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Abstract

Purpose: Scatter is a major factor degrading the image quality of cone beam computed 

tomography (CBCT). Conventional scatter correction strategies require handcrafted analytical 

models with ad hoc assumptions, which often leads to less accurate scatter removal. This study 

aims to develop an effective scatter correction method using a residual convolutional neural 

network (CNN).

Methods: A U-net based 25-layer CNN was constructed for CBCT scatter correction. The 

establishment of the model consists of three steps: model training, validation and testing. For 

model training, a total of 1,800 pairs of x-ray projection and the corresponding scatter-only 

distribution in non-anthropomorphic phantoms taken in full-fan scan were generated using Monte 

Carlo simulation of a CBCT scanner installed with a proton therapy system. An end-to-end CNN 

training was implemented with two major loss functions for 100 epochs with a mini-batch size of 

10. Image rotations and flips were randomly applied to augment the training datasets during 

training. For validation, 200 projections of a digital head phantom were collected. The proposed 

CNN-based method was compared to a conventional projection-domain scatter correction method 

named fast adaptive scatter kernel superposition (fASKS) method using 360 projections of an 

anthropomorphic head phantom. Two different loss functions were applied for the same CNN to 

evaluate the impact of loss functions on the final results. Furthermore, the CNN model trained 

with full-fan projections was fine-tuned for scatter correction in half-fan scan by using transfer 
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learning with additional 360 half-fan projection pairs of non-anthropomorphic phantoms. The 

tuned-CNN model for half-fan scan was compared with the fASKS method as well as the CNN-

based method without the fine-tuning using additional lung phantom projections.

Results: The CNN-based method provides projections with significantly reduced scatter and 

CBCT images with more accurate Hounsfield Units (HUs) than that of the fASKS-based method. 

Root mean squared error of the CNN-corrected projections was improved to 0.0862 compared to 

0.278 for uncorrected projections or 0.117 for the fASKS-corrected projections. The CNN-

corrected reconstruction provided better HU quantification, especially in regions near the air or 

bone interfaces. All four image quality measures, which include mean absolute error (MAE), mean 

squared error (MSE), peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), indicated 

that the CNN-corrected images were significantly better than that of the fASKS-corrected images. 

Moreover, the proposed transfer learning technique made it possible for the CNN model trained 

with full-fan projections to be applicable to remove scatters in half-fan projections after fine-

tuning with only a small number of additional half-fan training datasets. SSIM value of the tuned-

CNN-corrected images was 0.9993 compared to 0.9984 for the non-tuned-CNN-corrected images 

or 0.9990 for the fASKS-corrected images. Finally, the CNN-based method is computationally 

efficient - the correction time for the 360 projections only took less than 5 seconds in the reported 

experiments on a PC (4.20 GHz Intel Core-i7 CPU) with a single NVIDIA GTX 1070 GPU.

Conclusions: The proposed deep learning-based method provides an effective tool for CBCT 

scatter correction and holds significant value for quantitative imaging and image guided radiation 

therapy (IGRT).

Keywords

CBCT; convolutional neural network; scatter correction; quantitative imaging; IGRT

1. INTRODUCTION

Cone beam computed tomography (CBCT) is widely used in clinical practice and other 

fields. Its image quality is, however, degraded due to scatter. In general, scatter intensity is 

related to scanning geometry, scanning parameters, imaged object, and even detectors. 

Photons scattered at the detector front wall, which are often called glare1, also blur 

projections and affect intensity quantification in reconstructed images. A method commonly 

sought after for scatter intensity calculation is Monte Carlo (MC) simulations2–4, but it is 

computationally intensive to apply to routine clinical practice.

Many scatter correction strategies have been proposed in literature2,5–10. These methods can 

be divided into hardware based solution and algorithmic approach. A significant advantage 

of the latter strategy is that no modification in system design is required for CBCT imaging. 

Along with this line, analytical scatter estimation models have been proposed5–8, which 

provide a fast solution as compared with MC-based techniques. A scatter kernel model by 

Ohnesorge et al.9 was proposed with the assumption that scatter can be described by 

convolutional operations with a symmetric filter representing scatter blurring effect called 

scatter kernels. Due to the complexity of the problem, scatter-corrected images with this 

model may contain residual artefacts10. Sun and Star-lack10 proposed an approach called the 
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adaptive scatter kernel superposition (ASKS) method to better handle the symmetry 

problem. The fast adaptive scatter kernel superposition (fASKS) method, one of the ASKS 

methods, distorts symmetric scatter kernels according to surrounding pixels. However, the 

model assumes that all of the materials are made of water or water-equivalent materials. As 

thus, while the approach provides better images than the original scatter kernel method, it is 

difficult to completely remove the inaccuracy in the final results, especially in a region 

containing air or bony structures. Ultimately, the performance is fundamentally limited by 

the achievable accuracy of the model.

