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Abstract

In this paper, we propose the first compu-
tationally efficient projection-free algorithm
for bandit convex optimization (BCO) with
a general convex constraint. We show that
our algorithm achieves a sublinear regret of
O(nT 4/5) (where T is the horizon and n is the
dimension) for any bounded convex functions
with uniformly bounded gradients. We also
evaluate the performance of our algorithm
against baselines on both synthetic and real
data sets for quadratic programming, portfo-
lio selection and matrix completion problems.

1 INTRODUCTION

The online learning setting models a dynamic opti-
mization process in which data becomes available in
a sequential manner and the learning algorithm has
to adjust and update its predictor as more data is
disclosed. It can be best formulated as a repeated
two-player game between a learner and an adversary
as follows. At each iteration t, the learner commits
to a decision xt from a constraint set K ⊆ R

n. Then,
the adversary selects a cost function ft and the learner
suffers the loss ft(xt) in addition to receiving feedback.
In the online learning model, it is generally assumed
that the learner has access to a gradient oracle for all
loss functions ft, and thus knows the loss had she cho-
sen a different point at iteration t. The performance
of an online learning algorithm is measured by a game
theoretic metric known as regret which is defined as the
gap between the total loss that the learner has incurred
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after T iterations and that of the best fixed decision in
hindsight.

In online learning, we are usually interested in sublinear
regret as a function of the horizon T . To this end, other
structural assumptions are made. For instance, when
all the loss functions ft, as well as the constraint set K,
are convex, the problem is known as Online Convex Op-
timization (OCO) (Zinkevich, 2003). This framework
has received a lot of attention due to its capability
to model diverse problems in machine learning and
statistics such as spam filtering, ad selection for search
engines, and recommender systems, to name a few. It is
known that the online projected gradient descent algo-
rithm achieves a tight O(

√
T ) regret bound (Zinkevich,

2003). However, in many modern machine learning
scenarios, one of the main computational bottlenecks
is the projection onto the constraint set K. For exam-
ple, in recommender systems and matrix completion,
projections amount to expensive linear algebraic oper-
ations. Similarly, projections onto matroid polytopes
with exponentially many linear inequalities are daunt-
ing tasks in general. This difficulty has motivated the
use of projection-free algorithms (Hazan and Kale,
2012; Hazan, 2016; Chen et al., 2018) for which the
most efficient one achieves O(T 3/4) regret.

In this paper, we consider a more difficult, and very
often more realistic, OCO setting where the feedback
is incomplete. More precisely, we consider a bandit
feedback model where the only information observed by
the learner at iteration t is the loss ft(xt) at the point
xt that she has chosen. In particular, the learner does
not know the loss had she chosen a different point xt.
Therefore, the learner has to balance between exploiting
the information that she has gathered and exploring
the new data. This exploration-exploitation balance
has been done beautifully by (Flaxman et al., 2005) to
achieve O(T 3/4) regret. With extra assumption on the
loss functions (e.g., strong convexity), the regret bound
has been recently improved to Õ(T 1/2) (Hazan and
Li, 2016; Bubeck et al., 2015, 2017). Again, all these
works either rely on the computationally expensive
projection operations or inverting the Hessian matrix
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of a self-concordant barrier. In addition, regret bounds
usually have a very high polynomial dependency on
the dimension.

Garber and Hazan (2013) proposed a projection-free
BCO algorithm that works for a polyhedral constraint
only and attains a regret rate of O(T 3/4). A polyhedral
constraint is essential: The constraint set, as an input,
must be explicitly represented as the convex hull of its
vertices. The construction of a local linear optimization
oracle that the algorithm is based on requires compu-
tation of representing a point as a convex combination
of vertices at each round. In general, however, for poly-
hedra defined by a system of linear inequalities, the
number of vertices can increase exponentially in the
dimension n, as shown by McMullen (1970). In this
case, representing a point as a convex combination of
vertices is particularly intractable, which significantly
limits the feasibility of the algorithm in many practical
problems.

In this paper, we develop the first computationally
efficient projection-free BCO algorithm on a general
convex constraint set, with a sublinear regret bound
of O(T 4/5) on the expected regret. We also show that
the dependency on the dimension is linear. The re-
gret bounds in different OCO settings are summarized
in Table 1.

Table 1: Regret bounds in various settings of adversarial
online convex optimization.

Online Bandit

Projection O(T 1/2)† O(T 3/4)‡, Õ(T 1/2)♯

Projection-free O(T 3/4)♭ O(T 4/5) (this work)

† Zinkevich (2003)
‡ Flaxman et al. (2005)
♯ Hazan and Li (2016); Bubeck et al. (2015, 2017)
♭ Hazan and Kale (2012)(Hazan, 2016, Alg. 24)

Our Contributions

Sublinear regret with computational efficiency.

