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Projection Methods
With Different Trial and Test Spaces*

By M. S. Mock

Abstract. We consider finite element projection methods for linear partial differential
equations, in which the spaces of trial functions and test functions may be different.
In addition to approximation and smoothness properties, conditions implying equality
of dimensions and uniform coerciveness are required, the most important of which re-
sembles a strong form of an inverse assumption.

Our results provide a mechanism for the difference in the rate of convergence
of Galerkin procedures with cubic splines and Hermite cubics, applied to first order sym-
metric hyperbolic problems [13].

1. Introduction. In this paper we discuss the approximate solution of linear well-
posed partial differential equations, using finite element projection methods in which
the trial space, in which an approximate solution is obtained, may be different from
the space of test functions. Perhaps the best known of such methods are the colloca-
tion schemes, which have been applied to two point boundary value problems in [4],
[S], [23] and to parabolic problems in one space variable in [7]. Higher order meth-
ods utilizing different spaces have also been applied to one-dimensional problems in [4],
(18], [22].

The requirement that the trial and test spaces have equal dimension is an impor-
tant restriction on such methods. Equality of dimension is implied by the coerciveness
conditions of [2]. In one dimension, the coerciveness conditions can be satisfied by
taking one of the spaces (usually the test space, but the trial space in [22]) to be the
image of the other under an ordinary differential operator of even order. This mapping
is made elliptic by requiring the domain space to be conforming. This technique has
recently been generalized to higher dimensions in [10], using an elliptic partial differen-
tial operator as the mapping between spaces.

In the following, we consider an abstract one-parameter family of elliptic pseudo-
differential operators as the mapping between the two spaces. (A background reference
for such operators is [29].) The coerciveness conditions are formulated as requirements
on this family of operators; indeed, our basic results for elliptic and parabolic problems,
Theorems 1 and 2 below, could be alternatively obtained by showing that for sufficiently
small mesh size, our schemes are variational principles in the sense of [2]. Our results
contain some examples of methods considered in [2], [10], {12], [18], [22], [27] as
special cases. '

Application to nonlinear elliptic problems was the motivation for this work.
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PROJECTION METHODS 401

Nonlinear problems can require more smoothness of the trial functions than linear prob-
lems of the same order, if for no other reason than for the discrete problem to be prop-
erly defined. Such problems are typically formulated, however, as that of finding a
fixed point of a compact (nonlinear) operator [15], [16]. A nonlinear elliptic equa-
tion may assume the identity minus compact form on a relatively high Sobolev space,
and this is the space from which an approximate solution is obtained. In [19], we
show that for finite element methods, it suffices that the approximate solution satisfy
the boundary conditions in the same sense as for linear problems; but we have not been
able to relax the smoothness requirements.

In order to simplify the discrete equations requiring solution in such problems, it
seems desirable for the test functions to have their support in as small a region as pos-
sible. Thus we are motivated to consider nonlocal operators between the trial and test
space. Unfortunately, our analysis does not include collocation schemes, but does in-
clude schemes intermediate between collocation and Galerkin methods. The machinery
we develop has also been applied in some subsequent work on hyperbolic problems [20].

The best known examples of spaces for which our methods are applicable are the
smooth splines; other possibilities are discussed in Section 6. For smooth spline spaces,
stronger results than ours are obtained for the heat equation in [26] and for periodic
initial value problems in [27]. Also for one-dimensional problems, better results are
obtained in [9] and references there cited.

2. Elliptic and Parabolic Problems. We first consider the problem
2. Lu=f, x€R",

in which L is a uniformly and strongly elliptic positive definite operator of order 2m
with smooth coefficients, f is a specified function in H*~2™(R") = H*~2™  k a posi-
tive integer, and u is the desired solution in H*. Our results can be readily extended to
include the case of indefinite invertible L by the methods of [15], [24]. In the follow-
ing, we use ( , ) for the real scalar product over R", C for a generic constant and || - |} i
for the H' norm,

22) 1617 = [ 1B@PQ + 1£71Y a,
£

where £ = (§,, . . ., &,) is the Fourier transform variable, and (2.2) applies for all real j.

In the following, Xﬁ," ) and Y,(,k ~29) are one-parameter families of Hilbert spaces;
X ,(,") denotes the trial space, assumed of order &, and Y,(,"'zs) denotes the test space,
assumed of order k — 2s, where s is an integer or possibly half integer, and the param-
eter h is the mesh size. For all j < k such that X ,gk) CHI, g€H k. we assume

Inf llg—g,ll, <Ch*=T gy, ;

gxeng)
and for all j < k — 2s such that Y{¥~29) C H/, g € H¥~ 25,
Inf llg — g, ll; <CR* =257 gyl .