Deep neural networks have recently attracted much attention for its unprecedented ability to 

learn complex relationships and incorporate existing knowledge into the inference model 

through feature extraction and representation learning. Through an appropriate training by 

using large numbers of paired projection and scatter images, the approach is able to provide 

a powerful non-linear predictive model of scatter distribution. Inspired by the superior 

performance of convolutional neural network (CNN) in dealing with multi-dimensional data, 

the approach has been widely used for image classification11, segmentation12,13, super-

resolution14,15 and denoising16. Specific to medical imaging, various CNN models have 

been developed for low dose fan-beam CT image restoration16,17, MR-to-CT image 

symthesis18,19, PET image segmentation20,21 and so on22. Recently, Maier et al.23 proposed 

a CNN-based scatter correction for industrial CBCT applications, and Hansen et al.24 

demonstrated that CNN-based CBCT intensity correction improved photon dose distribution 

calculation accuracy.

This study aims to develop a fast and accurate deep learning-based CBCT scatter correction 

method. The proposed method utilizes CNN to learn how to model the behaviour of scatter 

photons in the projection domain and then use the model for subsequent scatter removal in 

the projection images. We show that the performance of the deep learning model is superior 

over the conventional scatter correction method by using a few experiments. We also 

demonstrate that the CNN model trained with projections acquired in full-fan scan can be 

readily fine-tuned for scatter correction of CBCT imaging with half-fan scan by using a 

transfer learning, which is a general approach to apply a deep learning-based model of a 

domain to another domain with a small amount of additional training. Given the superior 

performance and high computational efficiency of the approach in scatter correction, the 

proposed deep learning technique holds significant value for future CBCT imaging and 

image guided radiation therapy (IGRT).

2. MATERIALS AND METHODS

2.A. Workflow of deep learning based scatter correction

Training of a deep learning model requires a large number of annotated datasets, and this 

often presents a bottleneck problem in the realization of a deep learning method. Instead of 

empirically measuring a large number of paired x-ray projections and scatter distributions 

for supervised training, we produce projection images and corresponding scatter-only 

projection images using the MC technique. Details of the MC simulations are discussed in 

2.B.
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Our deep learning based scatter correction workflow is summarised in FIG. 1. Training and 

evaluation processes require three different datasets. First, the model is trained using a 

training dataset. During the training, the validation dataset is used to monitor the model. To 

avoid any bias in the performance monitoring with the validation dataset, independent test 

datasets are carried out to test the generalisation capability of the model for completely new 

data.

Our CNN was trained to derive the scatter-only projection Isc from measured projection I so 

that the scatter-free (i.e., the primary) projection Ipr can be derived. Hence we first obtain 

training datasets consisting of a large number of paired input and output data labelled as I 

and Isc, respectively, for supervised learning. Given a set of I, Isc and Ipr, we have

I = Ipr + Isc (1)

Subtraction of the output from input gives the scatter-free projection Ipr. Although obtaining 

Ipr is our primary target of the task and the CNN is capable of computing them, our model 

was designed to output the residual scatter-only projections Isc. This approach is generally 

referred to as residual learning, which performs superior to modelling the target image 

directly when the input and target images are close25,26. I is relatively closer to Ipr than Isc, 

and the average scatter-to-primary ratio over all dataset was 22.9% in this study. Therefore, 

the residual learning is considered to be suitable for this problem. Details of the CNN 

architecture are described in 2.C.

2.B. Monte Carlo simulation and generation of datasets

The MC simulation package GATE27, which is wrapper codes of GEANT428, was used to 

collect projection datasets. CBCT geometry was simulated based on a CBCT machine 

integrated with a proton therapy system (PROBEAT-RT, Hitachi, Japan) and listed in 

TABLE I. The CBCT uses a flat-panel detector (FPD) with 0.6 mm thickness of CsI crystal 

arrays and a 298 × 298 mm2 surface area with 372 × 372 pixels. An energy spectrum of 125 

kVp CBCT x-ray beams was calculated with a software SpekCalc29. The focal spot size of 

the source was 1.2 × 1.2 mm2. Neither a bow-tie filter nor grid was included between the 

source and a scanned object. Source-to-detector distance and source-to-object distance were 

2178 mm and 1581 mm, respectively.

A total of 6.25×108 photons were tracked for each projection, and the energies deposited to 

CsI crystal arrays and the number of scatter interaction with both the scanning object and the 

detector were recorded. Measured projections I were defined as accumulated energy over all 

detected photons, including that of the scattered photons. Scatter-only projections Isc were 

calculated by summing the deposited energy from the scattered photons. Scatter-free 

projections Ipr were defined as the deposited energy from the primary photons.

