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PROJECTION METHODS FOR TWO-POINT BOUNDARY VALUE 

PROBLEMS 

G. W. REDDIEN 

Abstrad. A survey of the many different projection methods for the numerical solution of two-point 

boundary value problems is given along with an introduction to the techniques by which their convergence is 

established. 

1. Introduction. This paper is intended to be a survey of some of the theoretical 

developments on projection methods for the numerical solution of two-point boundary 

value problems, and to provide a general introduction to the major features of the 

theory of projection methods and the literature. General purpose codes using these 

methods are available. As examples, we cite the recent work of Ascher, Christiansen 

and Russell [5], Daniel and Martin [19] and deBoor [23]. An important aspect of code 

development and evaluation is theoretical support. Theory provides one basis for 

selecting the algorithms. Also, theoretical error bounds not only give the order of 

convergence basis for deciding among different methods, but also suggest mesh 

selection schemes and extrapolation procedures. We will illustrate some of these points 

here. 

The literature on projection methods is large, particularly so since from an abstract 

point of view almost every numerical method is a projection method. The term includes 

the methods of collocation, Ritz-Galerkin, and least squares. Moreover, standard 

finite-difference methods in the linear case can be interpreted as projection methods 

applied to the dual of the given equation. See deBoor [21]. There are certain hybrid 

methods with attractive features that will be presented here. 

Section 2 describes various examples of projection methods with references. 

Section 3 recalls some basic facts about projections and convergence theorems for 

projection methods. It is also explained there how the basic methods of § 2 fit into a 

general framework. Section 4 discusses superconvergence and more refined error 

bounds. 

Many topics are ignored. We do not discuss singular problems, although there is a 

growing literature on them. We do not compare methods from the standpoint of 

operation counts or matrix bandwidths but will make mainly comparisons regarding 

applicability and rates of convergence. Computational considerations are vital and 

some work had been done. For example, see Russell and Varah [73], deBoor and 

Swartz [26], Sincovec [79] and Russell [71]. We also do not discuss eigenvalue 

problems, partial differential equations, integra-differential equations and functional 

differential equations. 

A comprehensive survey of the literature on numerical methods for two-point 

boundary value problems was given by H. B. Keller [50) in June, 1974. The reader is 

referred there and also to a monograph by Keller [93) for possible references. We have 

made no attempt here to be all inclusive. Analyses and applications of projection 

methods can also be found in the chemical engineering literature. In particular, we cite 

the method of orthogonal collocation as given by Finlayson [92). 
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2. Examples. Before beginning an abstract description of projection methods, 

indeed before even giving a definition, we consider some examples. We will, for 

simplicity, consider these examples as applied to the problem 

(2.1) -y" + ao(x )y' + a1 (x )y = f(x ), O<x<1, 

with Dirichlet boundary conditions 

(2.2) y(O) = y(1) = 0. 

We assume a 0 , a 1 and f are continuous and that f = 0 implies y = 0. 

We stress here that the problem (2.1)-(2.2) will be used as a common setting for the 

description of several methods, in spite of the fact that projection methods are attractive 

because they apply to general nonlinear systems. For many projection methods, 

analysis and programming for nonlinear systems is not much more difficult than for 

(2.1)-(2.2). The smoothness conditions on a 0 , a 1 and/ can be easily weakened and the 

boundary conditions generalized. References are cited later. However, some methods 

have only been defined and analyzed for (2.1)-(2.2). These cases will be pointed out. 

Projection methods for (2.1)-(2.2) are global function space approximation 

methods. That is, a function y,(x) in an approximating space is determined to 

approximate y for all x in [0, 1]. The most used approximating spaces are polynomials 

and polynomial splines. The use of polynomial splines is responsible for the popularity 

of projection methods, since in addition to their excellent approximation properties, the 

associated matrix problems are banded and their setup is well suited for digital 

computation. The emphasis here will be on projection methods with splines, although 

some mention will be made of polynomials. Polynomials of course are splines, albeit on 

a very simple partition. The Russian literature on projection methods actually predates 

the Western effort. Detailed discussions of projection methods are contained in the 

books by Kantorovich and Akilov [ 48] and also by Krasnoselskii, et al. [54]. Their 

omissions are a result of an unfamiliarity with piecewise polynomial functions. 

Let Ll:O=xo<x 1 < .. ·<x,=1 be a partition of 1=[0,1] with h= 

maxi (xi- Xi-J). A family of partitions is said to be quasi-uniform if there is a constant c 
so that h;;:;; c mini (xi- xi- 1) for all partitions in the family. 

By splines, we mean the elements of 

S(r, k, Ll)={v E Ck(I): for each i, v agrees on (x;-t. x;) 

with some polynomial of degree;;:;; r}. 

Here r ~ k ~ -1 are integers. With k = -1, splines are simply piecewise polynomials 

with no continuity conditions. We are restricting our splines to a uniform set of 

continuity conditions. This is not necessary. We let I;= (X;- 1 , x;) and h; = x; = x;- X;- 1. 