(k—2s
gyEYh )

We also assume that there exists a one-parameter (k) family of symmetric pseudo-differ-
ential operators, denoted by A, , with symbol a(hf), with the property that A,z, maps

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




402 M. S. MOCK

Y,(,k_zs) into X{¥). The Galerkin procedure is included as a special case, with 4, =1,
s=0,x% =vy®.
Our approximation to the solution of (2.1) is denoted by u, € X ;") which satis-
fies
(2.3) (Lu ~ Lu,, y) =0 forall y € y{k—29,
Set r = k —s — m; O(h®") is the optimal rate of convergence that can be expected
for the method (2.3) [2], [25]. We have the following result:
THEOREM 1. Suppose
1) X, ,(,") and Yg," =25) gre subspaces of H™ (we will assume that this implies
r>s);
(2) A2 maps Y29 onto X,
(3) 14, llg = supyegro lA,8llg/l@llg is bounded independently of h;
(4) the symbol a(+) is Holder continuous in h&, with exponent v € (0, 1];
(5) A, is inverse bounded on Y¥~29 i.c. forall y € Y{F~29), |ly||,. <
CllA,y\l,,, with C independent of h;
then for sufficiently small h, there exists a unique solution to (2.3), and for all real
j<m,
(2.4) Nu = upll; < CEET + B27)lully.

Before proving the theorem, we comment on some implications of the hypotheses.
We need test functions in H™, so that collocation schemes are not covered. In fact, we
could not expect (2.4) for collocation schemes, because u € H¥ does not imply Lu con-
tinuous in sufficiently many dimensions. Hypotheses (2), (3), and (5) together imply
the equality of dimension of the trial and test spaces. Hypothesis (5) may be viewed
as a form of an inverse assumption on the space ng), and for lack of a better name we
shall refer to it as the “strong inverse assumption” below.

The proof of Theorem 1 requires a lemma, which is also in [29].

LEMMA 1. Let M be a partial differential operator of order p with smooth coef-
ficients, and let ¢ € H' and y € HP~J. Assume hypothesis (4) holds, then

2.5) 1(MA,, -~ A,M8, V< CRVIBI YN, _;,  0<j<p.

Proof. A typical term of M is of the form p (x)D*, |a| < p, with the usual
multi-index notation. The contribution of such a term to the left side of (2.5) is given
by

| [[ & a5 @b, - D @e) - are) &) )|
< Ch’ff g dE 19 )| by — £ 1E ~ £ [1 + IEVAEPT + 1E - £1P)] 16)]

g1l s :
r 2 [ g a3 @R b - b - 1
Wi,
1+ EPCD + 1 - PN
i, Ay A2
+ ChY TT# Jf azag1p & - pi1g - £ 1L+ 1EP 0GP
i
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([ @ @F 1+ 1EPEP bE €11 +1E12CD
uwu,, )

ol _;
loll;
< Ch 1Y, _;llell;-
Proof of Theorem 1. Let u, be some optimum approximation in X;,") to u, and
choose y in (2.3) so that A2y = u_ — u,,, using hypothesis (2). Then (2.3) becomes

0=(Lu-Luy, y)=Lu—Lu,, y) + (LAhy, »)
=L —-uy),y) + (LA, - A,L)A,y, y) + (LA, A,Y),
using the symmetric property of A,. We use the positive definiteness of L and apply
Lemma 1 with M = L, p = 2m, j = m, to obtain
W4,y 12, < ChY Iy, W40, + Cllu —ull, iy,
< ChY AR, + Cllu — u 142,

Y [[ dedg13@)P 11 + 18711 16,@)1 1517

(2.6)

27

using the strong inverse assumption, hypothesis (5). For sufficiently small 4, the exis-
tence and uniqueness of y (and thus of u,) is apparent from (2.7), by an application of
the Lax-Milgram theorem, and we have
lu —uyll, <llu-—u,l, + IIA,2,y||m <flu-ull, + 14,0,
< Cllu = ull,, < CH+llull
using the boundedness of 4, hypothesis (3), and the approximation property of X},").
A simplified form of the Nitsche trick [21], [25, p. 166] gives the result for
lower norms,
N —uyliz_,, = @ —u,, (1 — AF~2"(w—-u,))

= (L —up), L1 - 42" - )

= (L —u,), I = POL™*( = Y2 (u — u,))

< Cliu = upll,, I = Pe)L™*(1 = A2 (u —up)ll,

< Chr+s "u"khk—2.\‘—-m "L—*(l _ A)k—2r(u _ uh)"k-2s

< CH2" ully lu — upll_ 5,0

where L~* is the formal adjoint of L~! and P, is the projection into Y,(l" =29 with
respect to the H™ inner product.

COROLLARY. Suppose X, ,(1") CH™ 25 gnd A n is elliptic of order —s, i. e.
2.8) I4,8llss <SCh *li¢ll; forall ¢ € H'.

Then in (2.4), j may be taken up to m + 2s.
Proof. Combining (2.7), (2.8) we obtain

Nt =yl g 25 SNt = el 425 + NARAR 425
Ch*\ull, + Ch=2%IIyll,,

CH S lull, + CH= 2114, ,,,
Ch" = ully.