While there is a line of recent work that attains the
minimax bound (Hazan and Li, 2016; Bubeck et al.,
2015, 2017), these algorithms have computationally
expensive parts, such as inverting the Hessian of the
self-concordant barrier. In contrast to these works that
seek the lowest regret bound, we try to find a computa-
tionally efficient solution that attains a sublinear regret
bound. Therefore, we have to avoid computationally
expensive techniques like projection, Dikin ellipsoid
and self-concordant barrier. As is shown in the experi-
ments, our algorithm is simple and effective as it only

requires solving a linear optimization problem, while
preserving a sublinear regret bound.

Techniques. The Frank-Wolfe (FW) algorithm may
perform arbitrarily poorly with stochastic gradients
even in the offline setting (Hassani et al., 2017). Since
the one-point estimator of gradient has a large vari-
ance, a simple combination of online FW (Hazan and
Kale, 2012) and one-point estimator (Flaxman et al.,
2005) may not work. This is in fact shown empirically
in Fig 1a when the loss functions are quadratic. In
addition, the online FW algorithm of Hazan and Kale
(2012) is infeasible in the bandit setting. Basically, in
each iteration of the online FW, the linear objective is
the average gradient of all previous functions at a new
point xt. Note that in the bandit setting, it is impos-
sible to evaluate the gradient of fi at xt (i < t), even
with one-point estimators of Flaxman et al. (2005).

Our work has two major differences with (Hazan and
Kale, 2012). First, to make it a bandit algorithm, our
linear objective is the sum of previously estimated gra-
dients (

∑t−1
τ=1 gτ , where gτ is the one-point estimator

of ∇fτ (xτ )), rather than
∑t−1

τ=1∇fτ (xt−1). Second, we
add a regularizer to stabilize the prediction.

2 PRELIMINARIES

2.1 Notation

We let Sn , {x ∈ R
n : ‖x‖= 1} and Bn , {x ∈ R

n :
‖x‖≤ 1} denote the unit sphere and the unit ball in
the n-dimensional Euclidean space, respectively. Let v

be a random vector. We write v ∼ Sn and v ∼ Bn to
indicate that v is uniformly distributed over Sn and
Bn, respectively.

For any point set D ⊆ R
n and α > 0, we denote

{x ∈ R
n : 1

αx ∈ D} by αD. Let f : D → R be a
real-valued function on domain D ⊆ R

n. Its sup norm
is given by ‖f‖∞, sup

x∈D|f(x)|. We say that the
function f : D → R is α-strongly convex (Nesterov,
2003, pp. 63–64) if f is continuously differentiable, D
is a convex set, and the following inequality holds for
∀x,y ∈ D: f(y) ≥ (x) + ∇f(x)⊤(y − x) + 1

2α‖y −
x‖2. An equivalent definition of strong convexity is
(∇f(x)−∇f(y))⊤(x−y) ≥ α‖x−y‖2, for all x,y ∈ D.
We say that f is G-Lipschitz if ∀x,y ∈ D, ‖f(x) −
f(y)‖≤ G‖x− y‖. In this paper, we assume that the
loss functions are all convex and bounded, meaning
that there is a finite M such that ‖f‖∞≤ M . We
also assume that they are differentiable with uniformly
bounded gradients, i.e., there exists a finite G such
that ‖∇f‖∞≤ G.
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2.2 Bandit Convex Optimization

Online convex optimization is performed in a sequence
of consecutive rounds, where at round t, a learner
has to choose an action xt from a convex decision set
K ⊆ R

n. Then, an adversary chooses a loss function
ft from a family F of bounded convex functions. Once
the action and the loss function are determined, the
learner suffers a loss ft(xt). The aim is to minimize
regret which is the gap between the accumulated loss
and the minimum loss in hindsight. More formally, the
regret of a learning algorithm A after T rounds is given
by

RA,T , sup
{f1,...,fT }⊆F

{

T
∑

t=1

ft(xt)−min
x∈D

T
∑

t=1

ft(x)

}

.

In the full information setting, the learner receives the
loss function ft as a feedback (usually by having access
to the gradient of ft at any feasible decision domain).
In the bandit setting, however, the feedback is limited
to the loss at the point that she has chosen, i.e., ft(xt).
In this paper, we consider the bandit setting where the
family F consists of bounded convex functions with
uniformly bounded gradients. Under these conditions,
we propose a projection-free algorithm A that achieves
an expected regret of E[RA,T ] = O(T 4/5).

2.3 Smoothing

A key ingredient of our solution relies on constructing
the smoothed version of loss functions. Formally, for a
function f , its δ-smoothed version is defined by

f̂δ(x) = Ev∼Bn [f(x+ δv)],

where v is drawn uniformly at random from the n-
dimensional unit ball Bn. Here, δ controls the radius
of the ball that the function f is averaged over. Since
f̂δ is a smoothed version of f , it inherits analytical
properties from f . Lemma 1 formalizes this idea.

