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1 Introduction 

Abstract. The projection moire technique enables quantitative measure-
ments of the shape of an opaque curved object surface in space. In 
contrast to the actual literature, where the interpretation of moire fringes 
is mostly limited to particular geometrical configurations, we present a 
strong mathematical tool that makes it possible to accurately analyze 
more general and complicated geometrical cases. We therefore intro-
duce a mathematical model based on the calculation with projectors and 
use tensor calculus to deduce the general equations of projection moire. 
Emphasis is put on relative moire, which is used in most experiments, 
and on difference moire, which is generally used to calibrate optical sys-
tems. The concept of a sensitivity vector, which comes essentially from 
holographic interferometry, is also introduced. Using a computer-based 
image processing system, a numerical experimental verification of the 
obtained theoretical tensor equations is performed. Simultaneously, we 
describe how to calibrate an optical setup and gain evidence of a few 
nonlinear effects. This shows which parameters of the setup are of im-
portance and should be carefully controlled. Moreover, we treat some 
well-known special cases to demonstrate the agreement with the existing 
literature. 

Subject terms: projection moire; shadow moire; projectors; tensors calculus; sen-
sitivity vector; contouring; moire fringes; object shape measurement. 
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The shape of an opaque curved object surface in space can 
be quantitatively described using the projection moire tech-
nique.1-13 Computer-based image processing systems have 
enabled a rapid development of the applications that use this 
technique, which as such is not new. By means of a light 
source S (or projector), a grating 6 is projected onto the 
surface G of an object* (Fig. 1). The observation of the pro-
jected grating Gon the object through another grating G from 
the point R (or camera) enables seeing moire fringes if the 
projections of the two gratings G and Gonto the object surface 
are similar. The whole information concerning the shape of 
the object surface is contained in these fringes. Assuming 
two sinusoidal gratings, the transmittance functions T of G 
and T of G are written 

T=-[l -cos(27rD)] , T=-[l cos(27rD)] , (1) 
2 2 

where fJ is the line order of grating G and i5 that of 
Maximal transmittance (i.e., a white line) is reached for T= 1 
or 1, mpectively, and no transmittance (i.e., a black line) 
for 0 or T = 0. The intensity distribution IP over the object 
shape depends on the intensity ls of the projector 
and the transmittance T of the grating G. In a similar way, 
the intensity IR received by the camera depends on the in-
tensity IP over the object and the transmittance T of the 

G. Assuming a unifonn intensity, we have 
/ .. Jl -cos(27r/J)]/2 and 

ls ~ 4 [1-cos(27rD) cos(27rD)] 

*Note that in this paper for simplicity most of the figures are drawn in two 
dimensions but in reality represent a 3-D situation. 

Paper SWJ-03 received Aug. 15. 1994; accepted for publication Oct. 7, 1994. 
© 1995 Society of Photo-Optical Instrumentation Engineers. 0091-3286/95/$6.00. 

In Eq. (2) for the intensity IR, the term before the last term 
represents an invisible high-frequency moire with fringe or-
der Dm = i5 + D and the last term a visible low-frequency 
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Fig. 1 Principle of projection moire. 

moire with fringe order DM=i5-IJ (Fig. 2). Here we study 
only the visible moire DM, which contains the needed in-
formation on the shape of the object surface. 

2 Optical Model 
The optical system of the camera (like that of the projector) 
can be described in the ideal case by the following geomet-
rical relations (Fig. 3) 

1 1 1 1 1 
-=-+-=---
! S s* Le L~ ' 

(3) 

where f is the focal length; s and s * are, respectively, the 
distances from the principal points Hand H* to the' 'object'' 
and "image" points K111 and K~ 11 ; and Le and L ~ are, re-
spectively, the distances from the principal points H and 
H* to the collineation centers R and R *. For the camera, the 
projection centers R and R * are, respectively, located in the 
entrance pupil (aperture stop) and in the exit pupil. 1 With 
~/~ * = (s -f)/j, we can define in this optical model a virtual 
collinear image Kv on the object side associated to the point 
Kand its image K* such that 

~v ~ (s-Le) --=-- => s =f -- +L 
sv-Le s-Le " s-f e 

(4) 

where ~. ~*, and ~" are, respectively, positive distances in 
the object, image, and virtual image planes of the optical 
system. 