A

n M
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404 M. S. MOCK

If u,, has any finite higher norms, estimates in these may be obtained by an in-
verse assumption in the usual way.

Estimates are also obtained for parabolic problems, using the above results and
the general technique of Douglas and Dupont [6], [14]. We consider the problem

29) w/at+Lv=f (x, HER" x(0,7), v(x, 0)=g(),
where L is as above. For simplicity, we consider the continuous time approximation

and assume that the coefficients in L do not depend on ¢. At each ¢, our approxima-
tion v, (¥) € X, ,(,") and satisfies

(2.10) (v, /0t + Lv, —f,y) =0 forall y € Y{k—29),
We choose v,,(0) = P, g, where P, is a projection into X, ,(,k) induced by L, i.e.
(2.11) (Lg, ) = (LPy¢,y) forall y € Y—29),

THEOREM 2. Suppose hypotheses (1)—(5) hold and h is sufficiently small; then
forall T =0,

(2.12) [Iu(D) - vu(Dlly < CH* + h”)["vm"k || 50 "k -m )m] '

Proof. 1In (2.10), choose y such that Af, y = v, — P,v. Subtracting (2.9) and
using (2.11), we obtain

A2a—+LA2 (2 (v—P), y
( h ot at

and since 4, commutes with time differentiation, we have
ay v
(Ah x Ahy) =((A,L - LA DAY, y) - (LA, 4,y) + ((1 _PI)FI_’ y>

o, 0v
< WAl 171, — Cldpp 2, + |- PY 5] 11
(2.13)

ov
<A1 - Clay 2, + COHF + BN, 1447

ov
< C(H** + 1) a_t";—m

using Lemma 1 for the commutator term, the regularity theory of [14] and Theorem 1
to estimate the last term. Thus

al:

atlik—m

and the initial condition was selected so that ||4,y(0)ll, = 0. The proof is completed
by a second application of Theorem 1, to obtain

lv@® = Pu@)lly < CH* + )@,

and using the boundedness of 4, the triangle inequality, and the definition of y.

In Theorems 1, 2, the requirement of H™ test functions can be relaxed if a
stronger assumption is made about the smoothing properties of A4,,.

The following theorem is given for the case m = 1 for simplicity; a generalization
to larger m is not difficult.

d
ar 14w llg < CE** + 1)
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PROJECTION METHODS 405

THEOREM 3. Suppose m = 1, hypotheses (2), (3), (5) hold, and hypothesis (4)
is replaced by the stronger requirement
(4") For each positive integer j < n, a Lipschitz condition of the form
Ig,a(hy) - EarE)| < Clg~ ¢ |
holds for all £, £ € R", with C independent of h.

Then the conclusions of Theorems 1, 2 remain valid if hypothesis (1) is replaced
by the weaker requirement

(l') Yg,k_zs) cC HO, Ath(lk_2S) c Hl.

Proof. 1t suffices to obtain a sharper estimate for the commutator term in (2.6),
(2.13), specifically to show that

for all y € Y{¥=25) A typical term in L is of the form b(x)(3/dx;)?, and the contribu-
tion of such a term to the left side of (2.14) is of the form

(2.15) l [ at a5 &) at) - s BE - L2y @) |
in (2.15), we use the estimate
(2.16) 1g,a(ht) - a(rE))| < 1@ (hE) — Ea(hE)| + [g; — &) | la(hE)| < ClE— £l

using hypotheses (3), (4"). Inserting (2.16) and estimating the expression (2.15) as in the
proof of Lemma 1, (2.14) follows.

3. Tensor Products of Smooth Splines. Let S,({) denote the space of smooth
n-dimensional (tensor product) splines of order j, i.e. piecewise polynomials of degree
j =1, elements of /2, on a uniform mesh of size A.

THEOREM 4. Suppose X{¥) =S y{k—29) = §(k~29) s is g nonnegative inte-
ger, and k > m + 2s + 1, then hypotheses (1)—(5), (4') are satisfied and Theorems 1--3
hold.

Proof. The approximation properties of these spaces are well known [1], and
will not be discussed. Hypothesis (1) is immediate from the conditions on s and k. We
can choose 42 to map B-splines in S ~2%) into B-splines in S{¥, in which case hypoth-
esis (2) is apparent and the symbol a( - ) is given by

n_ sin’(h; [ 2)

GD =1 Gy

Hypotheses (3), (4), (4'), and the ellipticity condition (2.8) are apparent from
(3.1). Thus, it is only the strong inverse assumption which requires proof; and each
dimension can be treated independently, as A, is a product of one-dimensional map-
pings.

The theorem follows from the following lemma and the ordinary inverse assump-
tion for splines.

