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Abstract

Inclusion-based program analyses are implemented by
adding new edges to directed graphs. In most analyses, there
are many different ways to add a transitive edge between
two nodes, namely through each different path connecting
the nodes. This path redundancy limits the scalability of
these analyses. We present projection merging, a technique
to reduce path redundancy. Combined with cycle elimina-
tion [7], projection merging achieves orders of magnitude
speedup of analysis time on programs over that of using cy-
cle elimination alone.

1 Introduction

Many constraint-based program analyses can be expressed
in terms of set inclusion constraints. These analyses in-
clude shape analysis, closure analysis, soft typing systems,
receiver-class analysis for object-oriented programs, and
points-to analysis for pointer-based programs, among oth-
ers [4,5,8,11,15,16, 19,20, 22].

Inclusion-based constraint systems are commonly repre-
sented as directed graphs. Nodes represent abstract pro-
gram values and edges represent the set inclusion relation.
For example, the constraints X C )Y C Z are represented
by the directed graph with nodes X', ), and Z and directed
edges (X,)) and (), Z) for the inclusion:
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Solving constraints can be viewed as adding new edges to
the graph to denote relationships implied by the initial sys-
tem. By making implied constraints explicit, it becomes
straightforward to answer queries about whether particular
relationships hold. In the example above, adding the edge
(X, Z) makes explicit the implied constraint X C Z:
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It is well-known that solving many forms of inclusion
constraints reduces to computing the dynamic transitive clo-
sure of the underlying graph representation, or equivalently
to a context-free grammar reachability problem [17]. Thus,
the worst case complexity of the best known algorithms for
many inclusion-based analyses is cubic in the size of the an-
alyzed program [13,17]. Standard implementations of these
analyses are efficient for small to medium size programs, but
usually do not scale to large programs.

There are several reasons that straightforward implemen-
tations are impractical:

1. Memory Requirement
The transitive closure of a directed graph with n nodes
may have O(n”) edges. Standard implementations
compute an explicit representation of the transitive clo-
sure and therefore may consume a lot of memory.

2. Cyclic Constraints
For inclusion constraints, if there is a cycle of inclusions
(constraints of the form X; C A> C A3... C X,,, C Xy
where the X;’s are set variables), up to m? edges may
be added between the nodes on the cycle. This is unde-
sirable because these variables are obviously equivalent
in all solutions of the constraints.

3. Redundant Paths
In constraint graphs; there are usually many differ-
ent ways to add a transitive edge, namely through the
many different paths that connect two nodes.

In [7], the authors present a simple but effective cycle
elimination algorithm addressing the problem of cyclic con-
straints. Andersen’s points-to analysis [5], a cubic time al-
gorithm, is used as a case study.

In the same paper, the authors propose a representation
of inclusion constraints, called inductive form, which helps
overcome the problem of high memory usage. Instead of ex-
plicitly representing the least solution, an implicit represen-
tation is maintained. This implicit representation is sparser
than standard implementations and is better suited for use
with the suggested cycle elimination algorithm. A separate
post-processing phase is needed to compute the least solu-
tion of the constraints. The separation into these two phases
also helps reduce memory usage.

However, the problem of redundant paths is not ad-
dressed in [7]. The techniques in [7] are very effective for



programs up to 50,000 lines of preprocessed code, but even
for these programs, the problem with redundant paths is
evident. For example, for the largest program considered
in [7], redundant edge additions dominate (see [7], Table 3).
On average, each transitive edge is added in four different
ways.

This paper addresses the problem of redundant paths via
a technique called projection merging. Combined with cycle
elimination, projection merging yields orders of magnitude
speedup for large programs.

The basic insight of the technique is the observation
that inductive form treats different kinds of edges differ-
ently: variable-variable edges (edges between two variables)
are less likely to be added than source-sink edges (edges
between two constructed terms). Thus, translating the con-
straint graphs to expose more variable-variable paths can
reduce redundant edge additions. Projection merging itself
is quite simple to explain and implement, but the analysis
of its behavior is subtle because of positive interactions with
cycle elimination.

To validate the technique, we study the same points-to
analysis for C [5,21] used in [7] (See Appendix A for a brief
description of the analysis). gimp, a program that before
preprocessing has more than 440, 000 non-comment lines of
C, can be analyzed in less than half an hour with projec-
tion merging and cycle elimination. With cycle elimination
alone, the analysis did not finish after more than 33 hours
of processing.

The rest of the paper is structured as follows. In Sec-
tion 2, we briefly describe the constraint language and in-
ductive form. Section 3 presents projection merging. Sec-
tion 4 presents experimental results to demonstrate the effi-
cacy of the technique. Section 5 discusses related work, and
Section 6 concludes.

2 Preliminaries

In this section, we introduce a constraint language and stan-
dard resolution rules. We also present inductive form, the
particular constraint graph representation we use.

2.1 Set Constraints

This subsection covers basic material on set constraints. In
particular, we work with a subset of the full language of set
constraints [2,12]. Constraints are of the form L C R, where
L and R are set expressions. Set expressions consist of set
variables X)), ... drawn from a countable set of variables
Vars, terms constructed from n-ary constructors ¢ € Con,
projection expressions, an empty set 0, and a universal set 1.
L,Re€ se = X|c(ser,...,sen)|proj(c,i,se)|0]1

Each constructor c is given a unique signature S. speci-
fying the arity and variance of ¢. Intuitively, a constructor
¢ is covariant in an argument if the set denoted by a term
¢(...) becomes larger as the argument increases. Similarly,
a counstructor c¢ is contravariant in an argument if the set
denoted by a term ¢(...) becomes smaller as the argument
increases.

Definition 2.1 (Positive and Negative Positions) In
a constraint se C se’, we say the set expression se appears
positively and the set expression se’ appears negatively.
The position of a subexpression is defined inductively.

Su{xCca} S
SUu{seCl} & S
SuU{0Cse} & S
SuU{c(ser,...,se,) Ceclsel,..., sen)} <
suU {se; C sej} c covariant in i
i {se; D sej} c contravariant in i
SU{c(ser,...,sen) Cprojle,i, se)} <

U {sei C se} ¢ covariant in i
se; D se} ¢ contravariant in ¢
{
SU{l Cproj(c,i,se)} <
SU {1 C se} c covariant in i
{0 D se} c contravariant in 4

SuU{c(...) Cproj(d,i,se)} < S
ifd#c

SuU{e(...)Cd(...)} < no solution
ifd#c

SU{c(...) €0} < no solution
SU{1 C0} < no solution

Su{1Cd(...)} < mnosolution
Figure 1: Resolution rules

e If c(ser,...,8€i,...,8e,) appears positively in a con-
straint, then se; appears positively if ¢ is covariant in
i; se; appears negatively if ¢ is contravariant in i. The
case when c(se1,...,sei,...,se,) appears negatively
is symmetric.

e If proj(c,i, se) appears negatively in a constraint, then
se appears negatively if ¢ is covariant in i; se appears
positively if ¢ is contravariant in . We require a projec-
tion expression proj(c, i, se) to appear only in negative
positions.