Five digital phantoms were constructed to generate projections for deep learning model 

training (FIG. 2). For each phantom, 360 projections were computed over one rotation with 

an interval of one degree in full-fan scan mode. Chemical compositions of materials in the 

phantoms were obtained from Hudobivnik et al.30 and White et al.31. First, a cylindrical 
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digital phantom (phantom-1), which consists of PMMA of 18 cm in diameter and 8 

cylindrical inserts of air, adipose, water, breast 50/50, muscle, trabecular bone 200, bone 400 

and bone 1250, was constructed. The diameter of all the inserts was 3.0 cm. The phantom-2 

was also a cylindrical PMMA phantom of the same diameter, but with five different inserts, 

including four bone 1250 rots, one adipose, one water, one muscle and one breast 50/50. We 

note that the geometry of the phantom-1 and 2 is the same as the CIRS phantom model 62 

(CIRS, Inc., Norfolk, USA). Third, a cylindrical digital phantom (phantom-3) of 20 cm in 

diameter with 7 cylindrical insert rods of 2.8 cm in diameter, with the composition of 

muscle, adipose, water, blood, rib bone, brain and lung tissue, respectively, was constructed. 

The geometry of this phantom is the same as that of the Gammex phantom (Gammex, 

Middleton, USA), but the material compositions are different. The length of the digital 

phantom-1 to 3 was set to be 20 cm to accommodate the CBCT reconstruction geometry. 

Next, a spherical soft tissue phantom (phantom-4) of 20 cm in diameter with 8 randomly 

placed small spheres made of water (5.0 cm diameter), brain tissue (4.0 cm in diameter), 

muscle (3.0 cm), bone (3.0 cm), air (3.0 cm), lung tissue (2.0 cm), blood (2.0 cm) and 

adipose (1.0 cm) were constructed. The phantom-5 was a cube phantom with the geometry 

of a QUASAR Penta-Guide phantom (Modus Medical Devices Inc., London, Ontario, 

Canada). This phantom was made of PMMA with an inclusion of air spheres. Aliasing 

errors when calculating the projections from the simulations were removed by median 

filtering. A total of 1800 pairs of full-fan I and Isc were generated from the five phantoms. 

Data augmentations were applied to the images during training, which increased training 

projection pairs to a total of 14400 (see Sec. 2.C. ).

For validation of the deep learning model, a digital head phantom was constructed. 200 

projections were generated with the x-ray source rotating from posterior to left-anterior 

oblique with an interval of one degree. The phantom was generated from CT images of a 

head phantom (PH-3 head phantom ACS, Kyoto Kagaku Co., Ltd., Kyoto, Japan). The CT 

images have a spatial resolution of 0.977×0.977×2.5 mm3/voxel, with no noticeable 

artefacts. After all voxel intensity outside of the phantom was set to −1000 Hounsfield Unit 

(HU), multi-level image thresholding was performed to categorise voxels V into air (V ≤ 

−400 HU), epoxy (−400 HU < V ≤ 20 HU), BRN-SR230 (20 HU < V ≤ 130 HU) and rib 

bone31 (130 HU < V).

Similar to the validation datasets, two test datasets were generated (FIG. 3). First, 360 

projections of an anthropomorphic digital head phantom were collected for the full-fan test 

dataset. This phantom was made from a patient’s treatment planning CT image dataset with 

all the involved structures segmented32. The intensity outside of the body contour was 

assigned to be −1000 HU, and regions encompassed by the body contour were segmented 

into air (V ≤ −400 HU), adipose (−400 HU < V ≤ 0 HU), muscle (0 HU < V ≤ 200 HU) and 

rib bone (200 HU < V). Second, 360 half-fan projections of an anthropomorphic digital lung 

phantom were simulated. Original CT images of a patient were selected from The Lung CT 

Auto-segmentation Challenge archive33 in TCIA database34. After couch intensity was 

manually removed, voxels were segmented into air (−400 HU ≤ V), adipose (−400 HU < V 

≤ 0 HU), soft tissue (0 HU < V ≤ 130 HU) and rib bone (V ≤ 130 HU) except for lung. The 

lung volume was specifically segmented as lung tissue. Chemical compositions of each 

region were obtained from White et al.31.
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2.C. Network architecture and details

FIG. 4 illustrates the CNN architecture used in this study. The main structure is inspired by 

U-net35 that has produced remarkable results in several image regression problems19,36,37. 

The input and output projections had the dimension of 372×372×1, and the third dimension 

represents channel size. Each 2D convolutional layer calculated feature map with a filter size 

of k and stride of 1. The padding size was set to (k-1)/2 to keep feature map dimensions 

unchanged. The first two 2D max pooling and the last two 2D unpooling layers had a filter 

size of 2 whereas others were 3. The 2D max pooling layer and the 2D unpooling layer 

before and after the deepest layers had a stride of 2 while others were the same as filter size. 

Concatenations along the channel dimension were applied between the same resolution 

layers to improve learning efficiency. Batch normalisation38 layers were applied after each 

convolutional layer except for the first and the last layers. Rectified linear units (ReLU)39 

layers were applied for all layers. The ReLU layer was also applied after the last 

convolutional layer because Isc should not have negative values. Biases in all convolutional 

layers followed by the batch normalisations were excluded manually because they were 

cancelled out during normalisation.

The CNN model was constructed using the deep neural network package Chainer40 version 

4 with a GPU-based scientific computing package CuPy41. The CNN was trained using 

backpropagation with Adam optimiser42 (α = 0.001, β1 = 0.9, β2 = 0.999), and weight decay 

regularisation which coefficient value was set to 10-4. Data augmentations of image 90°-

rotations and flips were randomly performed during training, which virtually increases 

training projection pairs to 14400 in total.