LEMMA 2. Suppose j, p are nonnegative integers with 0 <j<p — 2, ¢ is a (one-
dimensional) spline of order p, and A is a pseudo-differential operator with symbol
sin(h[2)/(h§[2). Then A=1¢ is defined and
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406 M. S. MOCK
(32) lA=1o1;, < il; + Chidliy,,

where |- |; denotes the Hl-seminorm.
Proof. We set z = ht; noting that sin?(z/2) = % (1 — cos z), we have

2 _ 4pp—2i-1 -2(p-N ¢in2( 2
3.3) i¢lj =4"h f_“q(z)z sin (Z)dz’
(34 'IA‘1¢|]? = 4”_1h—2"_1f:° q(z)z=2P=i=1) gy,

in which g(z) is a nonnegative definite trigonometric polynomial in z, with a sufficiently
high order zero at z = 0 that the integrands are defined there. We may take g(z) to be
a finite polynomial, in which case both integrands are entire functions of z, and the in-
tegrals may be evaluated by the standard method of residues. Let D = d/dz and N be
a linear operator on trigonometric polynomials such that

Neiez — { eiaz’ a=0,

0, a<0,

then we have from (3.3)

4Pp—2i-1

R 1Tl LA (TS ()]

Because ¢ is a trigonometric polynomial in z and 2(p —J7) — 12 3, one factor of
sin(z/2) can be placed to the left of NV; then at least one of the derivatives must go on
this factor, so that

2ni 1917 = [2;4(1}:}13—% [Dz(p_j)—l sin($) ¥ (4 s‘n(%))] z=0

—2j-1 ]
3 Bo i [P e (G (3))] |-
+p-2i-1 a=1,3’.§(p_j)_3 CaD"“[sin(g)N(q sm(%))] L=o,

where the second term arises from the fact that any odd number of derivatives may be
placed on the factor sin(z/2) outside N. Since 2(p — j) — 2 is still strictly positive, we
can put the cosine factor back inside N and take the other sine factor out, obtaining

i |¢|i2 = % [2;4(:}'__—]2)’—:—12—]—' TD2(p—i)—-2N(q sin(%) cos(-zz-))]

z=0"

z=0

+p 2t %; Cy {D"‘N(q sin (%))] oo

=L (et an(F) (g eos(3)]

As before, one or any odd number of the remaining derivatives has to go on the
sine factor, so this becomes

+3Y .

z=0 @
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PROJECTION METHODS 407

+2

=0 o

—lh—2j—l

i |¢|2 %’m [Dz(y—i)-écos(%>N(q cos(%))] i

vt gl @(aco(Z)] |,

8=1,3,...,2(p-/)-5
where the 2, term is understood to be simply dropped if p —j = 2. Since 2(p —/) — 3
> 1 and 8 > 1 if the last sum is present, we can put the cosine factors back inside N,
obtaining finally

2mi 112 = [;:p lh)213;' [D2(p -~ 3N(q(1-sm (2)))]
(3.6) Hh a+l,3,...,z2:(p—i)—3 Ca [DQN(q sn’ 5))] z=0

N B=1,3,...§(p—i)—s C"’ [DﬁN(q (l B Sin2(§>))] z=0

z=0

Using (3.3), (3.4), each term on the right side of (3.6) admits an interpretation
as a seminorm of ¢ or A~ 1¢, in the same manner as (3.5) was obtained. We have
p—j-1

1617 = 1471612 - Ch? 192, + X C m*%1l}

a=1

jta

(3.7 iz
+ Bz,l Ca*P(147 93,5~ 1012, o),

in which a, 8, C,, Cl'j have been redefined; but the last sum is still omitted for p =

j + 2. Since p —j = 2, each of the terms in (3.7) is well defined. Wesetj=p—2
initially, and let j descend to its desired value in steps of one. Applying the usual in-
verse assumption at each step, the result (3.2) follows.

4. A Superconvergence Mechanism. Suppose Z}i"") =4 hY},"’zs) is also a
space, of order k — s, as is the case for splines and some other spaces discussed in Sec-
tion 6. We assume hereafter that s is positive, which is for our purposes the more in-
teresting case. The results of Section 2 then suggest that for elliptic and parabolic
problems, the accuracy of Galerkin’s method in Zg,"““') can be improved by interpreting
the approximate solution as an element of X},") =A hZ;,"_‘) rather than as an element
of Z}," =5)_ In this section we obtain conditions under which this is so. An alternative
procedure for improving the order of accuracy by local averaging is described in [3].

We consider the elliptic case first. Let u, € Z},"‘s) be the Galerkin approxima-
tion to the solution of (2.1),

(4.1) (Lu = Lu,, ) =0 for all y € Z{~9),
then it is well known [24] that
4.2) llu - u, ”] < C(hk_s_i + th) "u”k—s'

THEOREM 5. Let u, be as above, suppose hypotheses (1)—(3) hold, hypothesis
(4) holds with v =1 (a(+) Lipschitz), and hypothesis (5) holds in the stronger form

(a3) o, <Cl4,0l;, o€YF2orgezF 9, j=0,1,...,m
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408 M. S. MOCK

Suppose A, is elliptic of order —s, i. e. (2.8) holds, and in addition
©6) a(hed) <1+ O 1EDP), p = maximum(2r, r + 2s —m — 2);

44
(7) L=L, +L,,where L, has constant coefficients and L, is of order
2m + 1 —s; then
(4.5) lu = Ayu,ll; < CE7 + R ull,, j<m+2s

Several comments are made before proving this theorem.