A projection expression proj(c, i, se) has the effect of se-
lecting the ith component se’ of any expression with head
constructor ¢ on the left-hand side of the constraint, and
then adding the new constraint se’ C se. For example, a
constraint

c(X,Y) Cproj(c, 1, Z)
implies the constraint (see Figure 1)
xXcz

assuming ¢ is covariant in its first argument. Note that
proj(c, i, se) has no effect if there is no expression with
head constructor ¢; the constraint d(...) C proj(c,i, se)
is trivially satisfied if d # ¢ (see Figure 1). The notation
proj(c, i, se) is closely related to the more standard set con-
straint notation ¢ ‘(se). We discuss why we need this new
notation in Section 3.
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Figure 2: Example constraint graph A

2.2 Constraint Graphs

This subsection reviews the framework of [7].

The solved form of a constraint system is a directed graph
G = (V,E) closed under a set of rules for adding edges.
The edges E represent atomic constraints and the vertices
V' are variables, sources, and sinks. Sources are constructed
terms appearing to the left of an inclusion, and sinks are
constructed terms appearing to the right of an inclusion. A
constraint is atomic if it is one of the four forms

X Cy variable-variable constraint
c(...)CXx source-variable constraint
X Cproj(...) variable-sink constraint
XCecl..) variable-sink constraint

We use the resolution rules shown in Figure 1 to rewrite
constraints into atomic form (note that non-atomic con-
straints are not represented in the constraint graph). Each
rule states that the system of constraints on the left has the
same solutions as the system on the right'. In a resolution
engine these rules are used as left-to-right rewrite rules.

The key idea of inductive form is that a variable-variable
constraint X C ) can be represented either as a successor
edge (Y € succ(X)) or as a predecessor edge (X € pred(Y)).
The representation for a particular edge is chosen as a func-
tion of a fixed total order o : Vars — N on the variables. A
variable-variable edge X ——) is represented as a successor
edge on X if o(X) > o()); otherwise, it is represented as a
predecessor edge on ).

The choice of the order function o(-) can affect the size
of the closed constraint graph and the amount of work re-
quired for the closure. Generation order, the order in which
variables are created as part of building the initial system
of constraints, does very well in practice, and we have found
experimentally that it is difficult to pick a better order func-
tion.

The other two kinds of edges are associated with the
variables. A source-variable constraint ¢(...) C X is rep-
resented as a predecessor edge on X, and a variable-sink
constraint X C proj(...) or X C ¢(...) is represented as a
successor edge on X. The closure rule Transitive is given
as:

L € pred(X) AR € suce(X) = LCR (Transitive)

IFor a treatment of the semantics of set constraints, see [2,3,12].

Notice that L may be a source or a variable and R may
be a sink or a variable. This closure rule combined with
the resolution rules in Figure 1 produces a final graph in
inductive form [3]. The least solution of the constraints is
not explicit in inductive form, but it is easily computed by:

Solyeqet(Y) ={c(...) | c(...) € pred(¥Y}) U
U Soljpgst(X)

Xepred(Y)

Note that this computation amounts to computing an
acyclic transitive closure since o(pred())) < o()) for any set
variable ). Furthermore, the least solution can be computed
on demand. In practice, it is rarely necessary to compute the
least solution for every variable in a constraint system be-
cause most applications require the solution of only a subset
of all set variables.

A path in a constraint graph comnsists of a sequence of
nodes and inclusions

Lcxc...CXHCR

where L may be a source or a variable, and R a sink or a
variable.

Definition 2.2 (Inductive Path) A path is inductive if
an edge is added between the two end points on the path
by applying the closure rule Transitive to the inclusions
along the path. Equivalently, one can show that a path is
inductive if and only if the two end points have the smallest
indices (under the order function) on the path [7]. Sources
and sinks are taken to have the smallest indices, .e., —o0.

2.3 Redundant Paths

In inclusion constraint graphs, there are usually many paths
connecting two nodes. Consider the example constraint
graph in Figure 2a. In the graph, there are n paths connect-
ing the two nodes ¢(Y) and proj(c, 1, Z), namely through
the n variables X7 to A,. Thus, the implied constraint

c(Y) Cproj(c, 1, 2)

is discovered n times, resulting in n — 1 redundant additions
of the edge (Y, Z) to the constraint graph. Figure 2b shows



S1 Th
So & Z T

: x :
Sn—1 7 \ Tr—1
Sn T

(a) Before closure

(b) After closure

Figure 3: Example constraint graph B

Z

(a) Before closure

zZ

(b) After closure
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the graph after closure. The n dotted lines between c())
and proj(c,1, Z) do not appear in the final graph. We show
them only to stress that the constraint

(YY) Cproj(e, 1, 2)

is resolved n times.

For a program analysis problem, the aforementioned re-
dundancy occurs because it is commonplace that some con-
structed value (a source) flows through many intermedi-
ate variables before a field is finally projected out. A re-
lated problem is depicted in Figure 3a, in which there are n
sources flowing into the variable X and m sinks to project
from X. In this case, nm edges are matched up, one for
each (S;,T;) for 1 <i < nand 1 < j < m. The graph after
closure is shown in Figure 3b.

Although every inductive path may cause an edge to be
added between the two end points, the number of edge addi-
tions can be smaller. As an example, consider the constraint
graph shown in Figure 4a. We assume the following ordering
o(-) on the variables

o(X) <o(2) <o(Y) <o(V1) < 0o(Ve)

Notice that there are two inductive paths between X and
Z, namely

X—V1—)Y—Z
and
X—Vy—>)Y—Z

However, the edge (X, Z) is only added once, through the
path

because the redundant addition of X ----- ») does not cause
the edge X - »Z to be added a second time. The graph
after closure is shown in Figure 4b.

Definition 2.3 (Join Point) Let p be an inductive path.
Let node(p) denote the set of nodes on the path. Fur-
ther let head(p) and tail(p) denote the two end-points on
the path. The join point of p, denoted by join(p), is
the variable with the minimum index among the variables
node(p) \ {head(p),tail(p)}, i.e., o(join(p)) < o(X) for all
X € (node(p) \ {head(p), tail(p)})

The following lemma (Lemma 2.4) gives a characteriza-
tion of the number of edge additions between two nodes.

Lemma 2.4 Let n; and n» be two nodes in a constraint
graph, and P(ni,n2) be the set of inductive paths connect-
ing the two nodes. The number of edge additions of (n1, n2),
denoted by #(n1,n2), is given by

#(n1,n2) = Card({join(p) | p € P(n1,n2)})
where Card(-) denotes the cardinality of a set.

