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Abstract

The present work addresses the issue of accurate stochastic approximations in high-dimensional parametric space using tools
from uncertainty quantification (UQ). The basis adaptation method and its accelerated algorithm in polynomial chaos expansions
(PCE) were recently proposed to construct low-dimensional approximations adapted to specific quantities of interest (QoI). The
present paper addresses one difficulty with these adaptations, namely their reliance on quadrature point sampling, which limits
the reusability of potentially expensive samples. Projection pursuit (PP) is a statistical tool to find the “interesting” projections
in high-dimensional data and thus bypass the curse-of-dimensionality. In the present work, we combine the fundamental ideas
of basis adaptation and projection pursuit regression (PPR) to propose a novel method to simultaneously learn the optimal low-
dimensional spaces and PCE representation from given data. While this projection pursuit adaptation (PPA) can be entirely data-
driven, the constructed approximation exhibits mean-square convergence to the solution of an underlying governing equation and
is thus subject to the same physics constraints. The proposed approach is demonstrated on a borehole problem and a structural
dynamics problem, demonstrating the versatility of the method and its ability to discover low-dimensional manifolds with high
accuracy with limited data. In addition, the method can learn surrogate models for different quantities of interest while reusing
the same data set.

Keywords: Surrogate modeling, polynomial chaos expansion, projection pursuit, high-dimensional models, dimension
reduction, data-driven

1. Introduction

Recent developments in sensing have enabled highly resolved characterization of physical systems, justifying the drive for
computational models of increasingly higher resolution and constantly pushing computational resources to the limit of hardware
capacity. This computational bottleneck challenge is further exacerbated when uncertainty is acknowledged, which, at least
conceptually, necessitates the simultaneous contemplation of a number of plausible realities. Allowing uncertainty to infiltrate
computational models, however, can serve, with the proper perspective, to alleviate the computational burden, allowing consis-
tency between numerical accuracy, statistical confidence, and experimental paucity. Response prediction can thus be achieved
with the help of statistical surrogate models, which we achieve in the present paper by augmenting machine learning (ML)
paradigms with an uncertainty quantification (UQ) dimension. Typically, these surrogate models are trained on replicas obtained
by evaluating the physical model over a set of input parameters. Each of these evaluations will typically involve an expensive
high-fidelity model, which is typically described by a large number of parameters. This combination of high resolution and high
parameterization continues to challenge the accuracy of surrogate modeling. Similarly, in a big data set, the data of various
control variables are generated such that comprehensive information on the quantity of interest (QoI) is considered in the pre-
dictive model. Usually, the number of data required for prediction with good accuracy increases with the number of parameters.
Surrogate modeling in high-dimensional parameter space is thus ubiquitous, remaining at the forefront of predictive science.

UQ is a tool to characterize the uncertainty in specific responses or outputs, given that the input parameters of the system are
uncertain [1, 2, 3, 4, 5, 6, 7]. Generally, the uncertainties in the input parameters are represented by random variables that are
characterized by their probability distributions. Usually, the supports of the parameters are first provided. This information is
sometimes complemented by marginal distributions for each parameter. Only on rare occasions is joint information on the input
parameters available at the outset. Such information may be weaved into the statistical model following data-driven updating.
In all cases, the output is computed over a set of input parameters that, in principle, spans the support of their joint probability
measure in parameter space. In a standard UQ setting, the probabilistic model of the output can be quantified by propagating
the uncertainties from the input space through the computational model. Surrogate models, on the other hand, aim to construct a
mapping from input parameters to output variables. The ensuing representation can be used as a surrogate to efficiently map the
support of the input parameters into the support and distribution of the quantities of interest. In the literature, it is not uncommon
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to use UQ models as an efficient surrogate for further analyses that require repeated evaluation of the computational model, for
example, in [8, 9, 10, 11]. The quality of these surrogates is clearly paramount. Polynomial chaos representations [1] can be
shown to be faithful mathematical representations that converge in the mean-square sense to the true solution of the underlying
governing stochastic equations.