2.1. Collocation. There are basically two types of collocation methods used for 

(2.1)-(2.2), those with smooth splines, i.e. k large, and those with k = 1. Of course, 

other choices are possible. Given a set of points {t;}~1 2 where N =dim (S(r, k, Ll)), 

collocation methods determine approximations y, E S(r, k, A) toy by solving 

(2.1.1) 

(2.1.2) 

-y~(t;) + ao(t;)y~ (t;) + a1 (t;)y, (t;) = f(t;), 

y,(O) = y,(1) = 0. 

i= 1, · · · ,N-2, 

General analyses of such methods and specific examples can be found in deBoor 

[21], Phillips [65], Russell and Shampine [72], Lucas and Reddien [55], deBoor and 

Swartz [24] and Douglas and Dupont [31]. Related references here include Ahlberg 

and Ito [ 1] and Kammerer, Reddien and Varga [ 4 7]. With k = 1, an effective choice for 
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the collocation points is to let -1 < p 1 < · · · < Pr-t < 1 be the zeros of the Legendre 

polynomial of degree r -1 and define gii = t(x;-1 +X;+ Pi(x;- x;_t)) to be the collocation 

points. With sufficient smoothness, this method which is called collocation at Gauss 

points achieves optimal rates of convergence in the L oo norm, i.e.JJy- Ynlloo = O(h'+ 1). 

Moreover, superconvergence results hold at the mesh points. We return to this later. On 

the other hand, smooth spline collocation methods converge at rates equal to the 

truncation error, namely O(h'- 1), for (2.1)-(2.2). With Yn in S(3, 2, 6.) and choosing 

t; =X;, then convergence in the L oo norm is O(h 2 ). 

The convergence rate is not, of course, the sole criterion for selecting a method. 

Rather overall computational effort is critical. Note here that dim S(3, 2, 6.) = n + 3 and 

dim S(3, 1, 6.) = 2n + 3, and in general the smooth spline methods result in smaller 

matrices. For numerical comparisons indicating that in some cases smooth spline 

methods are competitive, see Sincovec [79] and Russell [71]. 

Smooth spline methods were given by Ahlberg and Ito [1] that replaced a few 

equations of the type (2.1.1) by interpolation equations for the differential equation. 

Let ~J=f(x;) and ~Jt=f'(x;). In this notation, the method ~;(-y~+aoyn+a1yn)= 

~J,i=1,···,n, and ~J(-y~+a 0 y~+a 1 y)=~Jf,j=O,n, with Yn in S(5,4,6.) was 

considered along with an analogue for Yn in S(7, 6, 6.). Numerical comparison results 

are given in [1] and [79]. 

Collocation theory allows one to consider more general problems than (2.1)-(2.2). 

The papers [24], [55], [72] follow the lead of Vainikko [84] and treat nonlinear 

problems. Extensions to the case of nonlinear boundary conditions are given in 

Wittenbrink [91], Weiss [86], Reddien [68] and Voss [85]. Many of the papers on 

collocation assume that the lead order part of the differential equation is invertible 

subject to the given boundary conditions. This restriction can be easily removed as was 

shown by Witten brink [91] and Cerutti [10]. Another approach using alternative theory 

is given in Reddien [69]. Collocation methods are also applicable to general vector 

systems. These results are described by Weiss [86], Cerutti [10], Russell [70] and 

Houstis [ 45]. 

2.2. Ritz-Galerkin method. The Galerkin method approximates the solution to 

(2.1)-(2.2) by solving for Yn E S0 (r, k, 6.) = S(r, k, 6.) n {v: v(O) = v(l) = 0} the equations 

(2.2.1) 

where {v;} is a basis for S0 (r, k, 6.). The Ritz method chooses Yn E S0 (r, k, A) so that 

(2.2.2) 

with {v;} as in (2.2.1). Although there is only a small difference between (2.2.1) and 

(2.2.2), the difference is important. Equation (2.2.2) allows r = 1. The methods are not 

equivalent if k = 0 because then (2.2.2) cannot be integrated by parts. If the integrals in 

(2.2.1) and (2.2.2) are done by a quadrature, then even though the continuous 

equations are the same, the discretized versions will not be. Moreover, different 

quadratures are required for the discrete methods to be well defined. The Ritz method 

for (2.1)-(2.2) using C 1-cubics requires three point Gauss quadrature in each subin­

terval to be well-posed, [32], while the Galerkin method using C 1 -cubics requires only 

two-point Gauss quadrature in each subinterval. In this case, the quadrature-Galerkin 

method is equivalent to collocation at Gauss points. See [71] and also§ 2.6. Finally, a 

more subtle point concerns extension of the two methods to more general problems 
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with more general boundary conditions. The Galerkin method can be extended in the 

obvious way to any problem. See Strang and Fix [80], for example. The Ritz method 