Proof. [Sketch]
It suffices to demonstrate the following:

1. For any p1,p2 € P(ni,n2) with join(pi) = join(p2),
the edge (ni1,m2) is added once through these two
paths.

2. For any p1,p2 € P(ni1,n2) with join(p1) # join(p2),
the edge (m1,n2) is added twice, once through each
path.



Both can be shown by observing that the edge added
between n; and n» along an inductive path p is added by a
final application of rule Transitive to a 2-edge segment of
the form

O
Because edges between variables are added only on in-
ductive paths, inductive form gives a sparse representation
for variable-variable edges. But every path in the constraint
graph linking a source and a sink is inductive, and thus may
cause an edge addition. It is shown in [7] that under a simple
random graph model, the work to close a constraint graph
is dominated by the addition of edges between sources and
sinks, which is expected to be O(n+/n), where n is the num-
ber of nodes in the graph. The cost of all other edges is
expected to be O(nlnn). These results are supported by
experimental data. For example, for the program mume, the
number of edge additions between sources and sinks signif-
icantly dominate the rest (see Table 2, the columns labeled
“s-s”, edge additions between sources and sinks, and “Work
Other”, all other edge additions, under the column “Cy-
cle Elimination Only”: 13748716 versus 1106200). Thus,
improving performance requires reducing the number of re-
dundant edge additions between sources and sinks.

3 Projection Merging

This section presents projection merging. Before we present
the technique, we first provide some intuition with two ob-
servations:

1. In inductive form, variable-variable edges are sparse.
In inductive form, any path between two constructed
terms may cause an edge to be added. For paths be-
tween variables, an edge is added only if the two vari-
ables have smaller indices than the other variables on
the path. Thus variable-variable paths are preferred to
source-sink paths.

2. There are a small number of constructors with small
arity.
For many constraint-based program analyses, only a
small number of non-constant constructors are used
(even though there may be many constant constructors
serving, e.g., as program point labels). Furthermore,
these non-constant constructors usually have small ar-
ity. For our example points-to analysis, only two con-
structors are used, a ref constructor to denote locations
(arity 3) and a lam constructor to denote functions (ar-
ity 3).

From the first observation we can conclude that by trans-
forming the constraint system from paths between con-
structed terms to paths between variables, we may reduce
the number of redundant edge additions.

Consider again the constraint graph in Figure 2a. The
ultimate effect of this graph is to discover the constraint

c(Y) € proj(c, 1, 2)

between the source ¢(Y) and the sink proj(c,1, Z). This
constraint is then resolved to the variable-variable constraint
YCZzZ

X1[C'1]

xﬁ”k
: z

fe.1]
xn17'
xle: 1l

Figure 5: Transformed constraint graph A (Figure 2a)
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If there were a way to bypass source c¢()) and sink
proj(c,1, Z) and instead deal directly with the flow of infor-
mation from Y to Z, then we could avoid the redundant edge
additions between the source and sink and deal with only
variable-variable paths. The key is to observe that when a
constraint X; C proj(c, 1, Z) in Figure 2a is first formed, we
know that whatever lower bound X; may have it will be pro-
jected by X;’s upper bound. Thus we may as well replace
the constraint X; C proj(c, 1, Z) by a constraint Xi[c’l] Cc 2z,
where Xi[c’l] is a variable standing for ¢~ '(A;). Note that
the new constraint involves only variables.

A naive method for systematically performing this trans-
formation goes as follows. With each variable X, construc-
tor ¢, and argument position ¢ in the original constraint
system associate a projection of the form proj(e, i, X[C’i]),
where X[ is a variable. The idea is that X% represents
¢ *(X), the sum of all ith components of terms with head
constructor ¢ in the set X'. With this association of a vari-
able with all its possible projections, we can transform the
constraint system to expose the variable-variable paths not
explicit before. By the second observation, not very many
such projections are required.

As an example, we explain how the graph in Figure 2a
may be transformed into the graph in Figure 5. We asso-
clate with each X; a projection proj(c, 1, Xi[c’l]). Now any
constraint

Xi g pTOj(C, 17 y)
is equivalent to
Xi[c’l] g y

Systematically applying this rule to the graph in Figure 2a
gives the graph in Figure 5.
As indicated above, this approach has problems.

e The approach is static.
By static we mean that the association of variables with
their projections is made before performing the graph
closure. For some variables, it is unnecessary to asso-
ciate the variable with its possible projections. In ad-
dition, we may need to project only a particular field
from a variable.

e The approach is incomplete.
The association of a variable and its projections is made
for variables appearing in the original system. What
about the newly created variables X14?

Furthermore, these newly created variables must be as-
signed indices in the total order. If the indices are not chosen



(Proj-Creation)

rS()U{
SoU{

SoU{X Cproj(c,i,se)} =

L

(Proj-Transitive)

{X C proj,(c,i, Xleily yleil ¢ se} ¢ covariant in ¢

{X C proj,(c,i, Xy ge C X[C’i]} ¢ contravariant in i

if (X C proj,(c,i, X)) ¢ S,

{xle C se} ¢ covariant in i

{se C X©} ¢ contravariant in i

otherwise.

SoU{X CY, Y Cproj(c,i, YN} = Sou{X CY,¥Cproj,(c,i, Y1), X Cproj(c,i,V')}
if o(X) < 0(Y)

Figure 6: Rules specific for projection merging

X—> proj(c, i, se)

=

proj, (c, i, X'y
.
X

A
xledl o oom se
proj, (e.i, X1 proj,(c,i, X'e)
B =X
proj(c, i, se) X xledl o g
proj, (c, i, Ve ‘proj(ai’y[c’i]) )
c proj,(c,i, V')

=

A

x -y

Figure 7: Graph representation of projection merging rules

with care, the benefits are lost. To stress this point, con-
sider the example in Figure 2a. If the newly created variables

xY through XY have large indices, we still add the edge
(Y, Z) n times (due to inductive paths), which is no better
than the original situation.

These problems can all be solved with an incremental ap-
proach. A variable X[*¥ is needed only if the variable X has
a projection upper bound, i.e., we have X C proj(c, i, se) for
some constructor ¢, index ¢, and expression se. We address
the technical details of generating projection variables xledl
“on the fly” in the next section, with an explanation of why
it helps to reduce the number of redundant edge additions.

Note that in standard set constraint implementations
such as SBA, constructed values (including projections) do
not propagate backwards. Thus, projection upper bounds
are not added to variables through constraint resolution.
They only appear through the initial constraints. However,
in inductive form, constructed values (including projections)
can be propagated backwards along variable paths. Thus,
a variable might accumulate many projections for the same
constructor and index pair. Therefore, we need to apply the
transformation dynamically for the projections propagated
through constraint resolution.