Two different loss functions were applied for the same network structure to compare the 

performance of the CNN model. The mean absolute error (MAE) and mean squared error 

(MSE), which are commonly used as loss functions for CNN regression problems, were 

chosen to assess the difference from the labelled data. MAE and MSE were respectively 

computed by,

MAE =
1

mN
n

Isc − Isc
∗ (2)

MSE =
1

mN
n

Isc − Isc
∗ 2

(3)

where m and n ∈ [1, mN] are mini-batch size and pixel index, respectively. Scatter-only 

intensity with * indicates the label calculated using the MC simulations. In reality, the MAE 

is known to find a sharper image than the MSE, whereas the MSE is robust against 

noise36,43,44. Although some papers44–46 explored to determine the optimal loss function for 

a specific problem, no effective criteria have been yet proposed.
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2.D. Evaluations of correction accuracy

To assess the CNN scatter correction model and effectiveness of different loss functions, Ipr 

of the full-fan test dataset were compared with the actual scatter-free projection Ipr* in four 

different scenarios (TABLE II). The first scenario was an uncorrected case in which I was 

directly used. In the second scenario, Ipr calculated using an analytical scatter correction 

method called the fASKS-based correction was performed (see appendix). The third 

scenario used Ipr obtained by the CNN trained with loss function of MSE. The fourth 

scenario applied Ipr with the trained CNN that has the same network architecture as that in 

scenario 3 but was trained with MAE. Note that all the trainings were implemented with the 

same initial seeds of random generators. All of the image processing and evaluations of this 

study were done using MATLAB version 2017b (The MathWorks Inc., Natick, MA, USA).

The CNN correction model was evaluated with two different metrics. First, intensity 

quantification accuracy of Ipr in negative log scale was compared for the four scenarios. 

Because normalised negative-logged projections are used for reconstructions, the accuracy 

of Ipr is much more important for reconstructed images than those in linear scale. 

Comparison between the scenarios 3 and 4 shows which loss function is sensitive to the 

difference in negative log scale. Both MAE and MSE consider the difference between the 

output and the label in linear scale (FIG. 5 (a)). When they are regarded with respect to the 

differences of negative-logged scatter-free projections Δnlog, Eqs. (2) and (3) are rewritten 

by,

MAE =
1

mN
n

I − e
−Δnlog

I pr
∗ − Isc

∗ =
1

mN
n

I pr
∗ 1 − e

−Δnlog (4)

MSE =
1

mN
n

I − e
−Δnlog

I pr
∗ − Isc

∗ 2
=

1

mN
n

I pr
∗ 2

1 − e
−Δnlog 2

(5)

And

Δnlog = log
1

I pr

− log
1

I pr
∗

= log
I − Isc

∗

I − Isc

(6)

These equations suggest that the absolute and squared errors are functions of linear and 

squared Ipr*, respectively (FIG. 5 (b) and (c)). The second metric was the comparison 

between reconstructed images from Ipr and Ipr*. Median filtering with a filter size of 5×5 

was applied for all projections before image reconstruction to reduce noise. The Feldkamp-

Davis-Kress reconstruction method with the Hanning filter was applied for all scenarios 

using a GPU-based CBCT reconstruction toolbox TIGRE47. These images were then 

converted to HU by,
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HU =
μ − μw

μw

× 1000 (7)

where μ denotes the reconstructed linear attenuation coefficient images. μw indicates 

reference water intensity and calculated by the scatter-free reconstructed images of the 

phantom-1. The CNN-corrected reconstructed images were further evaluated by comparing 

with the fASKS-corrected images using four different quality measures; MAE, MSE, peak 

signal-to-noise ratio (PSNR) and structural similarity (SSIM)48. The PSNR and SSIM are 

calculated by,

PSNR = 10log10

max Isc
∗ 2

MSE
(8)

SSIM =

2μI
sc

μ
I
sc
∗ + C1 2σ

I
sc

, I
sc
∗ + C2

μI
sc

2 + μ
I
sc
∗

2 + C1 σI
sc

2 + σ
I
sc
∗

2 + C2

(9)

And

C1 = 0.01l
2

C2 = 0.03l
2

(10)

where μX and σ2
X denote the mean and variance of X, respectively. σXY is covariance of X 

and Y. max(Isc
*) returns the maximum pixel value of Isc

*. l is a dynamic range of projection 

images and was set to (216-1) in this study. These measures were calculated over all slices, 

and paired t-test was performed for each measure to assess statistical significance between 

CNN-corrected and fASKS-corrected images. A p-value less than 5% was considered to be 

statistically significant in this study.