For high-dimensional UQ problems, the standard Monte Carlo (MC) sampling has the attractive feature that its convergence
is independent of the number of random parameters, thus can avoid the curse-of-dimensionality. However, it has slow con-
vergence in general, and the rate is dependent on the complexity of the solution being sought. Thus the development of UQ
methods such as polynomial chaos expansion (PCE) [1, 12], generalized polynomial chaos expansion (gPCE) [13, 14], Gaussian
processes [15, 16, 17], probability density evolution methods [18, 19, 7, 6], manifold methods [20, 21, 22], Wiener path integral
technique[23, 24], and others. PCE expands the QoI on a set of multivariate Hermite polynomial bases where the approxima-
tion has a mean-squared sense convergence with respect to the maximum order or degree of the polynomial bases. Its solid
mathematical foundation, accuracy, simplicity in application, and convergence property gained much attention from science and
engineering applications [1, 12, 2, 4]. However, the number of PCE terms in the expansion grows factorially with the parameters’
dimension and the maximum polynomial order, leading to the curse-of-dimensionality. In a more common non-intrusive imple-
mentation, the PCE coefficients associated with each term are computed as a multi-dimensional integral, where the dimension is
equal to the parameters’ dimension. One can typically use numerical quadrature [25, 26] to avoid excessive computation arising
from the model evaluation to compute the PCE coefficients. Sparse quadrature [27, 28, 29, 26] can reduce the cost without sacri-
ficing accuracy. Another family of methods, for example, least angle regression [30, 31], and compressive sensing [32, 33, 34],
propose a sparse representation by expanding QoI on a selection of significant polynomial bases. These methods attenuate the
computational burden but still face challenges if the dimension is excessively large or the computational model is expensive.
Active subspace [35, 36] is a dimension reduction technique that finds the important directions with the greatest variability by
an eigendecomposition of the covariance matrix of the gradient. In practice, the gradient of the QoI usually takes much work to
obtain. The basis adaptation method [37] in the framework of PCE is another dimension reduction technique that finds directions
adapted to low-dimensional or scalar QoI. The idea is based on rotating the Gaussian input variables with a proper rotation matrix
so that the QoI can be represented in a low-dimensional space. The construction of the rotation matrix requires the first-order
PCE coefficients, which can be obtained by a first-order pilot PCE. Basis adaptation has been applied to practical engineering
problems [38, 39] that reduce the dimension to only a few. This method can have slow convergence, resulting in relatively high
reduced dimensions. Thus, the authors developed the accelerated basis adaptation method [40]. The basis adaptation method re-
quires the construction of low-dimensional adapted PCEs, where the PCE coefficients are usually computed via sparse quadrature
to reduce computational cost. In addition, the method is adapted to scalar or low-dimensional QoIs.

In ML, dimension reduction techniques, for example, feature selection [41, 42], matrix factorization [43, 44], manifold
learning [45, 46], and autoencoder methods [47, 48], have been able to increase the performance when the dimension of the data
is high. Among these, the principal component analysis (PCA) is arguably the most widely used method, useful for discovering
components that have ranked importance and can capture the data’s salient structure. Projection pursuit (PP) [49, 50, 51] is
another dimension reduction technique used to find the most “interesting” projections in high-dimensional data that can overcome
the curse-of-dimensionality. The low-dimensional interesting projections are found by maximizing a so-called projection index
stage-wisely. Different definitions of projection index lead to specific methods, for example, PCA and discriminant analysis. PP
has received attention in ML in the recent two decades. For example, in [52], new projection indices were proposed to provide
low-dimensional projections for efficient supervised classification. For the classification of complex data, a projection pursuit
constructive neural network was proposed to discover the simplest models in [53]. Based on the Jensen-Shannon divergence,
a supervised projection pursuit was proposed in [54] for better classification and visualization and proved superior to PCA. In
[55], PP was used to develop a novel recurrent neural network for discriminant analysis. These works all belong to the scope
of the classification. The combination of statistics and ML methods to improve the prediction performance is not unusual, for
example, the Bayesian neural networks [56, 57, 58]. One of the extended ideas of PP is the projection pursuit regression (PPR)
[59]. In PPR, the response surface is approximated by a sum of univariate smooth functions of linear combinations, represented
by projections of the input parameters (or predictors). The projections in PPR are found in a forward stage-wise strategy until
new projections cannot improve the approximation significantly. Since the number of projections can be taken arbitrarily large,
with a proper choice of smooth functions, the PPR model is able to approximate any continuous function in the space spanned by
the parameters [60]. Such a PPR model is thus a universal approximator. PPR has been applied to many practical applications,
for example, in [61, 62, 63, 64].