We can now explain why we introduce the notation
proj(c,i, se) instead of using the more standard notation
¢ '(se). Consider a constraint

X C proje,i, se)
which would be written
¢HX) C se

in standard notation. The ¢ ‘(...) form obscures the im-
plied upper bound on X', which is explicit using proj(...).
Using ¢ (... ) would thus complicate the definition of induc-
tive form and the resolution rules and obscure the key point
that sources propagate forward through the graph as lower
bounds while sinks propagate backwards as upper bounds.
As noted above, this is relevant only for inductive form
implementations: using proj(...) and projection merging
would have no benefit for standard implementations such as
SBA.

3.1 The Algorithm

This subsection shows how to associate a variable with its
generic projections. We extend the closure rules in Figure 1



and the Transitive rule. Then we show how to choose a
variable ordering that ensures the efficient termination of the
modified rules. Finally, we explain why this approach works
well in reducing the number of redundant edge additions.

We first discuss a transformation on the initial con-
straints that removes all nested projections, i.e., projections
within projections or within constructed terms. We de-
scribe the case for projection expressions, and the case for
constructors is similar. Replace each constraint with nested
projections

se1 C proj(c,i, se2)
by

{se1 C proj(c,i, X), X C sea} if cis covariaint in 7
{se1 C proj(c,i, X), sea C X} if cis contravariant in ¢

where X' is a fresh set variable not appearing in the cur-
rent constraint system. By repeated use of this rule, a sys-
tem of initial constraints with nested projection operators
is transformed into a system of constraints without nested
projections in linear time, and the resulting constraints have
size linear in the size of the original constraints. For later
discussion we only consider constraints without nested pro-
jections. Note that the resolution rules in Figure 1 do not
reintroduce nested projections.

Projection merging consists of two additional resolution
rules Proj-Creation and Proj-Transitive. The two rules
are shown in Figure 6. Figure 7 explains the rules in terms
of constraint graphs.

The Proj-Creation rule is used to merge projection
upper bounds. This rule uses a special marked sink,
proj,(c, i, se). This special projection has the same meaning
as the normal projection proj(c,i, se). If for a set variable
X, there is not yet a constraint

X C proj,(c,i, X1")
when a constraint
X C proje,i, se)

is to be added to the constraint system, we replace the con-
straint by the two constraints

X C proj, (c,i, X"
and

if ¢ is covariant in i

{ xledl C se

se C xlel if ¢ is contravariant in 7

where X[ i a fresh set variable. The variable X ig
called the generic projection variable of X' for constructor c
at index i. This case is depicted as part A in Figure 7. If
on the other hand, there is already a special projection on
X, adding the constraint

X g p’I’Oj(C, ia Se)
causes
Xl C oge
or

se C xled

to be added depending on the variance of ¢ in . This case
is depicted as part B in Figure 7.

Note that for each variable, there is at most one projec-
tion for a constructor and index pair (¢, ). By observation 2
in Section 3, the total number of possible special projections
is relatively small.

The new transitive rule Proj-Transitive deals with the
case when a special projection is added transitively on a
variable. The rule simply converts a special projection to a
normal projection because to the variable X, the projection
proj(c,i, Y} is only a normal sink. This rule is depicted
as part C in Figure 7. Note that a constructed expression
can also appear in the position of the variable X, the rule
for a constructed expression is the same.

In cases where the new rules are inapplicable, rules in
Figure 1 and the Transitive rule are applied. To close
a graph, we repeatedly apply all the rules until no rule is
applicable.

The following theorem (Theorem 3.1) states that the res-
olution of the constraints under the new rules yields the
same results as that under the standard rules in Figure 1
and the Transitive rule.

Theorem 3.1 (Correctness) The modified resolution
rules preserve the least solution of the system. More pre-
cisely, for any variable X’ appearing in the original constraint
system, the least solution for X is the same under both sets
of closure rules.

Proof. [Sketch]

Simply notice that with the projection merging rules any
value (a source) that is a lower bound on a non-generic pro-
jection variable X under the original rules still is a lower
bound on X under the new rules, and wvice versa.

O

We also need to establish that resolution under the new
rules terminates. It suffices to show that only finitely many
generic projection variables are generated. We assume that
our order function o(-) is a one-to-one function that maps
all set variables (an infinite set) to natural numbers N.

Theorem 3.2 (Termination) For any constraint set Sp
and any one-to-one order function o(-) that maps set vari-
ables to natural numbers N, finitely many generic projection
variables are generated during the resolution of Sp under the
extended resolution rules.

Proof. As noted above, for each constructor and index
pair (¢, 1), and each set variable, at most one generic projec-
tion variable is created. Thus it suffices to bound the number
of variables that may have a projection upper bound. Let

Omaz = max { o(X) | X is a variable appearing in Sp }

We claim that for each constructor and index pair (¢, 1),
at most Omgaz number of generic projection variables are
created. The claim follows if there are at most Omgg vari-
ables that can have projection upper bounds with ¢ as the
constructor and 7 as the index, namely the set of variables
having index no greater than Omaqgz.

If a variable X has a projection upper bound, then there
must exist an inductive path from X to a projection. We
show by induction that all variables X with projection or
special projection upper bounds have index o(X) < Omaz-
Clearly this is true before any resolution rules are applied.
There are two cases for the inductive step:



1. Proj-Creation creates special projection constraints
X C proj,(c,i, X from existing constraints X C
proj(c,i, Z). By the inductive hypothesis, o(X) <
Omaz-

2. Proj-Transitive adds the constraint
X C proj(c, i, Y
from constraints
X CYCproj,(e,i, )

We know o(X) < o(Y) (by the conditions of Proj-
Transitive) and o(Y) < Omaz (by the inductive hy-
pothesis). Therefore o(X) < Omaz-

Thus all such variables must have index no greater than
Omaz. Since there are finitely many constructor and index
pairs, the number of new projection variables is bounded by
O(MOmaz), where M is the number of distinct constructor
and index pairs.

O

Although resolution terminates for any order function,
the ordering still affects the number of generic projection
variables. The following corollary suggests a good ordering
to use.

Corollary 3.3 If for each generic projection variable X1,
we set O(X[C’i]) > Omaz, then at most O(M N) new vari-
ables are generated, where M is the number of constructor
and index pairs and N is the number of set variables in the
original constraint system. In particular, if the number of
constructor and index pairs is fixed, only a linear number of
generic projection variables are generated.

Proof. There are only N set variables with index no
greater than Omaz. O

Note it follows that if each generic projection variable
X' has index larger than Omaz, we only generate generic
projection variables for the set variables in the original con-
straint system. We never generate a generic projection vari-
able for another generic projection variable.

Recall that most constraint-based program analyses use
a small number of non-constant constructors and these con-
structors usually have small arity. Thus the number of gen-
erated generic projection variables tends to be small, which
is what makes projection merging viable.