requires even order problems (however, see Ciarlet, Schultz and Varga [17] and 

Petryshyn [ 64 ]) and the approximations are taken in spaces satisfying only the essential 

boundary conditions [80]. General boundary conditions require the use of a modified 

functional or approximation space so that the Ritz method corresponds to the correct 

minimum principle. See, for example, Hallet, Hennart and Mund [ 42]. For the most 

part, the Galerkin method is not analyzed in the literature but rather the Ritz method is 

studied and for problems essentially no more general than (2.1)-(2.2). Dirichlet 

boundary conditions are nearly always assumed. Although it is obvious that many 

results extend to general even order equations, as in Natterer [60], and more general 

boundary conditions, as in [ 42], a systematic extension of all results to general problems 

is unavailable. It is also assumed that either the problem (2.1)-(2.2) is self-adjoint and 

elliptic, as in Nitsche [ 61 ], or that at least the lead order part is, as in Schatz [7 5]. No such 

assumptions are required for collocation methods. However, if a problem is self­

adjoint, then (2.2.2) gives a symmetric matrix while collocation does not. This has 

obvious implications for the computations, also for the associated eigenvalue problems. 

Convergence proofs for the Ritz-Galerkin method have been somewhat different 

from those for collocation even though both are projection methods. The proofs follow 

classical lines [ 49] to get existence and error estimates in the usual energy norm and 

then use Nitsche's trick [61] to obtain optimal bounds in the L 2 norm. Important 

theoretical papers on the existence and convergence for the Ritz-Galerkin method 

include Ciarlet, Schultz and Varga [14], [15], [17], Perrin, Price and Varga [63], 

Douglas and Dupont [32], [33], Nitsche [61], Wheeler [87], Schatz [75], Blair [8], 

Aubin [6], Schultz [76], Urabe [81], Natterer [60] and Strang and Fix [80]. 

Early papers established optimal orders of convergence in the L 2 norm. With 

k = 0, i.e. continuous splines, Wheeler [87] established optimal rates of convergence in 

the L oo norm for (2.1)-(2.2). Partial extensions of this result are given by Natterer [60]. 

Blair [8] has results for the L oo norm but for special cases of S(r, k, a) with quasi­

uniform assumptions on the mesh. Optimal rates in the L oo norm for arbitrary S(r, k, a) 

were given by Douglas, Dupont and Wahlbin [34] but with the assumption of quasi­

uniform meshes. Some relaxation of this condition is given by Natterer [60). The 

optimal order collocation methods given by de Boor and Swartz [24] do not require 

quasi-uniformity. 

The influence of quadrature error on the Ritz-Galerkin method has been consi­

dered by Herbold, Schultz and Varga [43], Fix [40], Schultz [77], and Douglas and 

Dupont [32]. The papers [ 43] and [77] were concerned with the influence of quadrature 

error on the right hand side only while the papers [32], [ 40] consider setting up both the 

left and right hand sides by quadrature. An advantage that the Ritz method has over 

collocation is that less continuity for the solution is required in order to achieve best 

rates. For (2.1)-(2.2), collocation methods require two more continuous derivatives 

than the Ritz method. Moreover, from the standpoint of approximation theory, the Ritz 

method requires minimal smoothness. However, when the Ritz method is implemented 

with a quadrature scheme, this advantage is lost. See Douglas and Dupont [32]. 

Most of the Ritz-Galerkin papers consider linear problems only. However, see 

[7 4 ]. This is not always a theoretical limitation since the techniques used by de Boor and 

Swartz [24], H. B. Keller [51] and Vainikko [84] can be used to extend results for linear 

problems to nonlinear problems. 

Ritz-Galerkin methods exhibit superconvergence at the mesh points, see Douglas 

and Dupont [32]. The Ritz-Galerkin method also has the property that after the 
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approximation Yn has been computed, certain auxiliary computations can be performed 

to achieve higher accuracy at selected points. See, for example, Wheeler [89], Douglas 

and Dupont [33], and Dupont [39]. These papers treat linear, second order problems. 

2.3. Least squares. The method of least squares approximates the solution to 

(2.1)-(2.2) by solving for Yn E So(r, k, a) so that 

(2.3.1) r 1 (-y~ +aoy~ +atyn)(-v7 +aov: +atV;) dx = ( f(-v7 +aov: +a;V;) dx 
Jo Jo 

for all V; as in (2.2.1 ). Basic references on the method of least squares are Baker [7], 

Russell and Varah [73], Sammon [74] and Ascher [4]. The first three of these papers 

treat 2mth order linear problems with Dirichlet boundary conditions. They obtain 

optimal error estimates in the L 2 norm. Sammon considers the use of Gaussian 

quadrature to perform the integrals as does Ascher [ 4 ]. However, the paper of Ascher 

considers general nonlinear mth order equations plus general linear boundary condi­

tions. These two papers both require quasi-·uniform meshes. Ascher establishes his 

error bounds for the L(" norm. The quasi-uniform assumption for smooth splines as 

given by Ascher is necessary since he relies on an interesting bound in the L co norm for 

the orthogonal projection operator into splines established by Douglas, Dupont and 

Wahlbin [34]. See also deBoor [22]. Superconvergence results are also obtained in [ 4]. 