The basis adaptation in PCE and the PPR have many shared features. They find the important or interesting directions in the
input parameter space adapted to the output. The rotation matrix in adaptation corresponds to the projections in PPR. In contrast,
the PCE of the adapted variables in adaptation corresponds to the smooth functions of the projected variables. However, these
two methods are different in several aspects. The rotation matrix in adaptation is constructed based on a first-order PCE, and
the directions are mutually orthogonal. At the same time, the projections in PPR are found one at a time, and no restrictions are
applied among the projections. In addition, the functional links input parameters to output response in adaptation are Hermite
polynomial bases, while in PPR, one must find proper smooth functions suited for the application. Also, the PCE coefficients
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in adaptation are usually found by sparse numerical quadrature (requiring the evaluation of the model on specific parameters)
to reduce the computational cost. In contrast, the projections and smooth functions in PPR are discovered based on given data.
Then, the advantages of these two methods can be summarized as follows: (1) the adaptation method uses Hermite polynomial
bases that can represent any variable in the parameters space, and it has mean-squared convergence to the maximum polynomial
order; (2) the PPR model can find projections and smooth functions simultaneously in a data-driven manner without querying the
model.

In this paper, we integrate the basis adaptation method in PCE and the PPR model to take advantage of both methods.
Specifically, we use PCEs as smooth functions in the PPR model. In a naive integration, the PCEs work as univariate functions
on each projected variable. To take advantage of the completeness and convergence properties of the multivariate Hermite
polynomial bases, we will maintain the orthogonality of the projections and use a multivariate PCE on all the projected variables
in the approximation. Switching from an additive of many univariate models to a multivariate model, in general, will be less
cost-efficient. However, the purpose is to find a low-dimensional representation of the output; thus, the number of projections
considered is supposed to be small. In such circumstances, seeking a more accurate multivariate representation is reasonable. We
refer to the integrated multivariate model as the projection pursuit adaptation (PPA) model. Note that the projections construct the
rotation matrix in the PPA model; thus, the multivariate PCE on the projected variables can be transformed back to the original
physical space for interpretation purposes. The proposed model will be compared with the basis adaptation and the PPR methods.
The paper is organized as follows: Section 2 introduces the basis adaptation method, including the accelerated algorithm, in the
framework of PCE; Section 3 first introduces the detailed procedure of the PPR, then derives the integrated PPA model with a
detailed procedure also given; the applications on a borehole model and a space structure are shown in Section 4; conclusions are
finally presented in Section 5.

2. Basis adaptation on polynomial chaos expansions

2.1. Polynomial chaos expansions

Consider a probability space (Ω,F ,P) with Ω the sample space, F the σ-algebra on Ω, and P the probability measure. Let
ξ = (ξ1, . . . , ξd) ∈ Rd be a set of independent standard Gaussian variables on Ω. Then, the closed linear span (this allows for the
case where d → ∞) of ξ defines a Gaussian Hilbert space, denoted as H. Denoting the space of second order random variables
on (Ω,F ,P) by L2(Ω), an inner product on L2(Ω) can be introduced as

〈u, v〉H = E[uv], ∀u, v ∈ L2(Ω), (1)

where E[·] is the mathematical expectation with respect to the probability measure P. Let α = (α1, . . . , αd) ∈ Jd := (N0)d

be a d-dimensional multi-index with its length defined as |α| =
∑d
i=1 αi, hα be multivariate Hermite polynomials, and ψα =

hα/‖hα‖2 be the normalized Hermite polynomials, then {ψα, α ∈ Jd} is a complete orthonormal basis on L2(Ω). We also
let F(H) denote the σ-algebra generated by H. Then we can represent any random variable Y ∈ L2(F(H)) as the following
polynomial chaos expansion (PCE) [1]

Y (ξ) =
∑
α∈Jd

Yαψα(ξ) . (2)

In Eq (2), Yα is the PCE coefficient associated with the basis ψα.
In a computational context, a truncated PCE is usually employed where the maximum order of the polynomials is specified.