To implement the ordering suggested by Corollary 3.3,
one can use some large offset to separate the generic pro-
jection variables from other variables; for each generic pro-
jection variable we assign it an index that is its generation
order plus this chosen large offset.

To test the importance of choosing a good ordering, we
performed the following experiment. We tried both variable
generation order and the above suggested ordering. There
is a C source file in one of the benchmarks (gimp) which
needs more than 23,000 seconds to analyze under genera-
tion order, whereas it took less than 2 seconds under the
ordering with a large offset. Note that the generation order
inter-mixes the regular set variables and generic projection
variables and thus may add more generic projection vari-
ables. The generation order is the ordering used in [7] for
the cycle elimination experiments. In [7], it is observed that
the chosen order function does not make much difference
for cycle elimination. However, for projection merging, the
order function in use is very important for performance.

3.2 Discussion

Without creating many generic projection variables, projec-
tion merging turns many source-sink paths into variable-
variable paths. We should expect that redundant paths be-
tween variable nodes do not produce as many redundant
edge additions because of the properties of inductive form.

However, as hinted in the beginning of Section 3, there
is a flaw in the argument. Reconsider the example in Fig-
ures 2a and 5. For the variables X} through X, the generic
projection variables are X' through X! respectively.
The generic projection variables have indices larger than the
rest of the variables Y, Z, X1,... , X,. In this case, the edge
between ) and Z is added n times. Overall, there is no
reduction in redundant work.

There is actually a trade-off in choosing the variable or-
dering. For generic projection variables, making the indices
small reduces the number of redundant edges added (e.g.,
Figures 2a and 5). However, small indices cause many more
such variables to be created (Theorem 3.2).

On the other hand, if we let the generic projection vari-
ables have large indices, the number of generic projection
variables generated is linearly bounded. However, as just
shown, redundancy in constraint graphs is not reduced. It
is worth mentioning that if we only use projection merging
without cycle elimination, analysis time tends to be much
longer than without projection merging. For the case where
we use small indices for generic projection variables, this is
because the number of generic projection variables gener-
ated is large. For the case where we add a large offset to
generation order, the analysis time is about a constant fac-
tor slower because of the extra work to create the projection
variables and to apply the extra rules.

The missing insight is a very subtle, but pronounced,
positive interaction between projection merging and cycle
elimination. We first explain a few details of cycle elimina-
tion. Cycle elimination focuses on dynamically finding and
eliminating cycles of constraints between variables of the
form X1 C X, C ... C X,, C Xi. Since X1,..., A&, are equal
in all solutions, the n variables can be replaced by a single
variable, which becomes the representative of X,... , X,y.
For reasons discussed in [6], it turns out that the best choice
of representative is the variable among X, ... , X, with the
smallest index under the ordering o(-).

Since we collapse a cycle to the variable with the small-
est index on the cycle, all the variables on the cycle now
have a smaller index, which at first sight might appear to
cause additional projection variables to be generated for the
generic projection variables. This is not a problem because
of the following:

e The variables on a cycle become one variable, and so
only need at most one generic projection variable for
each constructor and index pair (c, ).

e Eliminating a cycle does not increase the number of
variables having indices no greater than Omgqz, and in
fact may decrease the number of variables with indices
no greater than Omaz.

3.2.1 Reducing Redundant Additions

Now we are in the position to explain why projection merg-
ing combined with cycle elimination reduces redundant edge
additions. We use a sequence of graph transformations to
aid the explanation.



c(dnh) X proj(c,1, Z1)
(a) Step 1
c(M) X proj,(c, 1, x1M)
RS xlel Zi .
(c) Step 3

proj,(c,1, x1e1)
proj(c,1, Z2)

proj(c,1, Z3)

proj(c,1, Zm)

plet]
Z A2
—
(e) Step 5

(D) X proj,(c, 1, xlM)
A2 xlel 2
(b) Step 2
c(d1) X projy(c,1, X[“’l])
e
2, RZ1
— .
(d) Step 4
c(V1) X proj,(c,1, X[“’l])
(V) 7"
c(Ys)
¢(Vn

Figure 8: Reducing edge additions

First, we give a high level overview. A generic projection
variable X[¢% of X starts with large index, since its index is
given as generation order plus a large offset. In the process of
resolving the constraints, X% can potentially be on a cycle
that is detected with online cycle detection and elimination.
In that case, the cycle including Xl s collapsed to a single
representative node ) with small index.

Suppose later we obtain another constraint X C
proj(c,i, Z). This constraint transforms into the constraint
Y C Z, because Xl s aliased to Y. If Z is generated af-
ter ), we have o(Y) < o(Z), and any path ending with the
edge (¥, Z) is not inductive. Thus eliminating cycles with
generic projection variables tends to reduce the redundancy
in a constraint graph.

The following lemma states that generic projection vari-
ables, if found on a cycle, always have a representative that
is not a generic projection variable.

Lemma 3.4 Let A3 C ... C X, C X be a cycle in a
constraint graph. It holds that at least one of X; for 1 < i <
n is a not a generic projection variable.

Proof.

Let X% and Y%7 be two generic projection variables.
Assume there is an edge X[©1 C Y9Il in the graph. We
claim that o(X) < o(Y) (with ¢ = d and ¢ = j) if ¢ is
covariant in i, and o(X) > o()) (with c =d and i = j) if ¢
is contravariant in .

We consider the case when c is covariant in ¢. The case
when c is contravariant in ¢ is symmetric.

There are two ways that the edge xled € Yl can be
added:

1. through a path
XY proj,(d. j, V")
where ¢ = d and ¢ = j. By applying the Proj-
Transitive rule, we get
X—>proj(d, j, Y'*7)
Applying the Proj-Creation rule, we get the edge
yleil il
For the Proj-Transitive rule to be applicable, it must
be the case that o(X) < o(Y).
2. through a path

d(..., X0 )Y proj (d, j, V")
where X[ is the jth argument of d. This case is
impossible because X cannot appear inside a con-
structor.

Any cycle with Xl[cl’”] c...C xlenin] C Xl[cl’”], re-
quires that ¢1 = ... = ¢, and i1 = ... = i, and o(X1) <

. < o(Xy) < o(X) or o(X1) > ... > o(Xy) > o(X1) ,
which is impossible.