It is concluded [ 4] that collocation is generally superior to discrete least squares for 

ordinary differential equations. Computational examples are given by Serbin [78] 

verifying the fact that for the same order equation, the condition number for the matrix 

problem resulting from the method of least squares is the square of that for the 

Ritz-Galerkin method. 

2.4. Method of moments. There are a variety of methods that can be put in this 

category. The method of moments finds an approximation Yn E S 0 (r, k, a) so that 

(2.4.1) f (-y~ +any~ +atYn)cP;(x) dx = /(x)cfJ;(x) dx 
I Jl 

Jo o 

where {cfJ;(x)} is a basis for S(r', k', a) for suitable r' and k'. In principle, there is no need 

for the ¢; 's to span even a space of splines. One particular method was considered by 

deBoor [21] and Lucas and Reddien [56]. The integers r, k were chosen to be 3 and 2 

respectively and r', k' were chosen to be 1 and 0. The paper [56] considers generaliza­

tions to general 2mth order problems with Dirichlet boundary conditions and achieves 

optimal rates of convergence in the L co norm with a quasi-uniform assumption on the 

mesh. Compared to the Ritz method, less computation is required to set up the method 

by quadrature. A general theory of similar methods for elliptic problems is given by 

Mock [59] including superconvergence results. This method has been considered in the 

setting of parabolic problems by Douglas, Dupont and Wheeler [35] where it is called 

an H 1 - Galer kin procedure. 

Also included in this class is the H 1- Galerkin procedure of Rachford and 

Wheeler [67], Kendall and Wheeler [52], and Douglas, Dupont and Wheeler [36]. 

Write (2.1) as Ly = f and let L *denote the formal adjoint of L. This method develops 

approximations Yn E S(r, k, A) by solving 

(2.4.2) f 1 
YnL*v;dx = f 1 

fv;dx 
Jo Jo 

where {v;} forms a basis for S(r + 2, k + 2. A) n {v: v'(O) = v'( 1) = 0}. Optimal rates of 
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convergence are obtained in the L 2 norm and superconvergence results are obtained for 

the case k = -1. The analysis is restricted to second order problems but general 

separated boundary conditions are considered. The lead order part of the equation 

needs to be elliptic. The method approximates oscillatory solutions well. See [67] for 

numerical experiments. 

2.5. Other. There are a number of other methods with attractive features that do 

not fit into any of the preceding categories. Indeed, some of these methods cannot 

properly be called projection methods but are modifications of projection methods. 

One projection method is the C 0 -collocation-finite element scheme described by 

Diaz [28] and Wheeler [88]. This method chooses Yn in S0 (r, 0, A) so that 

(2.5.1) --y~ (g;;) + ao(~;; )y~ (g;;) + a1 (~;; )yn (g;;) = f(~;i) 

and 

(2.5.2) r (y~v: + aoy~v; +atYnV;) dx = r fv; dx 

where ~ii are the translated roots of the monic Jacobi polynomial of degree r- 1, and{v;} 

spans S0 (1, 0, A). This method achieves optimal rates of convergence in the L oo norm for 

arbitrary meshes and, in contrast to pure collocation methods, requires only minimal 

smoothness on the solution in order to a_chieve this optimal rate. Superconvergence 

results (better than for collocation) are obtained and extrapolation procedures as in 

Dupont [39] are also developed. Similar results for a combination of collocation and the 

H- 1-Galerkin method are given by Dunn and Wheeler [38]. 

Another method of interest is the extrapolated collocation method using C 2 -cubic 

splines given by Fyfe [ 41], Archer and Diaz [3], and Daniel and Swartz [20]. This 

method requires uniform meshes and applies to general second-order problems. 

Optimal rates of convergence are obtained with a minimal set of equations, but again 

extra smoothness is required. The solution to (2.1) with general boundary conditions 

must lie in C 6 . Equations that a cubic spline interpolant of the solution satisfies to high 

accuracy are derived and then solved numerically. We mention here also a related 

O(h 4 ) method using C 2 -cubics of Albasiny and Hoskins [2] which also requires a 

uniform mesh. 

Finally, we mention the finite difference methods of Doedel [29], [30] and Lynch 

and Rice [57]. Although one approach to these methods uses ideas of classical finite 

differences, Doedel [30] has shown they can be interpreted as collocation methods 

using overlapping piecewise polynomial functions. 