3 Line Order of the Camera Grating 
The line order i5 of the camera grating is first defined on the 
camera grid-plane in point P (Fig. 4) and then extended in 
the space r;J/,3 by central projection relatively to the collinea-
tion center R (see Fig. 7 in Sec. 4). The value of the dimen-
sionless scalar i5 Effi is the same on the straight line passing 
through the points R, P, P, and K. In case of a grating with 
equidistant straight lines, the expression for i5 is written 

(5) 
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Fig. 2 Formation of moire fringes. 

Fig. 3 Model of the optical system. 

where the sign · indicates a scalar product of two vectors. 
The tensor N =I - ii@ii is a normal projector, where the 
sign @ describes a tensor product (or dyadic product) of two 
vectors, and the vector ii is a unit vector normal to the grid 
plane. The projector N projects along the direction ii onto 
the grid plane normal to ii (Fig. 5) and the tensor I repre-
sents14·15 the identity in the space ffi3 . The constant scalar 
value ~ represents the line spacing between two neighboring 
lines on the camera grid plane; the characteristic unit vector 
g=Ng is situated in the camera grid plane (g..lii) and is 
perpendicular to the grating lines. The vector r can be in-
terpreted as a vector variable giving the position of point P 
in the camera grid plane, where re represents the vector co-
ordinate of some reference point on the grid plane such that 
D(rJ=O. 

4 Line Order of the Projector Grating 
The line order IJ of the projector grating is also first defined 
on the projector grid plane in point P (Fig. 6) and then ex-
tended in the space r;#/,3 by central projection relatively to the 
collineation center S (Fig. 7). The value of the dimensionless 
scalar DEffi is the same on the straight line passing through 
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Fig. 4 Line order of the camera grating on the grid plane. 

Fig. 5 Oblique and normal projections. 

the points S, P, P, and Q. In the case of a grating with equi-
distant straight lines, the expression for D is written 

(6) 

The tensor N= I - n@n is a normal projector and the vector 
n is a unit vector normal to the grid plane; N projects along 
the direction n onto the grid plane. The constant scalar value 
~represents the line spacing between two neighboring lines 
on the projector grid plane; the characteristic unit vector 
g=Ng is situated in the projector grid plane (g.ln) and is 
perpendicular to the grating lines. The vector r is a vector 

Fig. 6 Line order of the projector grating on the grid plane. 

variable giving the position of point Pin the projector grid 
plane, with re representing the vector coordinate of some 
reference point on the grid plane such that De re) = - 'I)!. The 
scalar increment '\)! plays an important role in the phase-
shifting method to get a phase image2•16 and the vector in-
crement ~re='\)! ~g describes a uniform in-plane translation 
of the grating on the grid plane, the translation being in the 
direction of g for '\)! positive. 

5 Moire Fringe Order 
Considering two fixed collineation centers R and S with, 
respectively, two fixed grating G and Gin space, the vector 
variablesr and rare not independent (Fig. 7). Both are func-
tions of the vector coordinate r of some point P in the space 
0ft3, which means r----ir=r(r) and r---7r=r(r). The moire 
fringe order DM in point Pis then written as follows: 

DM=DM(r) =DM(r,r)=D-D 

1 ~ L A 

=::::: g · N (r -rc)--:::g· N(r-re) +w 
A. A. 

(7) 

Note that a moire surface in the space 0ft3 can be described 
by a set of vectors r = r M for which the moire fringe order 
DM is constant (¢=constant), which means rM---7 
DM(rM) = ¢. On another hand, we can choose for our pur-
poses the point P on the object surface G and look at the 
behavior of DM. This is useful for the study of the object 
shape. Then, for a given fixed object surface G, the function 
DM can also by definition be extended in the space 0ll,3 by 
central projection relatively to the collineation center R, its 
value being the same on the straight line passing through R, 
P, P, and K. For another point P 0 , e.g., on the object surface, 
we have 

(8) 
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Fig. 7 Model of a general geometrical moire setup. 

where D 0 =~(r 0 )=g·N(r 0 -rc)/A. and It=IX_i'0 )= 
[g · N( r0 - rc)/A] - \[I 0 are, respectively, the line order of the 
s_amera grating in P0 and that of the projector grating in 
P0 . In most cases, \[I and \[10 are the same. We use the value 
DMo later as a reference for the other values of DM. 