Lemma 1 (Lemma 2.6 in (Hazan, 2016)). Let f :
D ⊆ R

n → R be a convex, G-Lipschitz continuous
function and let D0 ⊆ D be such that ∀x ∈ D0,v ∈ Sn,
x+ δv ∈ D. Let f̂δ be the δ-smoothed function defined
above. Then f̂δ is also convex, and ‖f̂δ − f‖∞≤ δG on
D0.

Since f̂δ is an approximation of f , if one finds a mini-
mizer of f̂δ, Lemma 1 implies that it also minimizes f
approximately. Another advantage of considering the
smoothed version is that it admits one-point gradient
estimates of f̂δ based on samples of f . This idea was
first introduced in (Flaxman et al., 2005) for developing
an online gradient descent algorithm without having
access to gradients.

Lemma 2 (Lemma 6.4 in (Hazan, 2016)). Let δ > 0 be

any fixed positive real number and f̂δ be the δ-smoothed
version of function f . The following equation holds

∇f̂δ(x) = Eu∼Sn

[n

δ
f(x+ δu)u

]

. (1)

Lemma 2 suggests that in order to sample the gradient
of f̂δ at a point x, it suffices to evaluate f at a random
point x+ δu around the point x.

3 MAIN RESULTS

The first key idea of our proposed algorithm is to
construct a follow-the-regularized-leader objective

Ft(x) = η

t−1
∑

τ=1

∇fτ (xτ )
⊤x+ ‖x− x1‖2. (2)

Instead of minimizing Ft directly (as it is done in
follow-the-regularized-leader algorithm), the learner
first solves a linear program over the decision set K

vt = min
x∈K
{∇Ft(xt) · x}, (3)

and then updates its decision as follows

xt+1 ← (1− σt)xt + σtvt. (4)

Note that minimizing Ft requires solving a quadratic
optimization problem, which is as computationally pro-
hibitive as a projection operation. In contrast, since
the update in (4) is a convex combination between vt

and xt, the iterates always lie inside the convex decision
set K, thus no projection is needed. This is the main
idea behind the online conditional gradient algorithm
(Algorithm 24 in (Hazan, 2016)). In the bandit setting
(the focus of this paper), the gradients ∇fτ (xτ ) are
unavailable, hence the learner cannot perform steps (2)
and (3). To tackle this issue, we introduce the second
ingredient of our algorithm, namely, the smoothing and
one-point gradient estimates (Flaxman et al., 2005).
Formally, at the t-th iteration, rather than selecting
xt, the learner plays a random point yt that is δ-close
to xt and in return observes the cost ft(yt). As shown
in Lemma 2, ft(yt) can be used to construct an un-
biased estimate gt for the gradient of the δ-smoothed
version of ft at point xt, i.e., E[gt] = ∇f̂t,δ(xt), where

f̂t,δ(xt) , Ev∼Bn [ft(xt + δv)]. This observation sug-
gests that we can replace ∇ft(xt) by gt in the follow-
the-regularized-leader objective (2) to obtain a variant
that relies on the one-point gradient estimate, i.e.,

Ft(x) = η

t−1
∑

τ=1

g⊤
τ x+ ‖x− x1‖2. (5)
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Note that forming Ft(x) in (5) is fully realizable for
a learner in a bandit setting. The full description of
our algorithm is outlined in Algorithm 1. Even though
the objective function Ft(x) relies on the unbiased
estimates of the smoothed versions of ft (rather than
ft itself), it is not far off from the original objective
(shown in (2)) if the distance between the random point
yt and the point xt is properly chosen. Therefore,
minimizing the sum of smoothed versions of ft (as it is
done by Algorithm 1) will end up minimizing the actual
regret. This intuition is formally proven in Theorem 1.
Without loss of generality, we assume additionally that
the constraint K contains a ball of radius r centered at
the origin (this is always achievable by shrinking the
constraint set as long as it has a non-empty interior).

Algorithm 1 Projection-Free Bandit Convex Opti-
mization
Input: horizon T , constraint set K
Output: y1,y2, . . . ,yT

1: x1 ∈ (1− α)K
2: for t = 1, . . . , T do

3: yt ← xt + δut, where ut ∼ Sn

4: Play yt and observe ft(yt)
5: gt ← n

δ ft(yt)ut ⊲ gt is an unbiased estimator

of ∇f̂t,δ(xt)

6: Ft(x)← η
∑t−1

τ=1 g
⊤
τ x+ ‖x− x1‖2

7: vt ← argmin
x∈(1−α)K{∇Ft(xt) · x} ⊲ Solve a

linear optimization problem
8: xt+1 ← (1− σt)xt + σtvt

9: end for

Theorem 1 (Proof in Section 5). Assume that
for every t ∈ N≥1, ft is convex, ‖ft‖∞≤ M on K,
sup

x∈K‖∇ft(x)‖≤ G, rBn ⊆ K ⊆ RBn, and that the
diameter of K is D < ∞. If we set η = D√

2nM
T−4/5,

σt = t−2/5, δ = cT−1/5, and α = δ/r < 1 in
Algorithm 1, where c > 0 is a constant, we have
yt ∈ K, ∀1 ≤ t ≤ T . Moreover, the expected regret
E[RA,T ] up to horizon T is at most
√
2nMD

c2
T 3/5+(

√
2nMD+

5
√
2

4
DG+3cG+cRG/r)T 4/5.

Note that the regret bound of Algorithm 1 depends
linearly on the dimension n.