2.6. Interdependence. The methods cited above are in some cases closely related, 

and possibly identical, even though they have been derived from different starting 

points. In the quadrature-Galerkin method, if the total number of quadrature points 

used is equal to dim S0(r, k, A) and the quadrature weights are nonzero, then collocation 

at the quadrature points is equivalent to it. Generally, however, more quadrature points 

are used [73]. For least squares, normally more than dim S0 (r, k, A) quadrature points 

are used and then the method can be viewed as an overdetermined collocation scheme 

whose equations have been scaled and solved by discrete least squares. See Russell and 

Varah [73] and Ascher [4]. 

The equivalence of the quadrature-Galerkin method when the quadrature points 

are chosen to be Gauss points with collocation at Gauss points has important theoretical 

implications. Douglas and Dupont [32] develop their proofs of convergence of collo­

cation from the quadrature-Galerkin formulation. This approach is extendable to more 
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general problems whereas the projection method approach is more difficult. For 

parabolic problems, see Douglas and Dupont [31], and for hyperbolic problems, see 

Houstis [44]. Hulme [46] made this observation for the initial value problem for 

ordinary differential equations. 

2.7. Nonspline bases. Projection methods can of course be applied to (2.1)-(2.2) 

without using splines. For example, one can use polynomials of degree n + 2 satisfying 

the boundary conditions (2.2) and use collocation with collocation points chosen to be 

Chebyshev points translated to [0, 1]. See Vainikko [83], Kantorovich and Akilov 

[48] or Finlayson [92]. One can also use polynomials with Galerkin's method. See, for 

example, Urabe [81] and Urabe and Reiter [82] and the books by Kantorovich and 

Krylov [ 49], Mikhlin [58] and Finlayson [92]. 

3. Projection methods. In this section we explain why the preceding methods are 

called projection methods and then give a few basic results that enable one to begin 

their analysis. 

3.1 .. Projection operators. Let X be a normed linear space. A projection operator 

P on X is a linear, idempotent (P2 = P) mapping from X into itself. We will be 

concerned only with projections of finite rank. Let X' denote the algebraic dual of X. 

Then the following characterization result is known [37]. 

LEMMA 3.1.1. Let P, be a projection on X. Define X, = PnX. Let P~ be the conjugate 

operator associated with Pn and define X~ = P~X'. Then 

(3.1.2) {x E Xn: x'(x) = 0 for all x' EX~}={O}. 

Conversely, given subspaces Xn and X~ of X and X' respectively of the same dimension 

and satisfying (3.1.2), then a unique projection operator Pn is defined by the relations 

Pnx = Xn if and only if Xn E Xn and x'(xn) = x'(x) for all x' EX~. 

We have not required the linear functionals x' to be continuous. However, the 

following result holds [37]. 

LEMMA 3 .1.2. Pn is bounded if and only if X~ c X*, the dual space of continuous 

linear functionals on X. 

The projection operators considered here will be mappings generally from 

L 2[0, 1], C[O, 1] or certain Sobolev spaces onto S(r, k, .:l). Given a sequence of such 

projections, {Pn}, it is desirable, but not necessary [56], to have sequences satisfying 

SUPn IIPnll<oo. 
We next show how to bound the projections. Suppose that the sequence {Pn} is 

formed by adding vectors to Xn and functionals to X~, i.e. Xn =span {!/>I.· · · , !f>n} and 

X~ =span {At,···, An}. Then Pnx = I7=t a~"l!/>; and Pnx satisfies 

I a~"lAi(!/>;)=Ai(f), j= 1, · · ·, n. 
i=l 

Define An= [a;i] with a;i = A;(!/>i). The definition of Pn by Xn and X~ and condition 

(3.1.2) imply 

(3.1.3) 

Thus bounding IIPnll can be broken down into the following steps. First note IIPnxll~ 

(max laj"ll) L~=tii«Pdl. A basis{!/>;} with L~=tii«Pdl~const. would be convenient here. 

Actually, I7=t !/>; ~const. with!/>; ~0 would do. Then we need to bound IIA~ 1 IIoo if we 
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know max /AJ/ ~ const. /It!/ in order to bound the projectors. This can be a difficult 

matrix problem and is dependent on a detailed knowledge of specific bases for X". For 

an excellent discussion of these matters for the case that X" is a spline space, see de Boor 

[25]. 
Projections Pn may be thought of as general interpolation mappings since Pnf 

interpolates fin the sense that A;({)= A;(Pnf>· The following estimate of the distance 

between a vector and its projection is useful. 

LEMMA 3.1.4. 1/x- Pnx/1 ~//I- Pn/1 dist (x, Xn). 

A uniformly bounded (in norm) sequence of projections achieves best asymptotic 

rates of convergence. If X is a Banach space, a sequence of projections will be uniformly 

bounded in norm if they converge strongly to the identity operator on X. 

3.2.1. Projection methods. Let A be a linear operator with domain in a normed 

linear space X and range in a normed linear space Y. Let Xn be a finite dimensional 

subspace of X and Yn a finite dimensional subspace of Y* with dim Xn =dim Y" < oo. 

We assume A (Ax) = 0 for x E Xn and all A E Y* implies x = 0. 