6 General Expression of Relative Moire 
We can now define a relative moire value !:J.DM in some point 
P in the space <Jl,3 by taking the value of the moire fringe 
order in a point P0 as reference (Fig. 7). We write for 
\[I =Wo, 

!:J.DM= DM- DMo = DM(r)- DM(r0 ) 

= (i5 - i50 )- ciJ-iJ0 ) 

1 - 1 A =::::::g. N (r-r 0 )-~g· N(r-r0 ) 
A. A. 
l_ - lA A =:::::: g · fJ. r - ~ g · !:J.r , 
A. A. 

(9) 

where /::J.r=N (r -r0 ) and !:J.r=N(r-r0 ) are, respectively, 
the vector increments in the camera and projector grid planes. 
The dimensionless scalar !:J.DM is simply called relative moire 
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in point P. Because DMo = ¢, the moire surfaces are still de-
scribed by a set of vectors r = rM for which !:J.DM= ¢. Equa-
tion (9) is general and is valid for all geometrical configu-
rations of the optical setup. For a given fixed object surface 
G, the relative moire !:J.DM can be extended in space like the 
moire fringe order D M. 

To make Eq. (9) explicit, it is necessary to introduce some 
tensor relations called affine connections making the bridge 
among the vectors !:J.r, !:J.r, /::J.r, Lil\, /::J.r,,, /::J.p, and !:J.p,,. These 
affine connections involve normal and oblique projectors in 
<Jl3 , also called affinors. 14·15 Figure 7 shows that !:J.r=r-r0 
is the vector from P0 to P, that Sr,, and /::J.r,, are, respectively, 
the collinear images of !:J.r and /::J.r in the vi1tual image planes 
of the camera and the projector, and that !:J.p is the collinear 
image of !:J.r in the object plane of the optical system of 
the camera. With the unit vectors k, k 111 , h, and h111 , we first 
define the two normal projectors K 111 =I - k 111@k111 and 
H 111 =I - h111@h111 , with K 111 projecting onto a plane perpen-
dicular to the optical axis of the camera, which means along 
the direction k 111 onto a plane normal to k 111 , and with H 111 

projecting onto a plane perpendicular to the optical axis of 
the projector, which means along h111 onto a plane normal to 
hm. Both normal projectors K111 and H 111 are symmetric. We 
then define the following oblique projectors (not symmetric): 
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- k@ii M=l---
k - , ·n 

A h@ii 
M=l---

h 
A, ·n 

M =I- k@km 
m k·km ' 

M =I- h@hm M =I- hm@km 
m h·hm ' Ill hm·km ' 

(10) 

with M projecting along k onto a plane normal to ii (Fig. 5), 
with M projecting along h onto a plane normal to ii, with 
M 111 projecting along k onto a plane normal to k 111 , with M,,, 
projecting along h onto a plane normal to h , and with M 
projecting along h111 onto a plane normal to k:::. Note that thi~ 
description is valid only ifthe vector is applied' 'on the right'' 
of the oblique projector (i.e., Mi1r). The two directions k 
and h are commonly called observing and illuminating di-
rection. With the preceding definitions, the affine connections 
are written as follows 

(11) 

(12) 

(13) 

i1p=Kmi1P · (15) 

Assuming P and P 0 on the object surface, the vector i1r is 
of particular interest because it contains the information on 
the surface shape. With the rule (v1@v2 )v3 =v1 (v2 ·v3 ), 

where v1 , v2 , and v3 are arbitrary vectors of <JI}, we can 
decompose i1r into an exterior part along an arbitrary direc-
tion c (unit vector) and into an interior part onto a plane 
normal to c as follows: 

i1r =Mr= (C + c@c)i1r = Ci1r + (c · i1r)c = Ci1r + sc , 
(16) 

with the normal projector C =I c@c and the component 
s=c·i1r. By choosing c=k111 , we get i1r=K111 i1r+zk,,,, 
with the definition z = k111 • i1r. We can also decompose i1r 
into a part along the direction k and a part onto a plane normal 
to k111 • With Eq. (15), we write 

i1r=Mr= (M
111 

+ k@k111 )i1r=M
111

i1r+ (km. i1r)k 
k•k111 k·k111 

(17) 