A minor drawback of Algorithm 1 is that it requires the
knowledge of the horizon T . This problem can be easily
circumvented via the doubling trick while preserving
the regret bound of Theorem 1. The doubling trick was
first proposed in (Auer et al., 1995) and its key idea is
to invoke the base algorithm repeatedly with a doubling
horizon. Algorithm 2 outlines an anytime algorithm
for BCO using the doubling trick. Theorem 2 shows
that for any t ≥ 1, the expected regret of Algorithm 2
by the end of the t-th iteration is bounded by O(t4/5).

Algorithm 2 Anytime Projection-Free Bandit Convex
Optimization

Input: constraint set K
Output: y1,y2, . . .
1: for m = 0, 1, 2, . . . do

2: Run Algorithm 1 with horizon 2m from the
2m-th iteration (inclusive) to the (2m+1 − 1)-th
iteration (inclusive).

3: Let y2m , . . . ,y2m+1−1 be the points that Algo-
rithm 1 selects for the objectives f2m , . . . , f2m+1−1.

4: end for

Theorem 2 (Proof in Appendix D). If the regret
bound of Algorithm 1 for horizon T is βT 4/5, then for
any t ≥ 1, the expected regret of Algorithm 2 by the end
of the t-th iteration is at most

E[RA,T ] =
β

1− 2−4/5
(t+ 1)4/5 = O(t4/5).

4 EXPERIMENTS

In our set of experiments, we compare Algorithm 2 with
the following baselines: (1) FKM: Online projected gra-
dient descent with spherical gradient estimators (Flax-
man et al., 2005). (2) Unregularized: A variant of our
proposed algorithm without the regularizer ‖x− x1‖2
in line 6 of Algorithm 1. (3) StochOCG: Online condi-
tional gradient (Hazan, 2016) with stochastic gradients
(not a bandit algorithm). Such stochastic gradients
are formed by adding Gaussian noise with standard
deviation n to the exact gradients.

The anytime version of the algorithms (obtained via
the doubling trick) is used. Therefore the horizon T
is unknown to the algorithms. Since the standard de-
viation of the point estimate used in FKM and our
proposed method is proportional to the dimension n,
the standard deviation of the Gaussian noise in Sto-

chOCG is set to n to make the noise in the gradients
comparable. Note that Hazan (2016) assumed access
to exact gradients. It remains unknown whether it is
robust to a noisy gradients.

We performed three sets of experiments in total. In
all of them we report the average loss defined as
E[
∑T

t=1 ft(xt)]/T .

Quadratic Programming: In the first experi-
ment, the loss functions are quadratic, i.e., ft(x) =
1
2x

⊤G⊤
t Gtx+w⊤

t x. Each entry of Gt and wt is sam-
pled from the standard normal distribution. The con-
vex constraint of this problem is a polytope {x : 0 ≤
x ≤ 1,Ax ≤ 1} and each entry of A is sampled from
the uniform distribution on [0, 1]. The average loss is
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Figure 1: In Figs. 1a to 1c, we show the average loss versus the number of iterations in the three sets of experiments.
The relative execution time is shown in Fig. 1d, where the execution time of the proposed algorithm is set to 1.

illustrated in Fig. 1a. We observe that the average loss
of our proposed algorithm declines as the number of
iterations increases. This agrees with the theoretical
sublinear regret bound. StochOCG has a similar perfor-
mance while FKM exhibits the lowest loss. In contrast,
the loss of Unregularized appears to be linear which
shows the significance of regularization to achieve low
regret. This observation also suggests that simply com-
bining (Hazan and Kale, 2012) and smoothing may not
work in practice.