2.E. Transfer learning of trained CNN model with half-fan projections

To demonstrate the capability of the CNN model for different scan conditions, the CNN 

model trained with the full-fan projection pairs was fine-tuned with a small amount of half-

fan projections for scatter correction of large-sized patients. To generate additional training 

datasets for half-fan scans, four new phantoms were constructed by making two different 

modifications to the phantom-1 to 3. The diameter of these phantoms was extended to 

35.0×30.0 cm2, and the diameter of the phantom-3 was extended to 25.0×20.0 cm2. 60 half-

fan projections of the modified phantoms, phantom-4 and phantom-5 were collected over 
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one rotation with an interval of 6 degrees, providing 360 projection pairs in total. Assuming 

that the CNN model trained for full-fan projections is capable of extracting enough features 

to reconstruct half-fan Isc, the parameters of last two convolutional layers and the last batch 

normalisation layer were tuned, while other parameters were kept unchanged during 

training. To moderate learning rate, the α value in the Adam optimiser was changed to 10-5. 

Data augmentation of image flips perpendicular to the rotation axis was randomly 

performed. Other training strategies for the transfer learning are the same as those in the 

section 2.C. To evaluate the impact of the transfer learning, the accuracy of the test lung 

phantom images corrected using the CNN models with and without the transfer learning 

were compared.

3. RESULTS

3.A. Comparisons of scatter-corrected projections in negative-logged scale

FIG. 6 shows training curves of the scenarios 3 and 4 with MAE values of the full-fan 

validation dataset. The training loss values of both scenarios converge well, despite of the 

fluctuating behavior during training. The CNN was trained for 100 epochs with a mini-batch 

size of 10 for both scenarios. Computation time for the training was about 10 hours with a 

PC installing single NVIDIA GTX 1070 GPU and 4.20 GHz Intel Core-i7 CPU. 

Computation time required to correct 360 projections is approximately 4.8 seconds with the 

same PC.

FIG. 7 compares the model calculation with the ground truth Ipr* in negative log scale for 

different scenarios. The difference maps between the two are also displayed for two 

projection angles. Because of scatter contamination, the scenario 1 has negative errors, 

especially in high intensity regions. In the scenario 2, the accuracy of projection intensity in 

the soft tissue regions is improved. However, as can be seen from the 2nd angle in FIG. 7, 

accurate prediction of scatter contributions in the bony regions remains challenging because 

the fASKS method assumes that all of the scanned materials are made of water or water-

equivalent materials. In the scenario 3, the image is less noisy, but the accuracy in the bony 

regions is worse than that of the scenario 2. The CNN model in the scenario 4 leads to 

markedly improvement in quantification accuracy. Almost all of the negative errors 

disappear. Root mean squared errors of 360 projection intensities against the ground truth in 

negative log scale were 0.278, 0.117, 0.100 and 0.0862 for the scenario 1 to 4, respectively.

To further evaluate the influence of loss function on the performance of CNN-based scatter 

correction, all projection pixels were categorised into 5 groups according to Ipr* intensity 

(FIG. 8 (a)). For each group, mean squared errors of Ipr with respect to Ipr* in scenarios 3 

and 4 were compared. In both scenarios, the mean squared errors at low Ipr* intensity groups 

are relatively large due to the existence of large photon noise (FIG. 8 (b)). However, smaller 

errors were observed at low Ipr* groups in scenario 4 than scenario 3. In general, it seems 

that the MAE is more sensitive loss function to errors at low Ipr* as compared to the MSE.
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3.B. Scatter-corrected reconstruction

FIG. 9 shows the scatter-corrected reconstructed images together with the ground truth 

images in two different slices. HU value around the image centre is lower in scenario 1 than 

that in the ground truth, which is often called cupping artefact caused by the scatter. 

Furthermore, the scenario 1 has noticeable errors in low or high intensity areas such as the 

nasal cavity and bone. On the other hand, the HU value accuracy is visually improved in the 

scenario 2, but it contains a negative error as well as streaking artefacts at bony structure. 

Similarly, the scenario 3 has no cupping artefacts, but is contaminated by localised errors in 

air cavities and bony structures. A uniform negative error inside of the phantom is observed. 

In scenario 4, almost all of the artefacts and regional errors are not observed. HU value 

difference is close to zero among all pixels. These results demonstrate that the CNN model 

can correct for scatter with high accuracy and provides images that are visually comparable 

to the scatter-free images.

The scatter-corrected images shown in the 1st slice in FIG. 9 were further compared 

quantitatively. The histogram of HU difference (FIG. 10) indicates that the median values 

are −54.7, −13.1, −8.38 and −1.60 HU, respectively, for the scenarios 1 to 4. A long, 

negative tail observed in the histogram of scenario 1 is a reflection of the cupping artefact. 

The histogram of scenario 2 has a narrower width, but its centre is shifted to negative, 

indicating that the fASKS correction improves HU value precision but not the accuracy of 

HU value. The negative tail of scenario 3 indicates that the HU value inside of the phantom 

or in the bony structures is lower than that of the ground truth. The scenario 4 has a narrow 

width and a median value close to 0. The scatter-corrected images at other slices show 

similar results as FIG. 10. Since the scenario 4 provides the best accuracy, we will focus on 

the CNN model with the MAE loss function in the following.