The form (4.3) of the strong inverse assumption is implied by Lemma 2. Hypoth-
esis (6) can presumably be achieved by a change of basis in X}l"), for smooth splines
this is done in [28]; such a change of basis must be stable, however, so that (4.3) is
preserved. The hypothesis (6) is viewed simply as a practical requirement for the con-
struction of a suitable 4,,.

The hypothesis (7) is no restriction for s = 1; for larger s, it requires that some
leading terms in L have constant coefficients. In this respect and in the sense that 4,
defines a local mapping, our hypotheses resemble those of [8]. (Stronger results have
been obtained for one-dimensional problems, however, in [9].) Our results are valid in
an arbitrary number of dimensions, which is not the case for many superconvergence
theorems; we note [11], however, as an interesting two-dimensional result, and [26],
[27].

For j > m + 2s in (4.5), the usual comments about inverse assumptions apply.

Proof of Theorem 5. As in Section 2, let u,, € X§,") be an optimal approxima-
tiontou, lety € Y}."'z“"), and set Yy = A,y in (4.1); we obtain

4.6) (Lu—LAyu,, y) =LA - A )u, y) + (LA, — A, LYu —u,), y).

This is almost the same discrete equation as satisfied by u,,, Eq. (2.3); we may
identify the first right-hand term of (4.8) as due to the different treatment of the in-
homogeneous term, and the second term as due to variable coefficients in L. In the
special case where L has constant coefficients, this second term vanishes, and we ob-
serve the equivalence of the discrete equations.

Proceeding in the same way as to obtain (2.6), we choose y in (4.6) such that
Aly = u, — Au,, then

LAy, Apy) =~ L —u,), y) + (LA - A)u, y)
.7 + ((LAh - AhL) (u - uz)’Y) - ((LAh - AhL)Ahy’ »)
= —(L(u~u,),y) + LU~ A, y) + (LA, — ALY — 45 u,), »);

in the last term we note that L, commutes with 4,, and we apply Lemma 1 with
M=L,,p=2m+1-sj=p—m, obtaining

4,12, < Clu—ul,,Iyl,, + I - Aull,, N+ Chlle = Ay ull gy VN,
Cllyly [P Nl + Rlle = Ay Ny g ]
ClAp N, [HE =™ ully + Rllu ot 7H | I

(4.8) <
<

Now let ¢, € Zg‘ ~%) be some optimal approximation to u, and y, € ng =25) pe
such that
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PROJECTION METHODS 409

4.9) Ay, =0, — Az tu,;
then forj < m,
lu = Ay u I = (1 - AY (u — A5 "u), u - Ay uy)

=((1-AY@-A; u),u-0, +A4,y,)

<llu - A5 u, Wil = ll; + (1 - AY (u —uy), y,)

= (1 -8 -4, y,),

since A, commutes with 1 — A. First suppose j = 0, then we estimate (4.10) using
4.3),
@10 lu = A7 u 12 < CRE Tl Tl = A5 a4+ o)1) 5
from (4.3) and (4.9),

(4.10)

Iyyll; S CllA,y ll; < Cllu = ¢, 1l; + Cllu — A5 ull;
< CHF 5T lully_g + Cllu — 45 u i

combining (4.11) and (4.12) gives

(4.13) llu — A5t ll; < CHE =5 |lull, _q.

(4.12)

For negative j in (4.10), we proceed differently, obtaining
N = Ay tu i < CHF 5T llu — A g Nl Hull
+ Cliy,llglllu — ully; + 1A — Ap)ully;l;
in (4.14) we use (4.12) and (4.13) with j = 0 to estimate ||y, ll,, and (4.4) to estimate
the last term, obtaining
lloe = A u N3 < CH = llu = A u Nty
+ C(hz(k—s—j) + h2(k—m—l)) "u"i—s

(4.14)