Portfolio Selection: For this experiment, we ran-
domly select n = 100 stocks from Standard & Poor’s
500 index component stocks and consider their prices
during the business days between February 18th, 2013
and November 27th, 2017. We follow the formulation
in (Hazan, 2016, Section 1.2). Let rt ∈ R

n be a vec-
tor such that rt(i) is the ratio of the price of stock
i on day t + 1 to its price on day t. An investor is
trying maximize her wealth by investing on different
stock options. If Wt denotes her wealth on day t, then
we have the following recursion: Wt+1 = Wt · r⊤t xt.
After T days of investments, the total wealth will be
WT = W1 ·

∏T
t=1 r

⊤
t xt. To maximize the wealth, the

investor has to maximize
∑T

t=1 log(r
⊤
t xt), or equiv-

alently minimize its negation. Thus, we can define
ft(xt) , − log(r⊤t xt). FKM requires that the con-
straint set contains the unit ball. To this end, we set
yt = 2nxt − 1 so that yt lies in an enlarged region
∆′

n , {y ∈ R
n : −1 ≤ y(i) ≤ 2n − 1,

∑n
i=1 y(i) ≤ n}.

In addition, the objective functions ft are viewed as
functions of yt rather than xt. The average losses ver-
sus the number of iterations are presented in Fig. 1b.
Our proposed algorithm has the lowest loss in this set
of experiments while FKM has the largest.

Matrix Completion: Let {Mt}Tt=1 be symmetric pos-
itive semi-definite (PSD) matrices, where Mt = N⊤

t Nt

and every entry of Nt ∈ R
k×n obeys the standard

normal distribution. At each iteration, half of the
entries of Mt are observed. We set n = 20 and
k = 18. We denote the entries of Mt disclosed
at the t-th iteration by Ot. We want to minimize

ft(Xt) , 1
2

∑

(i,j)∈Ot
(Xt[i, j] −Mt[i, j])

2 subject to

‖Xt‖∗≤ k, where Xt is of the same shape as Mt and
‖·‖∗ denotes the nuclear norm. The nuclear norm con-
straint is a standard convex relaxation of the rank
constraint rank(X) ≤ k. The linear optimization step
in Line 7 of Algorithm 1 has a closed-form solution
vt = kvmaxv

⊤
max, where vmax is the eigenvector of

the largest eigenvalue of −∇ft(Xt) (Hazan, 2016, Sec-
tion 7.3.1). The largest eigenvector can be computed
very efficiently using power iterations, whilst it is ex-
tremely costly to perform projection onto a convex
subset of the space of PSD matrices. As shown in
Fig. 1d, the efficiency of the proposed algorithm is 61
times that of the projection-based FKM algorithm. The
average loss of the algorithms is shown in Fig. 1c. Our
proposed algorithm outperforms the other baselines
while FKM suffers the largest loss.

We also observe rises of the curves at their initial stage
in Fig. 1. They are due to the doubling trick (Algo-
rithm 2) and a small denominator of the average loss.
The unknown horizon is divided into epochs with a
doubling size (1, 2, 4, and so forth). When the al-
gorithm starts a new epoch, everything is reset and
the algorithm learns from scratch. Furthermore, the
denominator of the average loss is small (it is initially
1, and then becomes 2, 3, 4, . . . ) at the initial stage.
Therefore, due to frequent resets and a small denomina-
tor, the behavior is less stable. As the epoch size and
denominator grow, the average loss declines steadily.

While our proposed algorithm outperforms FKM in
Figs. 1b and 1c, this does not contradict the orders of re-
gret presented in Table 1. According to (Flaxman et al.,
2005), the O(T 3/4) bound holds when T ≥ (3Rn/(2r))2.
In portfolio selection, since R/r =

√
4n2 − 3n and

n = 100, we have (3Rn/(2r))2 > 8.9 × 108, which is
much larger than our horizon (= 1000). In matrix com-
pletion, since the dimension n = (20×20−20)/2 = 190,
we have (3Rn/(2r))2 ≥ (3n/2)2 > 8.1 × 104, greatly
exceeding our horizon (= 200).

The execution time is shown in Fig. 1d. It was mea-
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sured on eight Intel Xeon E5-2660 V2 cores and the
algorithms were implemented in Julia. 50 repeated ex-
periments were run in parallel. It can be observed that
our proposed algorithm runs significantly faster than
the FKM algorithm (mostly by avoiding the projection
steps). Specifically, its efficiency is almost 7 times, 5
times, and 61 times that of the FKM algorithm in
the three sets of experiments, respectively. StochOCG

requires computation of gradients and is also slower
than the proposed algorithm.

5 PROOF OF THEOREM 1

First we show yt ∈ K. Since vt ∈ (1 − α)K, x1 ∈
(1 − α)K and xt+1 = (1 − σt)xt + σtvt, by induction
and the convexity of K, we have xt ∈ (1 − α)K for
every t. Recall that yt = xt + δut, where ut ∈ Sn and
α = δ/r. Since K is convex and rSn ⊆ rBn ⊆ K, we
have yt ∈ (1− α)K + αrSn ⊆ (1− α)K + αK = K.

Let x∗
t , argmin

x∈(1−α)K Ft(x) and f̂t,δ(xt) ,

Ev∼Bn [ft(xt + δv)]. The first step is to derive a bound

on
∑T

t=1 g
⊤
t (x

∗
t − z). We need the following lemma.