Figure 9: Reducing edge additions for constraint graph A
(Figure 2a)

Thus every cycle must contain a variable that is not a
generic projection variable.
O
We give now a more detailed explanation by graph trans-
formations. Assume we start with the constraints shown in
Figure 8a:

¢(V1) C X Cproj(e, 1, 21)

Applying the Proj-Creation rule creates the constraints
X C proj(c1, Xty and xtell €z, Applying
the Proj-Transitive rule adds the constraints c¢(Y1) C
proj(c, 1, X)) which is decomposed by the rule in Fig-
ure 1 into the constraint J; C X®!. The resulting graph in
shown in Figure 8b. After applying more rules to portions of
the graph not shown, assume we discover that the variables
Vi, X and Z, are on a cycle. The situation is depicted
in Figure 8c. This cycle of constraints is then collapsed to a
single node with a representative for all the variables on the
cycle. In Figure 8d, we show the collapsed cycle as a dotted
oval, with as the representative. Note that the index of
the representative is relatively small since it is the variable
with the smallest index on the cycle, and the representative
cannot be a generic projection variable by Lemma 3.4.

Now suppose the following constraints shown in Fig-
ure 8e are generated and added to the system®

c(d2) € X
c(¥s) € X
X C proj(el, 22)
X C proj(el, 2s)
X g pT‘Oj(C,].,Zm)
Assume the variables Vs, ... , Vo, 22, ..., Zx have larger

indices than the variables J; and Z;. Thus they have larger
index than the representative (rer). After applying the res-
olution rules, we get the constraint graph shown in Fig-
ure 8f. Since has smaller index than the variables

2The addition of such constraints is common when the variable X
is found to be the representative of a cycle.

Yo....,Vn,22,..., Zm, none of the paths

V(T2

for 2 < i < nand 2 < j < mis inductive. Thus none of
the edges (Vs, Z;) is added. In contrast, without projection
merging, all the nm edges (i, Z;) are added to the graph.
The above scenario is the best case for projection merging.
In practice, we can assume that a fraction f of the nodes
Ya,...,VYn and 2a,..., 2, have lower index than the rep-
resentative (rer). In that case, f(nm) transitive edges are
added to the graph instead of nm edges.

We now come back to the redundant paths problem
shown in Figure 2 and show how it is handled by projec-
tion merging. Suppose the constraints

C(yk) c 4

C(yk) C A
Xl g p’I’Oj(C,]_,Zk)
XQ g p’I’Oj(C, 172k)
Xn g p’I’Oj(C, 172k)

are added to the graph in Figure 2a. The generic projec-
tion variables for X through X, are created; let these be
Xl[c’l], .., Xl Assume that all of the generic projection
variables are found to be on cycles and are identified with
other variables as the representatives. Assume also that Yy
and Z; have smaller indices than a fraction f of the rep-

resentatives of the variables X[ ... xl%!. After apply-
ing closure rules, we get the graph in Figure 9. The edge
(Vk, Zk) is added fn times because only fn of the paths

Ve (ED) 2

are inductive.

The examples in this section illustrate how projection
merging interacts positively with cycle elimination. There
is another informal argument which is insightful. The ran-
dom graph model in [7] shows that if indices are assigned
randomly to variables, then inductive form adds asymptot-
ically fewer variable-variable edges than source-sink edges.
The problem with assigning all generic projection variables
large indices is that the resulting graph is anything but ran-
dom, and the examples show that there is no benefit. Cycle
elimination, however, has the effect of arbitrarily perturbing
the indices of generic projection variables. This apparently
makes the graph sufficiently random that the behavior is
more in line with the predictions in [7].

In Section 4, we will see that projection merging com-
bined with cycle elimination significantly improves the anal-
ysis time. The effect on redundant edge additions is very
dramatic. In one example, gcc, the average number of times
an edge is redundantly added drops from 85 to 0.32.

4 Experiments

This section experimentally validates the idea of projection
merging. We show that combined with cycle elimination,



AST #Prog
Benchmark Nodes LOC Vars
allroots 700 426 91
diff.diffh 935 293 122
anagram 1078 344 130
genetic 1412 323 154
ks 2284 574 210
ul 2395 441 141
ft 3027 1180 279
compress 3333 651 174
ratfor 5269 1532 388
compiler 5326 1888 320
assembler 6516 2980 796
MUL-typecheck 6752 2410 557
eqntott 8117 2266 592
simulator 10946 4216 1125
less-177 15179 11988 1420
li 16828 5761 2313
flex-2.4.7 29960 9345 2871
pmake 31148 18138 2493
make-3.72.1 36892 15213 3061
inform-5.5 38874 12957 3186
tar-1.11.2 41035 18293 2471
sgmls-1.1 44533 30941 2890
screen-3.5.2 49292 23919 3235
cvs-1.3 51223 31130 4691
espresso 56938 21537 3981
gawk-3.0.3 71140 28326 3692
povray-2.2 87391 59689 4924
mume 312458 430947 28849
spice 452149 849258 24310
gs 504724 437211 35687
pgsql 718781 | 1344689 45299
gce 1168907 411034 59991
gimp 2112848 | 7486733 | 178829

Table 1: Benchmark programs

projection merging significantly improves the execution time
of Andersen’s points-to analysis [5]. Note that the analysis
time includes not only the time to close the constraint graph
but also the time to compute the points-to sets for all the
program variables. In our implementation of the analysis,
we model structures as single atomic memory locations. Ev-
ery field of a structure shares the same location.

4.1 Experimental Data

Our experiments were done with the BANE analysis
toolkit [1] using a single processor on a SPARC Enterprise-
5000 with 2048M of memory. We use the generation order
of set variables, except for the generic projection variables,
where we set the indices to be generation order plus a large
offset (0xOfffffff). This ordering guarantees that the in-
dices of generic projection variables are greater than the
indices of other variables for the set of benchmarks we ana-
lyze.

We use the C benchmarks shown in Table 1. The bench-
marks are those in [7] with six additional large programs:
mume, spice, gs, pgsql, gcc, and gimp.

e mume is a multiuser dungeon program.
e spice (version 3f4) is a circuit simulation program.

e gs is ghostscript version 5.01 without the X library.

e pgsql is PostgreSQL, an Object-Relational DBMS de-
rived from the Berkeley Postgres database management
system.

e gcc is the GNU C compiler version 2.8.1.

e gimp is the GNU image manipulation program with the
X library included.

For each benchmark, the table lists the number of ab-
stract syntax tree (AST) nodes, the number of lines in the
preprocessed source, and the number of program variables
in the source. Notice that the six new benchmarks are
much larger than those used in [7]. As an aside, gimp was
the largest program we could obtain for these experiments
(440,000 non-comment source lines before preprocessing).
The Linux kernel without assembly files is a little larger
(550,000 non-comment, non-assembler source lines before
preprocessing) but uses a number of GNU extensions that
our C parser does not support.

Two experiments were performed. In the first experi-
ment, we analyzed all the benchmarks with cycle elimination
only. In the second experiment, we combined cycle elimina-
tion and projection merging. For the experiment with cycle
elimination only, all programs ran through the analysis ex-
cept gimp. The analysis for gimp did not finish in 33 hours,
after which the job was killed. For the second experiment,
all programs ran through in less than half an hour.