The image quality of the CNN- based reconstruction (scenario 4) is further compared with 

the fASKS calculation (scenario 2) using four image quality measures (TABLE III). All of 

the measures show that the CNN-corrected images lead to better image quality. These results 

indicate that the CNN-based reconstruction can accurately represent the scatter-free 

reconstructed images.

3.C. Transfer learning and its impact on correction accuracy

The transfer learning was applied to the trained CNN model of scenario 4. The CNN was 

trained for 15 epochs with loss function of MAE using the half-fan training dataset. The 

CNN-corrected images with and without the transfer learning are shown in FIG. 11. The 

CNN model without tuning provides more accurate images than the uncorrected images 

although it was trained only with the half-fan projection pairs. The tuned-CNN-corrected 

images have better HU value accuracy and less artefacts than the non-tuned-CNN or the 

fASKS-corrected images. Comparison of the four image quality metrics further indicates 

that the tuned CNN model outperforms both fASKS and non-tuned CNN models with high 

statistical significance (TABLE IV). These results show that the trained CNN model is 

expandable for other scan conditions with transfer learning.
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4. DISCUSSION

This study establishes a projection-domain scatter correction technique for CBCT using a 

residual CNN. The CNN-corrected projection offers more accurate intensity quantification 

and better image quality than the conventional fASKS approach. The deep learning-based 

approach is able to take prior knowledge into account efficiently and correct for scatter 

contamination in the projections of the various imaged subject. By avoiding using any hand-

crafted features, CNN is able to learn and provide a sophisticated scatter correction model 

without any assumptions. Once trained, the method is computationally efficient, taking 

around 13 milliseconds per projection on a desktop computer with a single GPU.

We compared the performance of CNN model with two major loss functions and found that 

MAE outperforms MSE in recognising negative-logged intensity difference Δnlog from the 

label. Although the loss functions of the negative-logged output from the negative-logged 

label can penalise Δnlog, they were not successful in our experiments because logarithm 

computation amplifies photon noise in the label and it degrades the training efficiency. Label 

noise should be taken into consideration for determining appropriate loss functions49. 

Though the final results are dependent on various other factors such as quality of dataset, 

optimiser or training strategy, one possible reason responsible for the performance variations 

is that MAE and MSE are differently weighted by Ipr* in negative log scale (Eqs. (4) and 

(5)). As illustrated in FIG. 5, the squared error is prominent at high Ipr*, which occurs 

mainly at pixels less attenuating, whereas the same Δnlog at pixels with low Ipr* is not 

penalised well. On the other hand, the absolute error is less dependent on Ipr* than the 

squared error and can better penalise Δnlog at low Ipr*. This explains why the scenario 3 has 

both larger error at pixels with lower Ipr* than scenario 4 (FIG. 8 (b)) and the negative error 

inside of the phantom in the reconstructed images (FIG. 9). To assess the impact of Ipr* in 

the loss functions to the residual errors, we introduce a loss function L,

L =
1

mN
n

I pr
∗ λ

Isc − Isc
∗ 2

=
1

mN
n

Ipr
∗ 2 + λ

1 − e
−Δlog 2

(11)

where λ is a parameter to control the weight of Ipr*. The same CNN trainings were 

performed with a few different values of λ, ranging from 0, which is the original MSE, to 5, 

with an interval of 1, and the calculated Ipr were compared with Ipr*. As illustrated in FIG. 

12, the projection is degraded especially at high Ipr* with increasing λ. Projections at other 

gantry angles behave similarly. The selection of loss functions is generally a 

challenging46,49,50 task, and needs to be refined in the future.

The novelty of this study is reflected in four aspects. First, our CNN model corrects both 

scatter and glare, while other studies correct only scatter. Since the glared intensity can be 

removed only using software-based scatter estimation techniques1,8, our CNN model is 

unique in this aspect. Second, this study indicates that the features characterizing scatter 

distributions in anthropomorphic phantoms can be learned from non-anthropomorphic 

digital phantom projections. Some previous studies19,24 investigated using image pairs of 

patients for CNN-based image synthesis or restoration. It was noted that a difficulty in using 
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the patient dataset is that the paired images are not always matched because of body 

movement or time lag between images. Although the problem can, in principle, be solved by 

applying image registration, it is difficult to guarantee that all image pairs are perfectly 

matched19. Moreover, the MC simulations of patient images require rough approximations 

of body density and chemical compositions, which may cause uncertainty in labelling the 

scatter-only projections51. These mismatched pairs adversely influence the accuracy of 

learning and inference. Non-anthropomorphic phantoms are, on the other hand, static and 

made of known materials, and it is not necessary to pre-align the image pairs. Scanning of 

the phantom with various scanning conditions is fairly straightforward and expand the 

distribution of training dataset. Learning by using non-anthropomorphic phantom data thus 

improves the quality of training dataset. Third, our study provides an effective criterion for 

selecting appropriate loss functions for deep learning-based corrections in projection 

domain. Although this study only focuses on the CBCT-based scatter correction, the 

criterion can be applied to other projection-domain corrections and other imaging modalities 

such as SPECT or PET. Finally, we evaluated the feasibility of transfer learning for large 

field-of-view (FOV) scans by fine-tuning a CNN model obtained using smaller phantoms.