Lemma 3 (Lemma 2.3 in (Shalev-Shwartz, 2012)). Let
w1,w2, . . . be a sequence of vectors in (1−α)K such that

∀t,wt = argmin
w∈(1−α)K

∑t−1
i=1 fi(w) + R(w). Then

for every z ∈ (1−α)K, we have
∑T

t=1(ft(wt)−ft(z)) ≤
R(z)−R(w1) +

∑T
t=1(ft(wt)− ft(wt+1)).

By Lemma 3 and in light of the fact that x∗
1 = x1,

∀z ∈ (1− α)K, we have

T
∑

t=1

g⊤
t (x

∗
t − z)

≤‖z− x1‖2/η − ‖x∗
1 − x1‖2/η +

T
∑

t=1

g⊤
t (x

∗
t − x∗

t+1)

=‖z− x1‖2/η +
T
∑

t=1

g⊤
t (x

∗
t − x∗

t+1).

(6)

Let Ft be the σ-field generated by
x1,g1,x2,g2, . . . ,xt−1,gt−1,xt. Note that x∗

t

is a function of g1, . . . ,gt−1 and thus mea-
surable with respect to Ft. Therefore we
have E[g⊤

t (x
∗
t − z)] = E[E[g⊤

t (x
∗
t − z)|Ft]] =

E[E[gt|Ft]
⊤(x∗

t − z)] = E[∇f̂t,δ(xt)
⊤(x∗

t − z)]. To
bound the second term on the right-hand side of (6),
note that g⊤

t (x
∗
t − x∗

t+1) ≤ 2η‖gt‖2 (we will show it in

Appendix A). Therefore we have
∑T

t=1 g
⊤
t (x

∗
t−x∗

t+1) ≤
2η

∑T
t=1‖gt‖2≤ 2ηn2M2T/δ2. Combining it with (6),

we deduce
∑T

t=1 g
⊤
t (x

∗
t − z) ≤ D2/η + 2ηn2M2T/δ2.

Since

(7)

T
∑

t =1

E[ft(yt)− ft(z)] =

T
∑

t=1

E[ft(yt)− ft(xt)]

+

T
∑

t=1

E[ft(xt)− ft(z)],

and the norm of the gradient of ft is assumed to be at
most G

(8)

T
∑

t =1

E[ft(yt)− ft(xt)] ≤ δTG,

we only need to obtain an upper bound of the second
term on the right hand side of (7), which is

T
∑

t=1

E[ft(xt)− ft(z)]

=E[

T
∑

t=1

(f̂t,δ(xt)− f̂t,δ(z)) +

T
∑

t=1

(ft(xt)− f̂t,δ(xt))

−
T
∑

t=1

(ft(z)− f̂t,δ(z))]

(a)

≤ E

[

T
∑

t=1

(f̂t,δ(xt)− f̂t,δ(z))

]

+ 2δGT

(b)

≤
T
∑

t=1

E[∇f̂t,δ(xt)
⊤(xt − z)] + 2δGT.

Inequality (a) is due to Lemma 1. We used the con-

vexity of f̂t,δ in (b). We split ∇f̂t,δ(xt)
⊤(xt − z) into

∇f̂t,δ(xt)
⊤(x∗

t − z) +∇f̂t,δ(xt)
⊤(xt − x∗

t ) and thus ob-
tain

T
∑

t=1

E[ft(xt)− ft(z)]

≤
T
∑

t=1

E[∇f̂t,δ(xt)
⊤(x∗

t − z)]

+

T
∑

t=1

E[∇f̂t,δ(xt)
⊤(xt − x∗

t )] + 2δGT

=
T
∑

t=1

E[g⊤
t (x

∗
t − z)] +

T
∑

t=1

E[∇f̂t,δ(xt)
⊤(xt − x∗

t )]

+ 2δGT

≤D2/η + 2ηn2M2T/δ2 +

T
∑

t=1

E[∇f̂t,δ(xt)
⊤(xt − x∗

t )]

+ 2δGT.

(9)
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The next step is to bound ∇f̂t,δ(xt)
⊤(xt−x∗

t ). To this
end, we need the auxiliary inequality below.

Lemma 4 (Proof in Appendix B). The inequality
−4t2/5(t+1)2/5+4t4/5−2t1/5(t+1)1/5+3(t+1)2/5 ≥ 0
holds for any t = 1, 2, 3, . . . .

In light of the inequality, we have

t3/5(t+ 1)1/5
(

3

2t4/5
− 2

t2/5
+

2

(t+ 1)2/5

)

=
−4t2/5(t+ 1)2/5 + 4t4/5 + 3(t+ 1)2/5

2t1/5(t+ 1)1/5
≥ 1.