Introducing Eq. (17) into Eq. (12), the vector i1r can also be 
expressed in function of i1p and z: 

€so (Mk) + -- z, 
€so+Pso k·km 

(18) 

and the (explicit) general equation for relative moire [Eq. (9)] 
becomes (Fig. 7) 

The meaning of Eq. (19) becomes clear by considering the 
scalar product of the vector i1r = r - r 0 with the vector 
p = p(k,h). The displacement vector i1r in space describes 
the object shape and the sensitivity vector p depends only 
on the observing direction k and on the illuminating direction 
h for a given optical setup. Note that this definition is very 
much an analog to the definition of the fringe order in 
holographic and speckle interferometry. 14•17 The moire sur-
faces in space are then described by a set of vectors 
i1r=i1rM=rM-ro for which i1DM=¢. Because the sensi-
tivity vector p(k,h) is not constant, we must pay particular 
attention to the fact that the moire surfaces in space may 
generally be curved. 

6.1 Special Case of Shadow Moire with 
Collimated Light 

This case concerns the projection and observation with col-
limated rays (parallel rays) through the same grating on the 
same grid plane, where the optical axes of the camera and 
of the projector are not parallel. This particular case can be 
obtained from the general case [Eq. (19)] by taking a limit 
when €0 --too and €s0 -too while keeping g/f =g/'f\= ¢. In 
our model (Fig. 8), this means that R and S go to infinity 
along the directions k111 and - h111 , respectively, while the 
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Fig. 8 Special case of shadow moire with collimated light. 

position of the grid-plane G = G remains unchanged rela-
tively to the object surface G. Focusing near the object and 
by knowing that p0 , p50 , L0 , and L50 remain finite, we have 
with kill 7':- - hill and by choosing c = - ii= - ii, 

. €0 . €so hm ---= hm 
Co-c) 00 fo+Po Cso-c}=fso+Pso 

1, 

k=k111 , h=h111 , (20) 

C ~N NA K --'-H M~ =I- km@c MA =I- h111@c . = = , 111' 111, , 
k 111 • C h111 ·C 

(21) 

With (M-M)C =0, Mklll=O, and ~r=C~r+ sc=~p+ 
zk111 , Eq. (19) becomes 

A 1 ~ A A 
M)c=,g· [(M-M)~p-zMk 111 ] 

/... 
(22) 

In this particular case, the moire surfaces ~D M = ¢ in space 
are given by a set of' 'equally spaced'' parallel planes normal 
to the direction of the constant sensitivity vector p = 
g(M M.)1~. 

We now define an orthogonal basis (g,e,c) where e 
=Ce= c X g is a unit vector in the grid plane and write the 
two vectors k 111 and h111 in components: 

k 111 = (k111 · g)g+ (k111 • e)e + (k111 · c)c 

= g siniJ 1 coslp 1 + e sin{J 1 sin'P 1 + c cosiJ 1 

hill = (h111 • g) g + (h111 · e )e + (h111 · c )c 

Introducing Eqs. (21) and (23) into Eq. (22), we get the 
following expression [Eq. (24)] for shadow moire. By con-
sidering the particular situation of Fig. 8, where 'P 1 = 'lT and 
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'Pz = 0, we become the well-known following second expres-
sion [Eq. (25)] [Eq. (1) in Ref. 1, Eq. (6) in Ref. 3, Eq. (27) 
in Ref. 4, and Eq. (5) in Ref. 5]. Both Eqs. (24) and (25) 
describe the level lines of the object shape relatively to a 
plane normal to c passing through the point P 0 : 

-MDM 
s=---~--

taniJ I COSlp I - taniJ 2 COSlpz , 
(24) 

MDM 
s=-~~ 

taniJ 1 + taniJ2 
(25) 

6.2 Special Case of Projection Moire with 
Collimated Light 

This case concerns projection and observation with colli-
mated rays, where the two grid planes are perpendicular to 
their respective optical axes, which are generally not parallel. 
This particular case can also be obtained from the general 
case [Eq. (19)] by taking a limit when €0 ---c)oo and €50 -c) 00 

while keeping g/Y\. = ¢ and g/ 'A=¢. In our model (Fig. 9), 
this means that R and S go to infinity along the directions kill 
and - h111 , respectively, while the position of the grid planes 
G and G remain unchanged relative to the object surface G. 
Focusing near the object and knowing that p0 , p50 , L0 , and 
L50 remain finite, Eqs. (20) are still valid in this case. With 
n= -kill, ii=hm, N=Klll, N=H111, M=Klll, M=Hlll, and 
~r=~p+zk,,,, Eq. (19) becomes 18 

1 1 
-,g·H 111 ~p--;c(g·H 111 k 111 )z. 