Suppose the maximum order of the PCE is p, then the order p PCE of Y can be written as,

Ŷp(ξ) =
∑

α∈Jd,p

Yαψα(ξ) , (3)

where Jd,p ⊂ Jd is the subset of indices of maximum length p (i.e., |α| ≤ p). The above expression, Ŷp(ξ) converges to Y in
the mean-squared sense [65] as p→∞. With abuse of notation, we will henceforth use Y (ξ) to denote Ŷp(ξ). The total number
of PCE terms in Eq (3) is

P =

(
d+ p

p

)
=

(d+ p)!

d!p!
, (4)

which grows factorially with the dimension of the parameter space d and the maximum order p. In a non-intrusive implementation
of the PCE [1, 25, 26], the PCE coefficients Yα are computed by projecting Y (ξ) on the space spanned by the Hermite polynomial
basis {ψα(ξ), α ∈ Jd,p} (referred to as the original space) as

Yα = 〈Y, ψα〉 , α ∈ Jd,p . (5)
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The projection can be calculated by, for example, the sampling-based Monte Carlo Simulation (MCS). In this setting, a set of
samples (Ξ,Y) =

{(
ξ(i), Y (i)

)}N
i=1

is evaluated. These samples are then used to estimate the PCE coefficients Yα by minimizing
the squared l2 norm of the residual

∥∥∥Y − Ỹ ∥∥∥2
2

=

N∑
i=1

[
Y (ξ(i))−

∑
α∈Jd,p

Yαψα(ξ(i))
]2
. (6)

The optimization problem can be solved by Ordinary Least Squares (OLS). Other methods to choose the sampling set (Ξ,Y)
could result in a weighted least squares problem. To obtain a stable and accurate estimation of the PCE coefficients, the number
of required samples is typically of order N ∼ O(P lnP ), and in some cases N ∼ O(P 2 lnP ) [66]. With the factorial increased
P with respect to d and p, the required computation effort becomes prohibitive when the dimension of parameters is high.

Eq (5) can also be approximated using numerical quadrature [26], where the physical model must be evaluated at specific
quadrature points. Usually, the required samples could reduce a lot compared to MC samples. The sparse quadrature rules
[28, 29, 27] can reduce the required quadrature points by adopting a sparse sampling algorithm. Other methods propose sparse
PCE representations where only the dominant PCE terms are considered in the expansion [30, 32, 33, 67]. These methods
partially attenuate the computation burden. However, the challenge of the curse-of-dimensionality remains as the underlying
physical problem is mixed with high-dimensionality and a complex computational model.

2.2. Basis adaptation
2.2.1. Rotation

Basis adaptation is a dimension reduction technique for PCE in which the Gaussian input variables are rotated by a proper
rotation matrixA such that the QoI can be represented on a low-dimensional space.

Consider a rotation matrixA ∈ Rd×d such thatAAT = I , and let η be the rotated variables defined as

η = Aξ , η =

[
ηr
η¬r

]
, (7)

where ηr are the first r components, and η¬r are the remaining (d − r) components of η. Then, instead of expanding Y with
respect to the original variable ξ, we can equivalently represent Y by the rotated variables η as

Y A(η) =
∑
β∈Jd,p

Y Aβ ψβ(η) . (8)

Same as in the original space, the PCE coefficients Y Aβ can be computed by projecting Y A(η) on the space spanned by
{ψβ(η), β ∈ Jd,p} (referred to as the rotated space) as

Y Aβ =
〈
Y A, ψβ

〉
, β ∈ Jd,p . (9)

Define
ψAα (ξ) = ψα(Aξ) = ψα(η) . (10)

Then, by the equivalence of Eq (3) and Eq (8), we have

Y Aα =
∑
β∈Jd,p

Yβ
〈
ψβ, ψ

A
α

〉
, Yα =

∑
β∈Jd,p

Y Aβ
〈
ψAβ , ψα

〉
, α ∈ Jd,p . (11)

The above equation provides the foundation to transfer a PCE model from one representation to another and can be used to
compare expansions with respect to different Gaussian variables.

2.2.2. Classical Gaussian adaptation
The rotation changes the variables the QoI expands on without changing the quality of the overall PCE, and without affecting

the requisite computational burden. The idea of basis adaptation is to find a proper rotation matrix such that the probabilistic
information of the QoI is concentrated on a low-dimensional space to achieve dimension reduction. Therefore, the construction
of the rotation matrix becomes crucial.

