H., Sarswat, V., van Hoeve, W.J.: Parallel combinatorial optimization with decision diagrams. In: CPAIOR 2012 Proceedings. LNCS, vol. 8451, pp. 351-367. Springer (2014)
8. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with binary decision diagrams. INFORMS Jorunal on Computing (to appear)
9. Bergman, D., van Hoeve, W.J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.S. (eds.) CPAIOR 2011 Proceedings. Lecture Notes in Computer Science, vol. 6697, pp. 20-35. Springer (2011)
10. Bergman, D., Hooker, J.N.: Graph coloring facets from all-different systems,. In: Jussien, N., Petit, T. (eds.) CPAIOR Proceedings. pp. 50-65. Springer (2012)
11. Bergman, D., Hooker, J.: Graph coloring inequalities for all-different systems. Constraints 19, 404-433 (2014)
12. Boole, G.: An Investigation of the Laws of Thought, On Which are Founded the Mathematical Theories of Logic and Probabilities. Walton and Maberly, London (1854)
13. Boole, G.: Studies in Logic and Probability (ed. by R. Rhees). Open Court Publishing Company, La Salle, IL (1952)
14. Ciré, A.A., van Hoeve, W.J.: MDD propagation for disjunctive scheduling. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS). pp. 11-19. AAAI Press (2012)
15. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Operations Research 61, 1411-1428 (2013)
16. Fourier, L.B.J.: Analyse des travaux de l'Académie Royale des Sciences, pendant l'année 1824, partie mathématique (report of 1824 transactions of the Royal Academy of Sciences, containing Fourier's work on linear inequalities). Histoire de l'Académie Royale des Sciences de l'Institut de France 7, xlvii-iv (1827)
17. Freuder, E.C.: A sufficient condition for backtrack-free search. Communications of the ACM 29, 24-32 (1982)
18. Genç-Kaya, L., Hooker, J.N.: The Hamiltonian circuit polytope. Manuscript, Carnegie Mellon University (2013)
19. Hailperin, T.: Boole's Logic and Probability, Studies in Logic and the Foundations of Mathematics, vol. 85. North-Holland, Amsterdam (1976)
20. Hansen, P., Perron, S.: Merging the local and global approaches to probabilistic satisfiability. International Journal of Approximate Reasoning 47, 125-140 (2008)
21. Hoda, S., van Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Proceedings of the 16th International Conference on Principles and Practices of Constraint Programming. Lecture Notes in Computer Science, Springer (2010)
22. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the sequence constraint. In: Benhamou, F. (ed.) Principles and Practice of Constraint Programming (CP 2006). Lecture Notes in Computer Science, vol. 4204, pp. 620634. Springer (2006)
23. Hooker, J.N.: Generalized resolution and cutting planes. Annals of Operations Research 12, 217-239 (1988)
24. Hooker, J.N.: A mathematical programming model for probabilistic logic. Working paper 05-88-89, Graduate School of Industrial Administration, Carnegie Mellon University (1988)
25. Hooker, J.N.: Generalized resolution for 0-1 linear inequalities. Annals of Mathematics and Artificial Intelligence 6, 271-286 (1992)
26. Hooker, J.N.: Logical inference and polyhedral projection. In: Computer Science Logic Conference (CSL 1991). Lecture Notes in Computer Science, vol. 626, pp. 184-200. Springer (1992)
27. Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition. Operations Research 55, 588-602 (2007)
28. Hooker, J.N.: Integrated Methods for Optimization, 2nd ed. Springer (2012)
29. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming 96, 33-60 (2003)
30. Hooker, J.N., Yan, H.: Logic circuit verification by Benders decomposition. In: Saraswat, V., Hentenryck, P.V. (eds.) Principles and Practice of Constraint Programming: The Newport Papers. pp. 267-288. MIT Press, Cambridge, MA (1995)
31. Huynh, T., Lassez, C., Lassez, J.L.: Practical issues on the projection of polyhedral sets. Annals of Mathematics and Artificial Intelligence 6, 295-315 (1992)
32. Jaumard, B., Hansen, P., Aragão, M.P.: Column generation methods for probabilistic logic. INFORMS Journal on Computing 3, 135-148 (1991)
33. Kavvadias, D., Papadimitriou, C.H.: A linear prorgamming approach to reasoning about probabilities. Annals of Mathematics and Artificial Intelligence 1, 189-206 (1990)
34. Klinov, P., Parsia, B.: A hybrid method for probabilistic satisfiability. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) 23rd International Conference on Automated Deduction (CADE 2011). Lecture Notes in AI, vol. 6803, pp. 354-368. Springer (2011)
35. Klinov, P., Parsia, B.: Pronto: A practical probabilistic description logic reasoner. In: Bobillo, F., Costa, P.C.G., d'Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) Uncertainty Reasoning for the Semantic Web II (URSW 2008-2010). LNAI, vol. 7123, pp. 59-79. Springer (2013)
36. Magos, D., Mourtos, I.: On the facial structure of the alldifferent system. SIAM Journal on Discrete Mathematics pp. 130-158 (2011)
37. Magos, D., Mourtos, I., Appa, G.: A polyhedral approach to the alldifferent system. Mathematical Programming 132, 209-260 (2012)
38. Maher, M.J., Narodytska, N., Quimper, C.G., Walsh, T.: Flow-based propagators for the SEQUENCE and related global constraints. In: Stuckey, P.J. (ed.) Principles and Practice of Constraint Programming (CP 2008). Lecture Notes in Computer Science, vol. 5202, pp. 159-174. Springer (2008)
39. Martin, R.K.: Large Scale Linear and Integer Optimization: A Unified Approach. Springer, New York (1999)
40. Motzkin, T.S.: Beiträge zur Theorie der linearen Ungleichungen. Ph.D. thesis, University of Basel (1936), English translation: Contributions to the theory of linear inequalities, RAND Corporation Translation 22, Santa Monica, CA (1952),
reprinted in D. Cantor, B. Gordon and B. Rothschild, eds., Theodore S. Motzkin: Selected Papers, Birkhäuser, Boston, 1-80 (1983).
41. Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28, 71-87 (1986)
42. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming (CP 2004). Lecture Notes in Computer Science, vol. 3258, pp. 482-495. Springer (2004)
43. Quine, W.V.: The problem of simplifying truth functions. American Mathematical Monthly 59, 521-531 (1952)
44. Quine, W.V.: A way to simplify truth functions. American Mathematical Monthly 62, 627-631 (1955)
45. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints. In: Smolka, G. (ed.) Principles and Practice of Constraint Programming (CP 1997). Lecture Notes in Computer Science, vol. 3011, pp. 32-46. Springer (1997)
46. Williams, H.P.: Linear and integer programming applied to the propositional calculus. International Journal of Systems Research and Information Science 2, 81-100 (1987)
47. Williams, H.P., Hooker, J.N.: Integer programming as projection. Working paper LSEOR 13.143, London School of Economics (2014)