/... /... 
(26) 

In this particular case, the moire surfaces ~DM= ¢in space 
are given by a set of' 'equally spaced'' parallel planes normal 
to the direction of the constant sensitivity vector p = 
(gK 111 !>:)-(gH 111 /~). 

Fig. 9 Special case of projection moire with collimated light. 



PROJECTION MOIRE: USING TENSOR CALCULUS FOR GENERAL GEOMETRIES OF OPTICAL SETUPS 

To determine the georgetrical terms in Eq. (26), we intro-
duce a calibration plane Gin the vicinity of the object6·7 and 
~rite the c01Tesponding expression for relative moire in point 
P relative to point P 0 : s 

(27) 

where zkm is the vector in the obsi::,rving direction from point 
P on the objeci:_ surface to point P on the calibration plane. 
Assuming that 'It= 'lt0 and knowing that K 111 k111 0, by taking 
the difference between Eqs. (26) and (27), we have 

~g· Hmk111 = 
A. 

(28) 

with oDM descril?,ing the difference of the moire fringe order 
between points P and P. The difference of the fringe order 
will now be sil!lply called difference moire. As we can see, 
Eq. (28) for 3DM gives the level lines_ of the object shape 
respectively to the calibration plane G and the observing 
direction km. T\;) get the still unknown proportionality factor 
A0 g · H 111 k 111 /A.= ¢, we can translate the calibration plane 
along !he observing direction by a kn2wn amount 11 and write 
with 'It 1 ='It 0 for the new position G 1 

g·H111 k 111 -A0 (2+'l']), 

(29) 

'Yhere 3D~ describes tl]e difference moire between points 
P' and P_and where t::.rJM=D~ DMo is the relative moire 
in point P' relative to point P 0 . Note that the vector '¥]k111 

is 
given and desc1ibes the translation of the calibration plane. 
By solving the system of Eqs. (28) and (29), we get 

z= 11'6DM 'l'](DM-DM) 

oD~-oDM D~-DM 

Ao 
3DM-3D~ DM- D,'w (30) 

'l1 11 

Let us now consider the more special planar case of Fig. I 0, 
where X'=~, g1-(k,,,Xh111 ), g1-(k111 Xh111 ), 'g·g>O 
and km· h111 < 0. By writing c (g - g)/lg gl (g - g)/2 
sin{} with g · g = - k 111 • h111 = cos2{} and knowing that g = 
Kmg and g=H"'g, with Eqs. (16) and (26) we get the fol-
lowing well-known expression for b.DM [Eq. (46) of Ref. 1 
and Eq. (8) of Ref. 51 describing the level lines respective to 
a plane normal to c passing through the point P 0 

(31) 

0 

2 
R 

Fig. 10 Special planar case of projection moire with collimated light. 

In the nonplanar case where g · g 7" k 111 • h"', Eq. (31) is still 
valid if 2{} describes the angle between the two vectors g 
and g. 

7 General Expression of Difference Moire 

7 .1 Theoretical Calibration of a Moire Setup 

To illustrate the calibration procedure in a projection moire 
experiment, we consider the general setup of Fig. 11, where 
the two grid planes are perpendicular to their respective op-
tical axes, which means n k,,,, n=h 111 , and where 
b.t'0 b.t' so= 0. In place of the object, we consider a cali-
bration plane G, which can be moved normally to its surface. 
In a real experiment, neither the position of the centers of 
projection (R and S) nor the distance to the object surface 
are known exactly. We can therefore choose in the 3-D space 
some reference point P 0 that will play an important role in 
the calibration process. All the geometrical quantities are 
expressed relative to this point and, after being inserted in 
the theoretical equations, are useful to estimate the calibration 
constants and the correction terms. Translating the calibration 
plane by a known amount along its unit nonnal ii, the fringe 
order in each point as observed by the camera changes. With 

(19), which means with b.DM=p(k,h) · b.r, we can write 
by definition the general expression for the relative moire in 
point Prelative to the same point P0 

· (b.r+'l']k) , (32) 

with the two oblique projectors M I -[k@n/(k · n)] and 
M= I [h@nt(h. n)] and where oDM = b.i5M b.DM is the 
difference moire giving the difference in fringe order between 
the two states (; and G of the calibration plane as viewed by 
a pixel of the camera. 