This study applied scatter correction in the projection domain. Scatter correction in the 

image domain can also be accomplished16,17,37. In general, projection-domain scatter 

correction is advantageous for three reasons. First, the thickness of the attenuation object is 

important for scatter estimation as the scatter-to-primary ratio increases with the thickness. 

The reconstructed image does not provide the thickness for photons passing through 

multiple slices. Projection domain calculation takes the volumetric contributions of scatter 

photons more accurately. Second, the projection-domain correction is well-adjusted to the 

network structure of CNN. CNN is designed to connect only centre and surrounding neurons 

to enhance feature localisations and learning efficiency52,53. It hence provides superior 

results for problems in which information required for inference is localised like image 

deblurring54, super-resolution14,15 and denoising16,17. Scatter effects generally appear in a 

wide area of images and are difficult to be inferred using a small area in image domain. In 

contrast, scatter in a projection is well localised, and input pixel values have a much larger 

influence on the inference of the output pixel values at the same position. Finally, the 

number of projections is generally larger than reconstructed images for one scan. The 

number of reconstructed images is limited by FOV, and thin slice thickness increases the 

image number but leads to image noise. The projection number is easily increased with a 

smaller rotation interval, and projection quality is independent of the number of projection. 

This advantage also holds for other CBCT problems including beam hardening, metal 

artefacts and CBCT-FBCT image synthesis.

We have only used MC simulations instead of real experimental data for evaluation. The 

scatter-only or scatter-free projections are not attainable in CBCT experiments. Available 

solutions are to use projections calculated by pre-evaluated MC simulations23, to use higher 

quality images like fan-beam CT images24 or to apply image-to-image translation networks 

with unsupervised learning18,55,56. Our MC simulation setups were referenced from 

specifications of a real CBCT machine, but the FPD grid was not considered because the 

data were not available. The best solution should use projections considering all the 

geometrical parameters of the imaging system during the training of CNN model. When the 
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grid information are available, the grid effect on the input projections can be removed using 

theoretical models10,57 before applying the CNN correction. When the grid is completely 

unknown as in this study, the trained CNN model needs to be fine-tuned to adjust for actual 

scans. Interpretations of all hyperparameters in the CNN is very difficult because, unlike 

other machine learning algorithms, each hyperparameter do not have effective 

correspondence (or meanings) to the final results. Thus their transparency is not easily 

available. Interpretability of the deep learning techniques is still a challenge and there are 

progressive efforts in mitigating the ‘black box’ nature of neural network58,59.

5. CONCLUSION

We developed an effective CBCT scatter correction method using residual CNN. We 

demonstrated that the CNN-corrected reconstruction outperforms the conventional fASKS-

based method. Computation of the model is fast and suitable for real-time clinical use. This 

technique promises to provide scatter-free CBCT images for IGRT and adaptive radiation 

therapy.
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APPENDIX: FAST ADAPTIVE SCATTER KERNEL SUPERPOSITION MODEL

The fASKS correction10 is one of the conventional projection-domain scatter estimation 

methods. It has a model in which scatter intensity Isc of each projection is convolutional 

intensity of primary intensity Ipr with an adaptive scatter kernel hs.

Isc u, v =

Φ

I pr u′, v′ hs u − u′, v − v′ du′dv′ (A1)

And

hs u − u′, v − v′ =
i

c
i

u′, v′ R
i

u′, v′ g
i

u − u′, v − v′ ⋅ 1 − γ ⋅ τ u, v − τ u′, v′ (A2)

where Φ denotes sensitive detector area. Symmetric scatter kernel adapts to various 

thickness of a scanned object and varies according to water-equivalent thickness (WET) τ of 

photon beams. i represents number of symmetric scatter kernels, and R is a weighting 

function switching the symmetric scatter kernels. Each symmetric kernel is composed of an 

amplitude factor c and a form-function g. A parameter γ is an adaptive factor of symmetric 

scatter kernels. This model also considered glare, and its effect is also represented using a 

filter called glare kernel. Final measured intensity I is, therefore, modelled as,
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I u, v =

Φ

I pr u′, v′ + Isc u′, v′ hg u − u′, v − v′ du′dv′ (A3)

where hg is a glare kernel. The scatter and glare kernels should be obtained before taking 

scans and are mainly obtained by either MC simulations or experiments60. The fASKS 

model assumes that all of the scanned materials are made of water or water-equivalent 

materials. In this study, in-house fASKS correction61 with scatter and glare kernels acquired 

using edge-spread function measurements were performed. γ was set to 0.02 that was the 

optimal value for intensity uniformity in reconstructed images of water cylinder phantoms. 