(4.15)

from which it follows that we may set j = m + 1 — s in (4.13), regardless of the sign of
j. Comparing this result with (4.8) then establishes (4.5) for j = m. As before,
llu _Ahuz "m+2s < llu - ux"m+2s + "ux —Ahuz"m+2s
S CH " *Nully + Ch= 2045 %u, — A u,ll,, < CH = SNully+ Ch=lu, — A,u, |,
< CH*llully + Ch=25(|lu - Ull,, + Ml —Auu,ll,) < Ch*Hull,.
For lower norms, we again use the Nitsche trick; let x = L™*(1 — A)* %" (u —-A,u,),
0 =L(I - A,)u + (LA, — A,L)(u — u,) and P, the projection operator into Y{¥~2%)
with respect to the H™ inner product as in Section 2. Then
N — Apuy 25, =@ —Apug, (1 = 82~ A4,u,))
(4.16) = (Lu - LAyu,, (I = Py)x) + (Lu = LAyu,, Pox)
= (Lu — LAju,, I = Po)x) + (8, PoX),
using (4.6) with y = Pyx. Since (1 — A)™P, is symmetric,
(0, Pox) = (1 — A)~™8, (1 — AY"Pox) = ((1 — A)Y"Py(1 — A)™ ™8, x);
and (4.16) may be estimated
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410 M. S. MOCK

N = Apu, 5, < Cllu = Ayt N, W = Po)Xll,
4.17) +I(1 - AY"Py(1 — A) "0, WX _2s
< R ully + B2 ™ ixle—as + 1P (1= A) ™0l _5, Xl _ 24
From the definition of ¥, it follows that
(4.18) Ixllx_ps S Cllu~ Aju,lly_5,.
Now we note that k — 2r = k — 25 — 2(k — 2s — m), and so P, is stable in
I+ llx_5,s thus,
1P(1 = AY"™81l 5, I = AY ™81 _,, + CH=5I L — )"0,
S Clbliyg_ + CH5N0M_,, < CIA = Ay)ully_,, + CH A — Ap)ull,
+ClILA, — ALY —u)dllyg_i + CHWLA, — ALY —u)l_,,

1_
< Ch¥ lull, + Chllu —uyll gy, + CH Y St~ ugll g g

(4.19)

where we have used Lemma 1 twice in the last step, with M = L,,p=2m + 1 -5,
j=m+1-randm+1-s5 with ¢ = (1 - A?>"%(L,4, —A4,L,)(u —u,) and
(1 —A)y"™(LyA, —A,L,)(u — u,). Finally, we can estimate the right side of (4.19)
by (4.2); combining the result obtained with (4.17) and (4.18) establishes (4.5) for
j = k — 2r, and so proves Theorem 5.

As expected, Theorem 5 leads easily to a similar theorem for parabolic problems.
Let v, € Z},"'s) be the continuous time Galerkin approximation to the solution v of
(2.9),1i.e.
(4.20) (v,/0t + Lv, —f, y) =0 for all Y in Z{F~9),

For simplicity, we again assume that the coefficients of L do not depend on ¢,
and we let P, denote the Galerkin projection operator into ng =% induced by L,

(4.21) (Lo —LP,p, ) =0 forall y € Z=%), 9 € H™.
We choose as the initial condition
4.22) v,(0) = P,g,

in which case the following holds:
THEOREM 6. Suppose the hypotheses of Theorem 5 hold, and v, is determined
as above. Then forall T 2 0,

@23) (T - Ay (Dlly < CEH* + 127 [nvmuk 7 a‘;—(t’) .. dt].
Proof.
o(T) - 40, (Dlly < I = AP0y + 14, (Pyo(T) = v, (Tl
< CH* + 2NN, + CIP(T) ~ v (Dl
using Theorem 5 and the boundedness of A,. From (2.9), (4.20), (4.21) it follows
that for any ¢ € Z},"_’), t=0,

( % (v, — Py) + Lo, ~ P0), ¥) = (€ - Pz)g—'t’, v);

4.24)
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choosing ¢ = v, — P2v,'we obtain
d
"l)z - sz "0 E "Uz - P2U"0
v
= Cllo, =PI, + (4,0 - Py) 57, 45 @, - P,v))

~ Cll, - P2, + <n(1 —A,,)g—‘t’ o+ .‘(I—AhP2)g—‘;||_m) I4; 1w, - Pl

d
< 2k ar .l
C(H** + n*" 3¢ le—m
again using Theorem 5. Since ||v,(0) - P,v(0)ll; = 0 by (4.22), (4.23) follows.
Pointwise superconvergence results are also obtained from Theorems 5 and 6.
For the elliptic case, let Q, = {x € R" | u,(x) = A,u,(x)}. Q, may depend on h, but
it is not empty, as a(0) = 1. We apply the elementary estimates

Cll- Ny n-ni/2, n=1,

el ClL- 13- 13241314, n=2,

<
Lo(R™)
ellsll, + Ce= 2|0y, n=3,

to the function u ~ 4,u,; in general,

—_ k—s
(1] IL “(R™) = O(h )
but
pe-12 p=1,
Sup lu(x) —u,(x)| < Cllull, { H*~1, n=2,

Q
= W43 p=3,
so that for s 2 2, pointwise superconvergence occurs in up to three dimensions. Sim-
ilar results hold for the parabolic case.