To discuss the effects that lead to the behavior of the 
difference moire across the field of view, we first have written 
Eq. (32) in general terms of Fig. 7. Because the observing 
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fa+ Po 

Fig. 11 General moire setup for the calibration process. 

djrection is the same for each pixel, we have k = k and 
M=M. Therefore the difference moire is only given by the 
projector grating (the camera grating is however still needed 
because of our pixel resolution) and we have with Mk= 0 
and the definition A. = 'f..._(-€ so+ p so)/-€ so: 

(33) 

Note that in the particular case of parallel projection h=h, 
we have M= Mand only the last term gives a contribution. 
Returning to our general case, Eq. (33), which does not de-
pend on g/X_, can be written in a slightly different form by 
using the vector definitions SP= sh= sh+ T]k and 
SP= sh= s0h0 + ~r. The general expression for difference 
moire (Fig. 11) is 

with 

, (s0 h0 + ~r)@n 
M=I-~~---

(s0h0+~r)·n' 
(34) 

where Soho. n= fso + Pso· The incremental vector ~rand the 
first multiplicative part g ·Mk/A. in Eq. (34) are only pixel 
dependent, which means they are constant for a fixed ob-
serving direction k. The second multiplicative part s0 h0 ·Ill 
[(soho + ~r + Tjk). n] depends on both the observing direc-
tion and the translation of the calibration plane. With the 
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small varying vector T]k and the unit normal fi to the cali-
bration plane, we introduce the incremental value z = T]k · fi, 
which is constant over the whole calibration plane. In our 
experimental setup, the translation vector w = zfi describes 
the global translation of the calibration plane. With the vector 
definitions P0 R = t0k0 and PR= tk = t0 k0 - ~r, we write 

(35) 

where c= (t0k0 - ~r) · fi. Because the calibration plane has 
no curvature and by taking into account that P0 is assumed 
to lie in the calibration plane in its initial position, we have 
~r · fi= 0. It follows that the value of c= c0 = t0k0 · fi is con-
stant in this case. We can now define three new variables 
x 1 , x2, and x3 , fully describing the change of oJ5M: 

z z z ~r. n 
x 1 =-=-=--- Xz=---

C Co toko. fi, Soho. n, (36) 

and write, with the constant parameter a= toko. n/(soho. n) 
and the constant vector q = -s0h0 - t0k0, the following ex-
act relations: 
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"11 A -g·Mk 
A. 

7.2 Experimental and Numerical Verification 

(37) 

(38) 

To show how the different terms in Eq. (38) contribute to 
the calibration variation, we analytically simulate a calibra-
tion process and compare the results with an analog exper-
iment. For that purpose, we introduce a Cartesian system 
(P0 ;x, y,z), where the xand yaxes lie on the calibration plane 
in its initial position and where the z axis is parallel to fi. 
Parallel to the x and y axes, we respectively introduce the 
unit vectors e1 and e2 • For better visuality, we assume that 
the four vectors g, t1, fi, and ii are eoplanar and lie in the 
horizontal plane, the calibration plane being vertical and the 
x axis being horizontal (Fig. 12). Without restricting the gen-
erality, we also assume that the two optical axes (eamera and 
projeetor) intersect the ealibration plane in the same point 
P 0 , which means h0 = h111 n and s0 h0 · g = 0. To explain the 
meaning of Eq.(38), we write a linear approximation con-
sidering that lx1J << 1 and << l, and with (l + a)(s0 h0 • 
n) = - q. ii, it becomes 

R 

(39) 