DEFINITION 3.2.1. A projection method approximates the solution x of the 

equation Ax = f by Xn E Xn where Xn is defined as the solution of the equations 

(3.2.2) 

all A E Yn· 

The setting for this definition can obviously be generalized. Several projection 

operators can be associated with (3.2.2). Using Lemma 3.2.2, define the projection Pn 

through AXn and Yn. Then (3.2.2) may be written as 

(3.2.3) 

and the representation formula 

(3.2.4) 

holds. Alternatively, define the projection On through Xn and A' Yn. Then (3.2.2) may 

be written as 

(3.2.5) (A'A)x,. = Af= .>o..Ax = A'A.x, 

or as 

(3.2.6) 

If A is not bounded, then there is no guarantee that the functionals A' A are bounded 

and so Pn may be bounded while On is not. 

Let Zn be any subspace of Y with dimension equal to the dimension of Y" and so 

that for Zn E Z"' A (zn) = 0, all A in Yn implies Zn = 0. Then, Zn and Yn define a 

projection, R"' and (3.2.2) may be written as 

(3.2.7) 

These projections can be related by the identities 

(3.2.8) Pn = (Rn/AxJ-l Rn 

and 

(3.2.9) 

These operator formulations can be used to give an error analysis. Since 

(3.2.10) 
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then 

(3.2.11) 
\\x- Xn\\ ~ \\A- 1\\\\I- Pn\\ dist (/, AXn), 

\\Ax- Axn\1 ~\\I- Pn\1 dist (f, AXn) 

and convergence results follow from the properties of the projections Pn. Also note 

(3.2.12) 

There are many special cases of the operator A that are easy to handle. We 

consider two. Suppose A = I+ T where T is compact on X~ X where X is a Banach 

space. Then our problem may be written as 

(3.2.13) (I+ T)v = f 

and our numerical method may be written following (3.2.7) as 

(3.2.14) 

Define Rn so that it has range Xn; Eq. (3.2.14) becomes Vn + RnTVn = Rnf· Suppose Rn 

converges strongly to the identity operator on X. Then 1\Rn\1 ~ const. and by Lemma 

3.1.4 we have that approximation by Rn achieves best rates of convergence. With T 

compact and if (I+ T)- 1 exists, then (I+ T)- 1 is automatically bounded. It follows that 

(3.2.15) 

and so (I+ RnT)- 1 exists for n sufficiently large and supn 1\(I + RnT)- 1 1\ < oo is valid. 

Apply now Rn to both sides of (3.2.13), subtract this from (3.2.14) and subtract v from 

both sides to get the equation 

(3.2.16) 

We can now bound the quantities in (3.2.11) and have proved the following theorem. 

THEOREM 3.2.17. LetT be a completely continuous mapping on a Banach space X 
into itself, let (I+ T)- 1 exist, and let {Rn} be a sequence of projections on X with RnX = Xn 

so that Rn converges strongly to the identity on X. Then for all n sufficiently large, the 

equation Vn + RnTVn = Rnf, with Vn E Xn. has a unique solution Vn for any f EX. Let v 

solve v + Tv =f. Then 

(3.2.18) 1\v- Vn\1 ~ 1\(I + Rn)- 11\ · 1\v- Rnv\1~ const. \II- Rn\1 dist (v, Xn). 

Several improvements on this basic and important theorem are immediately 

possible. One is by a Newton's method argument to nonlinear mappings T that are 

completely continuous and continuously Frechet differentiable. We omit statements of 

these important nonlinear results here, but refer the reader to Vainikko [84], deBoor 

and Swartz [24], and Keller [51]. For the Galerkin method in the nonlinear case, 

analysis can be done using monotone operator theory, e.g. Ciarlet, Shultz, Varga [17]. 

Suppose our given equation has the form 

(3.2.19) Ax+Bx =f 

where A and B are mappings, possibly unbounded, from X into Y but with A -l 

bounded and with a constant c > 0 so that 

(3.2.20) 1\BA- 1 1\~c. 

Assume (A+ B)-1 exists and is bounded. Given a projection method defined by Xn and 

Yn. define Zn = AXn and write the approximation equations 

(3.2.21) 
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as 

(3.2.22) 

Defining the projection Rn by Zn and Ym we see that (3.2.22) becomes 

(3.2.23) Vn + R,,BA- 1Vn = Rnf. 

If BA -! is compact, then we may use Theorem 3. 2.17. 

This analysis applies to many of the examples in§ 2. Equations (2.1.1)-(2.1.2) can 

be treated as follows. Define A= D 2 , B = a0D +at. Yn =span {A;} where AJ= f(t;), 

Xn = S0 (r, k, a), Zn = S(r-2, k -2, a), X= C[O, l]n{v: v(O) = v(l) = 0} and Y = 

C[O, 1]. Assume k ~ 2. Convergence depends on the properties of the interpolation 

operator Rn on Y where Rnf = s if and only if s E S(r- 2, k- 2, a) and A; f = A;s, i = 

1, · · ·, N- 2. If sup" \\Rn\1< oo, then Theorem 3.2.17 applies. 