5. First Order Hyperbolic Equations. It suffices for the present discussion to
consider the scalar equation in one space dimension,
;.0) %'er— =f, x,)ERx(O,T), w(*,0)=g;
the generalization of our results to symmetric hyperbolic systems in n space dimen-
sions and including a linear undifferentiated term is immediate. In (5.1), b and f are
smooth functions of (x, #) and g is a smooth function of x. We obtain continuous
time approximations to w in X;,"), a finite element space of order k, as above; the test
space Y, is not required to satisfy any approximation properties. We let 4, be a
symmetric pseudo-differential operator as above, with symbol a(h%). As above, we
have in mind the case where a(h) is of the form (3.1) with positive integer 5. The
case § = 0, A = I can be included by replacing the ellipticity hypothesis (iv) below by
an inverse assumption on the space X},").

THEOREM 7. Letw, € X;") x [0, T] be determined from the relations
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0 ow
(52) (%’+b—a—x—h—f,y>=0 foraly €Y,, t€(,T7),

(5.3 wy(+, 0) = Pgg,
where P is the H Y projection into X, ,(,k ), Suppose that

G X cH, Y, CH

(i) Af, maps Y, onto Xglk);

(i) A4 p is bounded in HC;

(iv) A, is elliptic of order —1 ((2.8) holds with s = 1);

(v) a(-)is Lipschitz continuous in h;

(vi) A, is inverse bounded on Y, (¢lly < CllA,¢lly for all $ € Y});
then fort 2 0,

tw(e, D =wu(+, Dl

54 .
( ) <C(t)hk—l ["W(' s t)"k—l + J(: ["W(. ’ t)“k + "f(' s t)"k-—-l] dt] .

Proof. Subtracting (5.2) from (5.1) in the usual way and choosing y such that
Af,y = P;w —w,, we obtain

342y
at

Ayy 4,y d d
(475 )= (42 55) - (- (o 40 - ) )
] 0
“(y,(a—t'+ b a)(w—Paw))

<1 (. (32 )y) + Chlylg Iy,

My /2 d
bt (24 b )w =P ) =0,

ow
+ Cliyll, ["(I‘Ps)W"l + " d-P) gt—"o]

using Lemma 1 with y = 1, M = bd/ox,p =1, ¢ = A,y, ¥ =y. From the ellipticity
and inverse bound on A4,, we have

:_t 14,713 < Cll4, I3 + CllA, o (1T = Pwl, + I1d = P3)flle];
since (5.3) implies |14, y(+ , 0)ll, = 0, this implies

1Paw(*, ) = wyu(+, Ollg = 142yllg < Cll4,ylly
<Ot 2 UWC, Dl + IS Dl ] dr

from which (5.4) easily follows.

This is the same order of accuracy as obtained by Lesaint [17] for the Galerkin
approximation. Theorem 6 shows that under suitable conditions, the same order of
accuracy can be achieved with simple, e. g. piecewise constant test functions, and cor-
respondingly simpler discrete equations.

The Galerkin approximation, however, is special. The following theorem con-
tains Dupont’s result for splines [13] as a special case (also implied by [27]).
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THEOREM 8. Let w, be the Galerkin approximation in X§1") x [0, T to w, ob-
tained from the relations

(5.5) ( aat

(5.6) w.(+,0)=A;'P.g,
where P, is the projection into E,fk“) =AhX,$k) with respect to the H' inner product.
Suppose that Eﬁ,"“) isaspace of orderup tok + l,ie, for0<j<m<k+1,

Inf ¢ —xl; <CH™ gl

(k+1)
xEEh

Let F, = A,T"X}," ); and suppose that
() F, CH, X cH,;
(i) A% maps F, onto ES¥+1),
(i) A,, is bounded in H°;
(iv) a(+)is Lipschitz continuous in ht;
) la(rg)| <1 + O((he)*);
(vi) A, is inverse bounded on F, and on X% e Holig < CllA,¢lly for all
¢ EF, and 1Yll, <ClA, Y|, for all y € X,
then for all t Z 0,
w(-, ) —w,(*, Dl

.7 <COH* [uw( Ol [T Dy + 1A, D] dt].

)=o forally €Y, t€(0,T),

Remark. We have not assumed 4, to be inverse bounded on F, U X}t"), which
is not true in general. For the case a(h§) given by (3.1) multiplied by a trigonometric
polynomial, hypotheses (ii)«(vi) are satisfied for s a nonnegative integer. The approxi-
mation property required of Eg,k *1) precludes the case s = 0. For X},k) the space of
smooth splines of order k¥ with s =1, E;,k'“) and F), are the spaces of splines of order
k + 1 and k — 1, respectively.