As already mentioned, the exact expression of (38) for 
the difference moire ODM describes the difference of the fringe 
order in some point K for a known vaiiation in depth of field 
z. Note that K is a point in the object plane of the optical 
system of the camera and is associated to the conesponding 
pixel in the image plane. The first term Xi q · g/A. of Eq. (39) 
gives a linear approximation of the difference moire in point 
K0 for a small change in depth of field and represents the 
constant contribution for the whole calibration plane. The 
second term - Xi x3 q · fj/f... gives, for a fixed variation in depth 
of field, a linem· approximation of the variation of the dif-
ference moire across the field of view when we start from 
the point K0 and go to some other point K. In our experimental 
setup, we have approximately adjusted P0 on the observing 
direction km, which means that k0=k111 -n. We used a 
white-painted minor as calibration plane G, which was in-
stalled on a translation stage to move it normally to its surface. 
It was illuminated by a projector with a grating on a glass 
slide and observed through a CCD-interline transfer camera, 
which pixel columns served as reference grating. The ex-
perimental numerical values c01Tesponding to the optical 
setup of 12 needed to compute Eqs. (38) and (39) are 
given as follows: 

Projector Camera 

Distance P0 to eso + Pso=304.0 mm eo + p0=359.0 mm 
projection center 
Distance grating to Cso=73.97 mm C0=29.92 mm 
projection center• 
Inclination of a 5 =5.15 deg °'R=6.70 deg 
optical axis 
Pitch of grating A.=50 µm=0.050 mm A.= l7 µm=0.017 mm 

*Respectively calculated with the magnification factors 4.11 and 12.0 on 
the optical axes. 

Fig. 12 Setup for the numerical verification. 
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359.0 cosl 1.85 = 351.3 mm , 

359.0 cos6.70=356.5 mm 

= 359.0 sinl 1.85 73.7 mm , 

Xcos(aR+a5 )= 304.0+351.3 47.3 mm 

X({50 +p50)= 351.3/304.0 1.156 

A. ~({ 50 + p50 )/{50 = (0.050)(304.0173.97) 

=0.206 mm , 

where all angles are written in deg. The two components 
Lir · f! and Lir · g of the vector Lir + ye2 give the variation 
of oDu across the field of view. With ti= e1 sina5 -fi cosa5 
and g= -e 1 cosa5 - fi sina5 , we find 

Lir·n=i sina5 =x sin5.15, 

Lir· -x cosa5 -i: cos5.l5 (40) 

Introducing Eqs. (36) and (40) in Eqs. (38) and (39), they 
become, respectively, 

(4 l) 

(42) 

(43) 

8.281.I0- 7 mm- 2 • 

(44) 
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The experimental calibration consists in determining the 
fringe order change per unit length in depth of field for each 
pixel. Using a phase-shifting device in the projector enables 
measuring the changes in terms of a phase difference map. 
The frames were digitized with 8-bit resolution, with one 
fringe order corresponding to a phase change of 2'11' or 256 
gray levels. 

Figure 13 shows lines of equal moire fringe order, i.e., 
equal phase, for a succession of IO translation steps. Because 
the optic of the projector and that of the camera are not 
parallel, the density of moire fringes varies across the cali-
bration plane. For a step of Liz= 1.00 mm, the pattern repeats 
itself, indicating a shift of approximately one fringe order per 
millimeter. A meridian cross section (over the width) through 
the calibration planes of Fig. 13 shows the corresponding 
moire surfaces intersecting the calibration plane in its dif-
ferent positions (Fig. 14). The phase differences were then 
obtained by digitally subtracting the phase map of the zero 
position from the others. The result is a difference in fringe 
order shown in the comparative phase difference map of 

15, with the difference moire as function of the field of 
view in millimeters. Figure 15 simultaneously represents our 

Fig. 13 Lines of equal moire fringe order for a succession of 1 O 
translation steps. 
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Fig. 14 Visualization of the moire surfaces. 
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Fig. 15 Comparative phase difference map: -experimental, + ex-
act, and o linear. 

experimentally measured difference moire and that theoret-
ically computed with Eqs. (41) and (42). This confirms that 
the experiment and the theory are in agreement. The exper-
imental phase difference map contains the calibration factors 
over the width of the field of view for each translation step. 
Note that the difference moire varies almost linearly over the 
width by approximately 20% change, whereas the change 
over the height is negligible. Note also that a small change 
of ClR and Cls first influences the value Of o/JM, whereas a 
small change of C0 +Po and C so+ Pso first influences the var-
iation of olJM across the field of view. 