As a consequence of formula (3.2.9) in this setting, we obtain 

LEMMA 3.2.24. 

On= (I+ RnBA - 1)- 1 R"(I + BA- 1). 

This lemma is contained in deBoor and Swartz [24] and also Natterer [60]. As a 

consequence of it, the boundedness of On can be deduced from a study of Rn. The 

practical implication is that one need only consider the projector associated with the 

lead order part of the differential operator. 

Many variations on Theorem 3.2.18 and Lemma 3.2.24 are possible. We cite here 

Vainikko [84], Polskii [66], Petryshn [64], Browder [9], Krasnoselskii et al. [54], and 

Witsch [90] as important references. Kramarz [53] replaces projections with general 

mappings using the theory of collectively compact operators. 

Consider as another example the Ritz-Galerkin method for (py')' = -f, 0 < x < 1, 

y(O) = y(l) = 0 with p E C 1[0, 1) and p > 0 on [0, 1). With {v;} a basis for S 0 (r, k, a), 
solve 

(3.2.25) 
( 1 

Jo py~v; dx = t [v; dx, all V;, 

Yn E So(r, k, a). To put (3.2.25) in the form (3.2.2) can be done in two ways if k ~ 1, but 

only one way otherwise. The question is whether or not the left hand side of (3.2.25) can 

be integrated by parts without the appearance of jump terms at the mesh points. We 

consider (3.2.25) directly. Then the given equation is treated in weak form to find 

y EHb so that 

(3.2.26) 
f 1 1 

Jo py'v' dx = t fv, 

for all v in H6, where H 1 ={v: v and v' are in L 2} and H6=H 1n{v: v(O)= v(1)=0} 

with the Hilbert space norm [6). Here f is considered in, say, L 2 , but f could be in H-1, 

the dual of Hb. Since pis positive, J~ py'v' dx defines a coercive bilinear form on Hb and 

can be written for fixed y as (Ay, v) in the duality product on H 1 with A linear, A - 1 

bounded, and A mapping onto H ·1 • See Aubin [6] or Strang and Fix [80] for details. 

Define the Ritz-Galerkin projection by the subspace AS0 (k, r, a) and the 

functionals A;( w) = (w, v;) = J~ v;w dx. Note here that the linear functionals are in the 

dual of H- 1 which we identify with H6. Now 
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and so 

Since 

II II I(Ay"' v )I II II 
Ayn -1 = s~p llviiHI < c Yn H1

, 

VEH{, 

then 

IIAYnll-1 = IIPnfll-1 ~ const.llfll-1 

and the projections Pn are uniformly bounded. Using (3.2.11) we have 

(3.2.27) IIY- YniiH 1 ~ const.IIA - 111 dist (f, AXn). 

Improvements in the bound implied by (3.2.27) for both the L 2 and L oo -norms are 

possible using a duality argument. See Aubin [6], Blair [8], Nitsche [61], Dupont, 

Douglas and Wahlbin [34], Wheeler [87] and Schultz [76]. Theoretically treating the 

Ritz-Galerkin method the same way as collocation leads to projections that seem 

impossible to bound [21]. 

The method of least squares can also be formulated as an operator equation with 

projections. Applied to (2.1)-(2.2), it can be viewed as computing Yn E S 0 (r, k, Ll) to 

solve 

(3.2.28) min liLy- flli 2 

yESo(r, k, tl) 

where Ly = -y" + a 0 y' + a1y. In the same manner as illustrated by Eq. (3.2.23), write 

(3.2.28) as 

(3.2.29) min llv-(f-Tv)lli2 • 

vES(r-2, k-2, tl) 

Let Pn denote the L 2 -orthogonal projection operator with range S(r- 2, k- 2, Ll). 

Then (3.2.29) with V 11 = y~ implies 

(3.2.30) Vn = Pn(f- Tvn), 

or, finally, as 

(3.2.31) 

Thus basic convergence results follows from Theorem 3.2.17. Of course, 11Pnlk2 = 1. 

However, IIP~~Ik oc• ~ const. is also known for quasi-uniform meshes and arbitrary r, k. See 

Douglas, Dupont and Wahlbin [34] and deBoor [22]. 

If one uses collocation at the Chebyshev points with polynomials as described in 

§ 2. 7, the projections Rn defined in analogy with spline collocation schemes satisfy on 

C[O, 1] [83] 

4 
IIRnlloo ~ 8 +-ln n. 

1T 

This lack of uniform boundedness for the projections does not prevent convergence of 

the method. For the modification of Theorem 3.2.17 that will treat this case see [83]. 

4. Superconvergence. Some methods give higher order convergence rates at 

certain points than might be anticipated from global approximation rates. We mention 
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here some important examples and then discuss implications of these results for more 

refined error estimates and the development of adaptive codes. 