By algebraic manipulation, we see

2σt+1 − 2σt + (3/2)σ2
t√

2σt+1

=
1√
2
(t+ 1)1/5

(

3

2t4/5
− 2

t2/5
+

2

(t+ 1)2/5

)

≥ 1√
2
t−3/5.

(10)

If 1 ≤ t ≤ T , we deduce

1√
2
t−3/5 ≥ 1√

2
T−3/5 =

ηnM

δD
≥ η

D
‖gs‖, ∀1 ≤ s ≤ T.

(11)
Combining (10) and (11), we deduce

η ≤ D
2σt+1 − 2σt + (3/2)σ2

t

‖gt+1‖
√
2σt+1

, ∀1 ≤ t ≤ T.

The above inequality is equivalent to

2(1− σt)D
2σt +

D2

2
σ2
t + (η‖gt+1‖/2)2

≤2D2σt+1 + (η‖gt+1‖/2)2 − η‖gt+1‖
√

2D2σt+1.

Before taking the square root, we need Lemma 5.

Lemma 5 (Proof in Appendix C). Under the as-
sumptions of Theorem 1,

√

2D2σt+1 ≥ η‖gt+1‖/2
holds for any 1 ≤ t ≤ T .

Since
√

2D2σt+1 ≥ η‖gt+1‖/2, taking
the square root of both sides, we obtain
√

2(1− σt)D2σt +
D2

2 σ2
t + (η‖gt+1‖/2)2 ≤

√

2D2σt+1 − η‖gt+1‖/2, which is equivalent to

√

2(1− σt)D2σt +
D2

2
σ2
t + (η‖gt+1‖/2)2 + η‖gt+1‖/2

≤
√

2D2σt+1.

(12)

If ht(x) , Ft(x)− Ft(x
∗
t ) and ht , ht(xt), we have

ht(xt+1) = Ft(xt+1)− Ft(x
∗
t )

=Ft((1− σt)xt + σtvt)− Ft(x
∗
t )

=Ft(xt + σt(vt − xt))− Ft(x
∗
t )

≤Ft(xt)− Ft(x
∗
t ) + σt∇Ft(xt)

⊤(vt − xt) +D2σ2
t /2

≤Ft(xt)− Ft(x
∗
t ) + σt∇Ft(xt)

⊤(x∗
t − xt) +D2σ2

t /2

≤Ft(xt)− Ft(x
∗
t ) + σt(Ft(x

∗
t )− Ft(xt)) +D2σ2

t /2

=(1− σt)(Ft(xt)− Ft(x
∗
t )) +D2σ2

t /2

=(1− σt)ht +D2σ2
t /2.

By the definition of ht and Ft and in light of the fact
that x∗

t is the minimizer of Ft, we obtain

ht+1 =Ft(xt+1)− Ft(x
∗
t+1) + ηgt+1(xt+1 − x∗

t+1)

≤Ft(xt+1)− Ft(x
∗
t ) + ηgt+1(xt+1 − x∗

t+1)

=ht(xt+1) + ηgt+1(xt+1 − x∗
t+1)

≤ht(xt+1) + η‖gt+1‖‖xt+1 − x∗
t+1‖.

Notice that Ft is 2-strongly convex and that x∗
t is the

minimizer of Ft. We have ‖x− x∗
t ‖2≤ Ft(x)− Ft(x

∗
t ).

Therefore we obtain

ht+1 ≤ (1− σt)ht +D2σ2
t /2

+ η‖gt+1‖
√

Ft+1(xt+1)− Ft+1(x∗
t+1)

= (1− σt)ht +D2σ2
t /2 + η‖gt+1‖

√

ht+1.

We will show hτ ≤ 2D2στ holds for ∀1 ≤ τ ≤ T by
induction. Since h1 = F1(x1) − F1(x

∗
1) = 0, it holds

if t = 1. Assume that it holds for τ = t. Now we set
τ = t+ 1. By the induction hypothesis, we have

ht+1 ≤ 2(1− σt)D
2σt +D2σ2

t /2 + η‖gt+1‖
√

ht+1.

By completing the square, we obtain (
√

ht+1 −
η‖gt+1‖/2)2 ≤ 2(1−σt)D

2σt+D2σ2
t /2+(η‖gt+1‖/2)2.

Therefore,

√

ht+1 ≤
√

2(1− σt)D2σt +D2σ2
t /2 + (η‖gt+1‖/2)2

+ η‖gt+1‖/2.