Table 2 shows the results for the two experiments. For
each experiment and each benchmark, we report the number
of set variables, the number of edges in the final graph, the
total number of source-sink edge additions including redun-
dant ones, the total number of non-source-sink edge addi-
tions, the total number of edge additions, and the analysis
time in seconds. We ran each experiment three times, and
the one with the best execution time is presented in the ta-
ble. The data for gs is abnormal. There are a large number
of edges in the final graph under the experiment with cycle
elimination only. We believe this is partly due to the lack
of the X library mentioned above. Since the program is in-
complete, there are fewer opportunities for collapsing cyclic
constraints, which may make the final graph very large.

We show some plots to better demonstrate the effective-
ness of projection merging with cycle elimination. In Fig-
ure 10, we plot the analysis time for both cycle elimination
with projection merging and cycle elimination alone against
the number of AST nodes of the parsed benchmarks. Note
that all the plots are on a log-log scale. For small pro-
grams, the analysis times differ by very little. As the size of
the program increases, redundant source-sink paths begin
to dominate as predicted in the complexity analysis in [7]
and the effect of projection merging becomes pronounced.
The analysis time with projection merging is significantly
smaller than without, especially for the last six large bench-
marks. In Figure 11, we plot the speedup of the analysis
time with projection merging over cycle elimination only,
and the trend becomes more obvious. The speedups seem
to be asymptotic: the speedup increases with the size of the
programs. Figure 12 plots the total number of edge addi-
tions (Work) for both experiments. We see the same trend
as in the case of analysis time. Figure 13 plots the ratio of
the total edge additions, which has basically the same shape
as Figure 11. Figure 14 plots the total number of redun-
dant edge additions. We notice that the absolute number of
redundant edge additions for cycle elimination only is sig-
nificantly higher. In Figure 15, we plot, on average, how



Cycle Elimination Only Projection Merging + Cycle Elimination

Benchmark Work Work
#Vars Edges s-s Other Total Time(s) #Vars Edges s-s Other Total Time(s)
allroots 126 257 86 205 201 0.14 210 335 71 317 388 0.15
diff.diffh 184 363 127 282 409 0.16 269 a12 109 350 459 0.17
anagram 208 346 81 290 371 0.18 318 411 106 324 430 0.21
genetic 228 391 115 300 415 0.21 436 610 129 507 636 0.24
ks 324 1222 641 1276 1917 0.40 511 1028 280 977 1257 0.45
ul 199 264 56 259 315 0.26 255 237 a8 270 318 0.27
ft 393 1037 297 1029 1326 0.42 581 955 266 840 1106 0.53
compress 249 395 51 409 460 0.33 383 451 71 514 585 0.39
ratfor 599 1982 727 1853 2580 0.89 840 2493 577 2297 2874 1.05
compiler 439 1159 431 997 1428 0.69 656 1219 196 1281 1477 0.82
assembler 969 2235 874 1906 2780 1.45 1502 3336 688 3511 4199 1.61
ML-typecheck 793 4505 2814 5062 7876 1.77 1214 3833 980 4139 5119 1.87
eqntott 987 2950 922 3048 3970 1.11 1544 2097 799 2804 3603 1.47
simulator 1441 4141 4849 3943 8792 2.36 2066 3990 823 3647 4470 1.95
less-177 1852 7656 7289 8125 15414 3.36 2417 6478 1375 6504 7879 2.90
1i 3202 14125 81948 21288 103236 15.49 4033 13234 3719 15467 19186 5.42
flex-2.4.7 3755 8224 2252 7787 10039 6.41 5207 8886 1732 8461 10193 6.96
pmake 3300 12537 41301 13588 54889 10.33 5172 11857 2232 12966 15198 6.25
make-3.72.1 4731 31820 159389 97474 256863 31.54 6861 55452 15389 168933 184322 31.38
inform-5.5 4364 18394 47315 20172 67487 13.48 8056 19587 3121 19069 22190 8.88
tar-1.11.2 4156 18038 32257 18888 51145 10.84 5476 18262 2092 19422 21514 7.84
sgmls-1.1 4255 34178 300563 41651 342214 47.10 6102 28082 5571 38275 43846 13.46
screen-3.5.2 6449 28098 154413 32185 186598 28.11 7900 17543 3686 17750 21436 9.72
cvs-1.3 6967 22120 27076 23557 50633 11.99 10444 22681 3433 25171 28604 11.80
espresso 6295 26697 120880 28730 149610 25.98 10078 24927 5150 26737 31887 12.76
gawk-3.0.3 6337 26052 108261 35195 143456 26.53 8519 22307 5217 24533 29750 13.02
povray-2.2 7673 65861 246225 70129 316354 51.12 11421 43898 10069 56052 66121 21.72
mume 52859 676765 | 13748716 | 1106200 | 14854916 1064.24 66800 | 228641 40038 276446 317384 137.27
spice 34748 220725 719903 146675 866578 211.19 50969 | 103198 21649 116610 138259 82.49
gs 06633 | 44406952 | 76168794 | 7788690 | 83957484 | 64675.54 121335 | 311999 | 123831 273115 396946 257.51
pgsal 89814 1279129 | 15649146 875655 | 16524801 3941.39 129726 | 353714 70691 631884 702575 569.52
gee 135655 940361 | 80178428 | 1301387 | 81479815 | 11445.80 188853 | 427584 80942 485653 566595 503.41
gimp oo 0o 0o 0o oo oo 378872 917401 209117 1011301 1220418 1494.12

Table 2: Benchmark data

many times an edge is added redundantly through different
paths. Notice that for projection merging with cycle elim-
ination, the number is consistently around 0.3 for almost
all programs. For cycle elimination alone, the number is
much larger for large programs, with the exception of gs,
where cycle elimination alone adds each edge 0.9 times re-
dundantly on average, and cycle elimination plus projection
merging adds each edge an average of 0.27 times. These
data show that projection merging with cycle elimination
effectively solves the problem of redundant paths.

5 Related Work

Many researchers have studied the problem of points-to
analysis. Andersen devised a natural inclusion-based points-
to algorithm based on set constraints in his thesis [5]. Work
by Shapiro and Horwitz [21] contrast Andersen’s set based
points-to analysis with the unification based points-to analy-
sis of Steensgaard [23]. They conclude that while Andersen’s
analysis is substantially more precise than Steensgaard’s, its
running time is impractical. Work in [7], however, demon-
strates that Andersen’s points-to analysis can be made to
scale much better with a special online cycle elimination
technique and the inductive form representation. This pa-
per presents techniques that allow Andersen’s analysis to
be applied to programs an order of magnitude larger than
in [7].