Computation time of the fASKS method required to correct 360 projections is around 5.5 

minutes with our equipment.
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FIG. 1. 
Diagram of our scatter correction workflow. Input and output were set to measured (I) and 

scatter-only (Isc) projections, respectively. Isc* illustrates label obtained using the MC 

simulations. During validation and test phases, subtraction of the outputs from the inputs 

should be scatter-free projections Ipr.
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FIG. 2. 
Diagrams of the phantom-1 to 5 for training. Each colour represents a material name listed 

on the right table.
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FIG. 3. 
Head and lung phantom diagrams. Gray-scale images are original CT image, while colour 

images show segmented phantom image.
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FIG. 4. 
CNN architecture diagram. Yellow and red arrows represent 2D convolutional layers with 

filter size of 3 and 7, respectively. Green and light blue arrows indicate 2D max pooling and 

unpooling layers, respectively.
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FIG. 5. 
Comparisons of absolute and squared errors. Figure (a) shows the loss functions with 

function of linear difference. Figure (b) compares normalised loss functions with function of 

negative-logged difference. Figure (c) illustrates the loss functions with function of the real 

scatter-free projection Ipr* at Δnlog = −1.
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FIG. 6. 
Training curves of the scenario 3 (left) and 4 (right). Solid blue lines are loss function values 

of training data, and dotted orange lines illustrate MAE values of the validation data during 

training.
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FIG. 7. 
Comparison of the scatter-corrected projections with the ground truths in negative log scale 

for two projection angles. Colour maps on the bottom row represent difference maps against 

the ground truths.
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FIG. 8. 
(a) Histogram of Ipr* pixel intensity. Dotted lines illustrate thresholds of different groups for 

(b). Figure (b) shows box plots of mean squared errors over projection. Each category along 

the x-axis indicates group whereas ‘All’ covers all projection pixels. Central red lines 

indicate medians, and box edges are 25%/75% percentiles. Outliers were marked as red 

crosses independently.
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FIG. 9. 
Comparison of the scatter-corrected reconstructed images with the ground truths in two 

different slices. Colour maps illustrate difference maps against the ground truths.
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FIG. 10. 
Histograms of the HU intensity difference for different study scenarios illustrated at the 

second row of FIG. 9. Pixels outside of FOV were excluded.
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FIG. 11. 
Comparison of the scatter-corrected lung phantom images with the ground truths for two 

different slices. Two different CNN-corrected images, obtained using the scenario 4 CNN 

model with and without the transfer learning, are shown. Colour maps illustrate difference 

maps against the ground truths.

Nomura et al. Page 28

Med Phys. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 12. 
(top) Projection images obtained using with different λ’s. Colour maps illustrate difference 

of the projection against the ground truth. (bottom) Comparison of mean squared errors over 

all test data with different λ’s. Category along the x-axis indicates the same groups as that in 

FIG. 8. Central red lines indicate medians, and box edges are 25%/75% percentiles. Outliers 

were marked as red crosses independently.
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TABLE I.

Scan geometry of simulated CBCT machine.

Parameters
Values

full-fan scans half-fan scans

Source-to-detector distance 2178 mm

Source-to-origin distance 1581 mm

FPD matrix 372 × 372

FPD size 298 × 298 mm2

Image matrix 256 × 256 pixels × 86 slices

Image size 215 × 215 × 215 mm3 392 × 392 × 215 mm3
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TABLE II.

List of scenarios compared. MSE = mean squared error, MAE = mean absolute error.

Scenarios Input projections Loss function

1 Uncorrected -

2 fASKS-corrected -

3 CNN-corrected MSE

4 CNN-corrected MAE

ground truth Scatter-free -
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TABLE III.

Comparison of image quality of the head phantom images between the fASKS and CNN corrections (mean + 

SD). Mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR) and structural 

similarity (SSIM) were used.

MAE [HU] MSE [HU2] PSNR [dB] SSIM

fASKS 21.8 ± 5.9 1069 ± 613 35.6 ± 2.3 0.9995 ± 0.0003

CNN 17.9 ± 5.7 779 ± 511 37.2 ± 2.6 0.9997 ± 0.0003

p-value 1.38×10−5 9.13×10−4 6.27×10−5 9.48×10−7
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TABLE IV.

Comparison of image quality of the lung phantom images between the tuned-CNN correction and the fASKS 

and non-tuned-CNN corrections (mean + SD). Mean absolute error (MAE), mean squared error (MSE), peak 

signal-to-noise ratio (PSNR) and structural similarity (SSIM) over central 70 slices were used.

MAE [HU] MSE [HU2] PSNR [dB] SSIM

fASKS 32.5 ± 3.2 2423 ± 559 30.6 ± 0.9 0.9990 ± 0.0003

CNN w.o. tuning 31.8 ± 3.8 2699 ± 974 30.2 ± 1.2 0.9984 ± 0.0005

CNN w. tuning 29.0 ± 2.5 1882 ± 376 31.7 ± 0.8 0.9993 ± 0.0002

p-value (vs fASKS) 2.41×10−11 4.72×10−10 1.71×10−12 6.98×10−17

p-value
(vs CNN w.o. tuning) 5.91×10−7 1.11×10−9 7.36×10−15 2.80×10−32
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