By (12), the right-hand side is at most
√

2D2σt+1.
Thus we conclude that ht+1 ≤ 2D2σt+1. Then we
are able to bound ‖xt − x∗

t ‖ as follows: ‖xt − x∗
t ‖≤

√

Ft(xt)− Ft(x∗
t ) ≤

√
2D2σt =

√
2Dt−1/5. By (9),

and since ‖∇f̂t,δ(xt)‖≤ Ev∼Bn [‖∇ft(xt + δv)‖] ≤ G,
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we obtain

T
∑

t=1

E[ft(xt)− ft(z)]

≤D2/η + 2ηn2M2T/δ2 +G
T
∑

t=1

E[‖xt − x∗
t ‖] + 2δGT

(a)

≤
√
2nMDT 4/5 +

√
2nMD

c2
T 3/5 +

5
√
2

4
DGT 4/5

+ 2cGT 4/5

=

√
2nMD

c2
T 3/5 + (

√
2nMD +

5
√
2

4
DG+ 2cG)T 4/5,

where we use
∑T

t=1 t
−1/5 ≤ 5

4T
4/5 in (a). Adding (8)

to the above inequality, we have

T
∑

t=1

E[ft(yt)− ft(z)] (13)

≤
√
2nMD

c2
T 3/5 + (

√
2nMD +

5
√
2

4
DG+ 3cG)T 4/5.

Let x∗ , argmin
x∈K

∑T
t=1 ft(x) and Π(x∗) ,

argmin
x∈(1−α)K‖x − x∗‖. We have ‖x∗ − Π(x∗)‖≤

‖x∗− (1−α)x∗‖≤ αR. If we set z = Π(x∗) in (13), we
have

T
∑

t=1

E[ft(yt)− ft(x
∗)]

=

T
∑

t=1

E[ft(yt)− ft(Π(x∗)) + ft(Π(x∗))− ft(x
∗)]

≤
√
2nMD

c2
T 3/5 + (

√
2nMD +

5
√
2

4
DG+ 3cG)T 4/5

+ αRGT.

Since α = δ/r, we conclude that the regret is at most

√
2nMD

c2
T 3/5+(

√
2nMD+

5
√
2

4
DG+3cG+cRG/r)T 4/5.

6 RELATED WORK

Zinkevich (2003) introduced the online convex optimiza-
tion (OCO) problem and proposed online gradient de-
scent. OCO generalizes existing models of online learn-
ing, including the universal portfolios model (Cover,
1991) and prediction from expert advice (Littlestone
and Warmuth, 1994). For strongly convex functions,
an algorithm that achieves a logarithmic regret was
proposed in (Hazan et al., 2007). Regularization-based
methods applied to OCO problems were investigated in
(Grove et al., 2001; Kivinen and Warmuth, 1998). The
follow-the-perturbed-leader algorithm was introduced

and analyzed in (Kalai and Vempala, 2005). There-
after, the follow-the-regularized-leader (FTRL) was
independently considered in (Shalev-Shwartz, 2007;
Shalev-Shwartz and Singer, 2007) and (Abernethy et al.,
2008). Hazan and Kale (2010) showed the equivalence
of FTRL and online mirror descent.

For projection-free convex optimization, the Frank-
Wolfe algorithm (i.e., the conditional gradient method)
was originally proposed in (Frank and Wolfe, 1956),
and was further analyzed in (Jaggi, 2013). The online
conditional gradient method was investigated in (Hazan
and Kale, 2012). A distributed version was proposed
in (Zhang et al., 2017). Conditional gradient methods
are very sensitive to noisy gradients. This issue was
recently resolved in centralized (Mokhtari et al., 2018)
and online settings (Chen et al., 2018).

A special case of bandit convex optimization (BCO)
with linear objectives was studied in (Awerbuch and
Kleinberg, 2008; Bubeck et al., 2012a; Karnin and
Hazan, 2014). The general problem of BCO was consid-
ered in (Flaxman et al., 2005) and was further studied
in (Dani et al., 2008; Agarwal et al., 2011; Bubeck
et al., 2012b; Bubeck and Eldan, 2016). A near-optimal
regret algorithm for the BCO problem with strongly-
convex and smooth losses was introduced in (Hazan
and Levy, 2014), while BCO with Lipschitz-continuous
convex losses was analyzed in (Kleinberg, 2005). Re-
gret rate Õ(T 2/3) was achieved in (Saha and Tewari,
2011) for convex and smooth loss functions, and in
(Agarwal et al., 2010) for strongly-convex loss func-
tions, and was improved to Õ(T 5/8) in (Dekel et al.,
2015). For strongly-convex and smooth loss functions, a
lower bound of Ω(

√
T ) was attained in (Shamir, 2013).

Bubeck et al. (2017) proposed the first poly(n)
√
T -

regret algorithm whose running time is polynomial in
horizon T . Zeroth-order optimization is also relevant
to BCO. Interested readers are referred to (Conn et al.,
2009; Duchi et al., 2015; Yu et al., 2016).

7 CONCLUSION

We presented the first computationally efficient
projection-free BCO algorithm that requires no knowl-
edge of the horizon T and achieve an O(nT 4/5) regret
bound. Our experimental results show that our pro-
posed algorithm exhibits a sublinear regret and runs
significantly faster than the other baselines.
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