4.1. Examples. For problem (2.1)-(2.2), suppose we solve for Yn E S0(r, 1, ~)and 

collocate at Gaussian points as defined in § 2.1. Then the following theorem holds. 

THEOEREM 4.1.1. (deBoor and Swartz). Let k be a positive integer and let r = k + 1. 

Let the coefficients a 0 and a 1 be in C 2 k and let y be in C 2 + 2 k. Then 

i = 0, 1. 

Thus, if k = 4, i.e. quintic splines are used, convergence at the mesh points is O(h 8 ) 

while global convergence is O(h 6 ). In the case k = 2, i.e. cubic splines, there is no 

improvement. This theorem in the quintic case requires that the solution have ten 

continuous derivatives. 

We contrast this with the Ritz-Galerkin method. Using Eq. (2.2.2) with continuous 

splines, we have the next theorem. 
THEOREM 4.1.2 (Douglas and Dupont). Let a 0 and a 1 be in C'-\ r?;. 1, with a!> in 

L 00 and let f E C. Suppose the solution y of (2.1)-(2.2) is in C'+1(1) and that Yn is chosen 

from S 0 (r, 0, ~) solving (2.2.2). Then 

IY(Xj)- Yn(Xj)l ~ ch 2 '. 

Theorem 4.2.2 does not require additional smoothness to achieve supercon­

vergence, and in the cubic spline case, r = 3, superconvergence occurs. However, if one 

implements (2.2.2) by using r-point Gauss quadrature, y is implicitly required to be in 
H2r+2. 

Both the proofs of Theorem 4.1.1 and Theorem 4.1.2 rely on the low order 

continuity class of the splines used in an essential way. 

Other superconvergence results are known. For more facts about collocation at 

Gauss points, see Russell and Christiansen [13]. The C 0 -collocation method of Diaz 

[28] and Wheeler [88] Converges at the meash of order O(h 2 ') for arbitrary mesh 

spacings. The H- 1 method of Rachford and Wheeler [67] and Kendall and Wheeler 

[52] achieves superconvergence at the Gauss points in the case k = -1. See equation 

(2.4.2). Convergence there is one order bctkf than the best rate. 

Dupont [39] has shown how performing certain auxiliary computations using 

Galerkin solutions (also H- 1 and H 1 -Galerkin) can give superconvergent approxima­

tions to the value of the solution and its derivative at any points. Arbitrary continuity 

classes for the splines are considered. See also Diaz [28], Wheeler [88], Kendall and 

Wheeler [52], and Douglas and Dupont [33]. 

4.2. Refined error bounds. If superconvergence occurs, it is possible to modify the 

argument that produced the superconvergence to obtain refined error bounds that 

indicate local dependence for the error. Suppose one uses collocation at Gauss points 

for (2.1)-(2.2). Then with suitable smoothness, deBoor [27] has shown (see also 

Christiansen and Russell [13] and Ascher, Christiansen and Russell [5]) that 

(4.2.1) 

Thus to lead order the method is local and an estimate for D'+ 1 y can lead to algorithms 

for equidistributing the error. See Pereyra and Sewell [62] and [5], [12], [13] and [27]. 

Similar results are known for the Galerkin method [60], for the H-1 -Galerkin method 

[67], and the C 0 -collocation-Galerkin method [88]. 
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In the case of the Galerkin method with continuous splines for (2.1)-(2.2), 

Natterer [60] established the bound 

(4.2.2) IIY- YniiL =en~ C max (h;+ 1 lly'+ 1lk =u,l)· 
' 

Generalizations of this result to higher order equations are also given in [60]. The 

integrals required for the method were assumed done exactly. It was also indicated 

there that a bound of the form (4.2.2) does not hold for collocation at Gauss points. The 

existence of bounds such as (4.2.1) seems at present to be more important compu­

tationally than superconvergence, although they occur together. 

5. Remarks. We close with a few comments about current research on projection 

methods for two-point boundary value problems. There are many such methods using 

splines, each with its own special feature which makes it competitive on certain types of 

problems. Collocation at Gauss points is applicable to general vector systems which in 

combination with its good convergence properties makes it an excellent method. Basic 

codes for its implementation are easy to write and general ones are being written for 

publication. In the setting of second order problems, the choice of a method is not clear. 

Available ones such as the H- 1 -Galerkin and C 0 -collocation-finite element use low 

order continuity classes of splines and thus would seem to have a good chance to 

approximate well solutions to problems with mild boundary layers. Their theoretical 

properties are superior. However, there have not been enough computations done to 

make a clear judgement. Extensions of these methods to general two-point boundary 

value problems remains open. The low order continuity class methods are also 

potentially attractive in higher dimensions. Some work has been done on extending 

them, but much more is needed. 

One key point for the efficiency of the application of these methods (or any other 

discretization) is the selection of the mesh and the related estimation of the error. For 

this, local error estimates are important. Development of adaptive codes with mesh 

selection strategies is currently an active research area. 
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