Proof. We subtract (5.1) from (5.5) and proceed essentially as before. The idea
is that A, w_ satisfies similar discrete equations, with F, thought of as the test space,
as obtained in Theorem 6 for u,. For any y € F,, we obtain

0 ) ) 0
<-37 A,w-A,w,)+b F™ A,w—A4,w,.) +<Ahb 5;_1’ 5;Ah> (w —wx),y> =0
choosing 42y = P,w — 4, w,, this becomes

02 + (344 8) o ron)
«at“’ )Ahy’ (<6t+bax Apw = Pyw), y
0 0
+((Ahba—b5;Ah>(w—Wx),J/)=0
<1A A >+<b£A A >+<<i+bi>A - P )>
at h.y’ hy ax hyv hy at ax ( hw . 4W,y
' ) )
+«Ahb$~b-a;Ah>(w—wx),y>
3 2 .
- Ahba—baAh (Ah P4W_Wx)’y =

(5.8)
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The two commutator terms can be combined; this is the special property of the
Galerkin approximation. Integrating by parts and using Lemma 1 as above, we obtain
from (5.8),

<3f Ay, Ay ) = Ahy, ax A,y 3 +b ™ “,w P4w),y‘
d 0 _
+ ((Ahb = 0o A,,) (w—4,1P,w), y>,

d
(5.9) o 14ny 1§ < Clla,p 13

+Wlf @ -4 32, + |a-20 3], + -4,
+ I~ Pwlly, + rlld —A;1P4)w||J

SCIAYIE + Cll ALYl KWl gy + B 1IfIl + BRI = A; P )Wl ]

Let w, be an optimal approximation in X ,(,") to w, then
lw = A tPawlly <liw = wyll, + llwg = 45 1P,wll,

(5.10) < Ch*~iwlly, + 114, wo — Pawlly
SCH = Yiwll, + llw = Pywll, + llw — A, well,
S CHEHiwll, + I = 4wl + 14,w = wodll; < CHE = Iwll,;
combining (5.9) and (5.10) and using (5.6) gives

1D Al SCOR [T W, Dy +1FC, D] .

Finally,
Iw(+, 1) = wy(+, Dllg SNE ~ A *PYwly + 11457 lls

an argument similar to that used to obtain (5.10) gives ||/ —A;1P4)W||0 < Chkllwllk,
and thus (5.7).

6. Discussion. There are spaces other than smooth splines to which our form-
alism applies. For example, we can take Af, to be the inverse of a partial differential
operator (cf. [12], [27], e.g. a(ht) = (1 + h? |£2()~1/2; with such a choice for 4,
our hypothesis (5) is simply an inverse assumption on X}," ). Analogous to [12], [27]
we would then choose X§,") a space of piecewise polynomials of order %, and Y,f"’zs) =
A2 X0,

The results of [10], [22] correspond to A7 a family of partial differential opera-
tors; many of our results can be directly extended to this case.

The choice of a(-) given by (3.1) is special if we wish to generate a hierarchy
of spaces by successive application of 4,. This is the choice which minimizes the
radius of support of the higher order basis elements in the following sense.

THEOREM 9. Let X, ,(,j) be a space of order j, spanned by the uniform translates
of tensor products of basis element(s) ®;(x/h), the support of which is contained in
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[ »;, p;] (o is the smallest such number). Suppose that for all nonnegative integer
D Xf{ +p) = AbX ,(,’ ) is a space of order j + p. Let P4 p denote the radius of support
of the basis elements of X,(,j‘“’). Then for sufficiently large p, ;i p41 2 Pjsp + 1%,
and pjy iy = Pigp T Y% if and only if a( - ) is given by (3.1), with s set equal to 1.

Proof. In the x-variables, 4,, is simply a convolution operator with kernel a(x/h)
(the inverse Fourier transform of a(k£)). In order that A, successively generate spaces
of all orders, a(ht) = O for all k¢ = 2nj, j any nonzero integer [25]. Thus, for any
nonzero integer j,

6. f&(f)exp(znz‘j}—’;)dx = 0.

If a(x/h) has its support within {~%, %], then by comparison of its Fourier
series with (6.1), it follows that a(x/h) is constant in (%, %), which corresponds to
a(h§) given by (3.1) (with s =1).

However, this choice of 4, maps piecewise polynomials into piecewise polyno-
mials, and can be applied to other spaces. For example, if we start with the Hermite
cubics, we obtain successively the C? piecewise quartics, the C3 piecewise quintics, etc.
Our results hold for such spaces (the modification of Lemma 2 in such cases is straight-
forward, but tedious).

Finally we consider the rates of convergence of Galerkin methods for first order
symmetric hyperbolic systems. In [13], Dupont showed that in L2, O(h%) was ob-
tained for Hermite cubics and O(h*) for cubic splines. Our Theorem 8 holds for the
cubic splines, but not for the Hermite cubics; for X ,(,k) the space of Hermite cubics,
F,= A;lXﬁlk) is not a subspace of H®. A different choice of 4 » Will not help, be-
cause the Fourier transforms of the two basis elements of the Hermite cubic space do
not have a suitable common factor. Our results do imply the optimal order of accuracy
for the higher spaces in the hierarchy beginning with the Hermite cubics, however, for
example, O(h®) for the Galerkin procedure with the C* piecewise quintics.
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