To properly calibrate a projection moire measurement, the 
relative moire D..DM corresponding to the calibration plane in 
its initial position must be subtracted from the relative moire 
D..DMs corresponding to the object shape. The result is a dif-
ference moire oDMs = D..DMs - D..D M, which must be compared 
with our experimental phase difference map olJM. If no ex-
perimental map is available, it is also possible to use in a first 
approximation a theoretically computed one ifthe angles and 
the lengths have been measured carefully. 

In the linear case, for a fixed value .X= x0 across the field 
of view, which means for a fixed pixel of our CCD array, 
we can determine the constant proportionality factor 
A=A 1 +A2x0 =oDMd'Z. of Eq. (42), where -z. is the known 
displacement of the calibration plane corresponding to the 
value of olJM=olJML in our phase difference map. Because 
the difference moire oDMs of the object shape obeys the same 
law, we can divide it by this constant factor to get approxi-
mately the displacement z as follows: 

- olJ.ts z=--A , 
. _ ofML ofM 

with A= A 1 + A2x0 = -_-=-_-
z..c. -Z.c 

(45) 

In our experiment, this linear approximation is accurate 
enough. For example, Fig. 16 shows the surface shape under 
load of a carbon fiber reinforced polymer (CFRP) panel rein-
forced with stringers on the back side. The phase map is 

Fig. 16 Contour plot of a CFRP panel under load. 

pseudocolor processed to show a contour plot display with 
0.5-mm displacement in depth of field between each level 
line. 

In the exact case, the nonlinear problem of calibration can 
be solved in a similar way. For the same fixed value .X=.X0 
across the field of view, we write Eq. (41) as follows (i = 1, 
2, 3, ... ): 

- BioDMi 
'Zci = 1 B2 oDM; 

(46) 

The constant factors B 1 and B2 can be determined by taking 
at least two sets of values oDM; and 'Z·i in our phase difference 
map. The exact displacement z corresponding to the differ-
ence moire o/JMS is then given by the following expression: 

with B 1 

B
2 

= ~2 o~MI - ~·I 0D~2 
C.z..c2 - 'Zci )oDM, 0DM2 

Zc1 'Z2 (oDM2 - oDMt) 

C'Z2 - zc1 )obM, obM2 
and 

(47) 

7.3 Special Case of Projection Moire with Central 
Projection 

This case concerns central projection and observation with 
parallel optical axes, the two grid planes being perpendic-
ular to their respective optical axes. This particular case can 
be obtained from the general case [Eq. (19)] by assuming 
that n = - k111 = h111 = n and C0 = Cso• C0 /(C0 + p 0 ) = Cs0 1 
( C so+ Ps0 ). The two distances L0 and Lso are not necessarily 
the same, but they are small because of focusing near the 
object. Irt our model (Fig. 17), we have N = K111 = H111 = N, 
g=Kmg, g=Kmg, MlllD..p=M,,,D..p=D..p, M=M/11, M 
=M,,, =l-[h@k111 /(h · k111 )], and Eq. (19) becomes 
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G 

Fig. 17 Special case of projection moire with central projection and parallel optical axes. 

(48) 

Le; us now consider the more special case, where g !"A.= 
g/A.. Equation (48) becomes 

(49) 

To get the geometrical term in parenthesis, we write and solve 
the following vector equation system: 

qm+sh+tk=O } 
tk = Kmxk +Cf so+ Pso- z)k,,, 
sh= -Cf so+ Ps0 -z)k111 + K 111 x" 

k h qm 
~-----=-

k·km h·k111 -Es0 +ps0 -z 
(50) 

with qm =RS, m · m = 1, tk =PR, sh= SP, and where K 111 xk 
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and K 111 x11 are some unknown vectors in the plane normal 
to k 111 • As we can see, Eq. (50) is constant for a fixed z. With 
m · g= coscp7'o0, Eq. (49) for !::.DM describes pseudolevel 
lines respective to a plane normal to k 111 passing through the 
point P0 . These pseudolevel lines are not equally spaced and 
are given by the following well-known hyperbolic function 
[Eq. (5) in Ref. 19]: 

(51) 
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