Inclusion constraint resolution algorithms usually have at
least O(n?) time complexity. Work by Melski and Reps [17]
gives some insight as to why this cubic bottleneck is difficult
to break. They show the equivalence of some set-based anal-
yses to context-free grammar reachability problems. Similar
work by Heintze and McAllester [14] also gives some theo-
retical evidence of the difficulty for some subtyping and flow
analyses. They show that certain data-flow and control-flow
problems are 2NPDA-complete, a class of problems that has
resisted a sub-cubic algorithm for over 30 years.

Heintze and McAllester also present a quadratic time

algorithm for some restricted classes of the closure analy-
sis problem for higher order functional programming lan-
guages [13]. The technique presented in [13] resembles pro-
jection merging in some ways, but there are important dif-
ferences. [13] relies on a given, non-recursive type structure
of the program that the algorithm exploits. While projec-
tion merging “discovers” whatever structure it needs and
works with recursive structures, its worst-case complexity is
still cubic.

6 Conclusions

Redundant paths in inclusion constraint graphs limit the
practical application of constraint based program analyses
to very large programs. In this paper, we present projection
merging for speeding up constraint-based program analy-
ses, and demonstrate that the technique together with cycle
elimination can yield orders of magnitude improvements in
analysis time. With projection merging, a cubic time points-
to analysis for C can be applied to half million line programs
in less than half an hour. We expect the technique to work
well for other set-based analyses that use only a small num-
ber of non-constant constructors.
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A Andersen’s Points-to Analysis

For completeness we include a summary of Andersen’s
points-to analysis and its formulation using set constraints.
The formulation here is basically the same as that in [7],
except for the use of proj(...). In the current paper, we
need to expose more low-level details of the system to ex-
plain projection merging. Thus, in the presentation of the
analysis, we include the use of proj(...).

For a C program, points-to analysis computes a set of
abstract memory locations (variables and heap) to which
each expression could point. Andersen’s analysis computes a
points-to graph [5]. Graph nodes represent abstract memory
locations, and there is an edge from a node x to a node y if
may contain a pointer to y. Informally, Andersen’s analysis
begins with some initial points-to relationships and closes
the graph under the rule:

For an assignment e; = e», anything in the points-
to set for es must also be in the points-to set for
e1.



o
Figure 16: Example points-to graph

Figure 16 shows the points-to graph computed by Ander-
sen’s analysis for the following simple C program:

a = &b;
a = &c;
*a = &d;

Note that these points-to graphs are different from the
constraint graphs discussed in this paper. Points-to graphs
can be constructed from the least solution of the constraints.

A.1 Formulation using Set Constraints

Andersen’s set formulation of points-to graphs consists of a

set of abstract locations {l1, ... ,l,}, together with set vari-
ables Aj,,..., A&}, denoting the set of locations pointed to
by li,...,l,. The example in Figure 16 has the set formu-
lation

X, =A{b, lc}

le = {ld}

X = {la}

The association between a location l; and its points-to set
Ay, is implicit in Andersen’s formulation and results in an
ad-hoc resolution algorithm. In [7], a different formula-
tion makes this association explicit and enables the use of a
generic set constraint solver. Locations are modeled by pair-
ing location names and points-to set variables with a con-
structor ref ({l;}, A;,) akin to reference types in languages
like ML [18].

Unlike the type system of ML, which is equality-based,
we need inclusion constraints. It is well known that sub-
typing of references is unsound in the presence of update
operations (e.g., Java arrays [10]). A sound approach is
to turn inclusions between references into equality for their
contents: ref (X) C ref (V) & X = ).

This technique can be adapted to a purely inclusion-
based system. We intuitively treat a reference I, as an object
with a location name and two methods get : void = A}, and
set : A;, — void, where the points-to set of the location acts
both as the range of the get function and the domain of the
set function. Updating a location corresponds to applying
the set function to the new value. Dereferencing a location
corresponds to applying the get function.

Translating this intuition, we add a third argument to
the ref constructor that corresponds to the domain of the
set function, and is thus contravariant. A location I is then

represented by ref (I, Xi,, X;,) (to improve readability we
overline contravariant arguments). To update an unknown
location 7 with a set 7, it suffices to add a constraint 7 C

proj(ref,3,T). For example, if ref(ly, Ay, A7,) C 7, then
the transitive constraint ref (I, Ay, , A1, ) C proj(ref,3,T) is
equivalent to 7 C A), (due to contravariance), which is the
desired effect. Dereferencing is analogous, but involves the

covariant points-to set of the ref constructor.

x @ ref (I, Ay, AL,) (Var)
e:T
&e :ref(0,7,7)

e:7 1 Cproj(ref,2,7) T fresh
xe T

(Addr)

(Deref)

e; I T €2 1 T2
71 C proj(ref,3,T1) 7 C proj(ref,2,7z)
T CTi Ti, Tz fresh

€1=€2 ! T2

(Asst)

Figure 17: Constraint generation for Andersen’s analysis

To formally express Andersen’s points-to graph, we must
associate with each location l; a set variable ), for the
set of abstract location names and a constraint A;, C
proj(ref,1,),) that constrains ), to be a superset of all
names of locations in the points-to set A; .. The points-to
graph is then defined by the least solution for };;. In our
implementation we avoid using the location names [; and the
variables ), , and instead derive the points-to graph directly
from the constraints.

A.2 Constraint Generation

Figure 17 gives a subset of the constraint-generation rules
for Andersen’s analysis. For the full set of rules, see [9]. The
rules assign a set expression to each program expression and
generate a system of set constraints as side conditions. The
solution to the set constraints describes the points-to graph
of the program. We write 7 for set expressions denoting
locations. To avoid separate rules for L- and R-values, we
infer sets denoting L-values for every expression. In (Var),

the type ref (I, X, , A1, ) associated with x therefore denotes
the location of x and not its contents.

We briefly describe the other rules in Figure 17. The
address-of operator (Addr) adds a level of indirection to its
operand by adding a ref constructor. The dereferencing op-
erator (Deref) does the opposite, removing a ref and making
the fresh variable 7 a superset of the points-to set of 7. This
is achieved through the projection operator proj. The sec-
ond constraint in the assignment rule (Asst) transforms the
right-hand side 72 from an L-value to an R-value 73, as in
(Deref) (recall these rules infer sets representing L-values).
The first constraint 71 C proj(ref,3,71) makes 71 a sub-
set of the points-to set of 71. The final constraint 73 C T
expresses exactly the intuitive meaning of assignment: the
points-to set 71 of the left-hand side contains at least the
points-to set 7 of the right-hand side. For example, the first
statement of Figure 16, a = &b, generates the constraints

71 = ref (l, X1, X1.) C proj(ref,3,71), and so 71 C Ay, and
o = ref (0, ref (I, Xy, A2 ),...) C proj(ref,2,7z), and so
ref (I, Xi,, X, ) € T2. The final constraint 75 C 77 implies
the desired effect, namely ref (I, X1, , X3, ) C Ao, .