The rotation matrix is constructed purely based on a first-order PCE expansion on the original space in classical Gaussian
adaptation. If the first-order pilot PCE that requires a limited number of model evaluations is constructed, then the rotation matrix
is created such that

η1 =

d∑
i=1

Yeiξi , (12)
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where ei is a d-dimensional multi-index with one at the ith location and zeros elsewhere, then {Yei}di=1 is the set of first-order
PCE coefficients or Gaussian coefficients in the original space. Eq (12) defines the first row of the rotation matrixA, with which
the first rotated variable captures the complete Gaussian components of the QoI. Next, the other rows of A are defined based on
the sensitivity of the original variables. The sensitivities of the original variables ξ are quantified by the absolute values of their
Gaussian coefficients. As a result, the second row of A is defined such that η2 is the most sensitive variable of ξ; the third row
of A is defined such that η3 is the second most sensitive variable of ξ; and so on. Finally, a Gram-Schmidt procedure is applied
to A to make it a rotation matrix. The complete procedure to construct the rotation matrix for the classical basis adaptation is
summarized in Algorithm 1.

Algorithm 1: Construction of rotation matrix by classical Gaussian adaptation

1 Construct a pilot first-order PCE in the original space to find {Yei}di=1;
2 Construct the first row of the rotation matrixA ∈ Rd×d such that

η1 =

d∑
i=1

Yeiξi .

3 Rank the first order coefficients by absolute value in descending order and record their indices in the original coordinates
as {κj}dj=1;

4 For j = 2, . . . , d construct the jth row ofA such that

ηj = ξκj−1
. (13)

5 Perform Gram-Schmidt procedure onA to make it a rotation matrix.

The Gaussian components are typically the most important information in many applications. Therefore, the first rotated
variable η1 conveys the key information of the QoI. Since the other rotated variables are initially constructed as the most sensitive
variables in the original space in descending order, the rotated variables have a descending order of importance to the QoI,
motivating the seeking of a reduced representation of the QoI by the first several rotated variables. The rows of the rotation
matrixA are sometimes referred to as the adaptation or adapted directions.

Suppose the first r rotated variables are adequate to represent the QoI, Y , then we can write

Y Ar (ηr) =
∑
β∈Jr,p

Y Ar

β ψβ(ηr) , (14)

whereAr denotes the sub-matrix of the first r rows ofA; Jr,p is a set of r-dimensional multi-indices. We will refer to Eq (14) as
the r-dimensional adapted PCE, or simply r-dimensional adaptation. The PCE coefficient Y Ar

β can be calculated by projecting
Y Ar (ηr) on the space spanned by the Hermite polynomial basis {ψβ(ηr), β ∈ Jr,p} (referred to as the reduced rotated space)
as

Y Ar

β =
〈
Y Ar , ψβ

〉
, β ∈ Jr,p . (15)

Regardless of the methods used to compute Eq (15), the physical model Y must be evaluated on the original variables ξ instead
of ηr. Thus, the following approximation is employed

Y Ar (ηr) = Y (ξ̃) = Y
(
AT

[
ηr 0

]T)
. (16)

That is, when projecting ηr back to the original coordinates, we assume that η¬r = 0. The assumption introduces negligible
errors when the first r components of η are adequate to capture the probabilistic information of the QoI.

The reduced dimension r remains to be determined. A systematic way starts with r = 1, where we construct an r-dimensional
adaptation. Then, r is sequentially increased. The procedure is stopped when the difference between two adaptations with
successive dimensions is within a pre-specified tolerance. The measure of the difference between two adaptations, such as r and
(r+1) dimensional adaptations, can be quantified by the distance of either their PCE coefficients or the associated Kernel Density
Estimate (KDE) of the probability density functions (PDF) of the QoI. In the former, the r-dimensional adaptation is projected to
the (r + 1)-dimensional space, leading to a representation in the (r + 1)-dimensional space (same idea as presented in Eq (11)).
The projected PCE coefficients can then be compared to the ones of the (r + 1)-dimensional adaptation. In the latter, many MC
samples are first generated based on the constructed r- and (r + 1)-dimensional adaptations independently. These MC samples
are then used to construct two KDE estimations of the PDF of the QoI, which are then compared to find a quantified difference.

In many applications, the classical basis adaptation can identify low-dimensional spaces adapted to the QoI, for example,
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[38, 39]. In [40], the authors proposed accelerated basis adaptation methods that can further enhance the accuracy of the re-
duced dimension r. The accelerated algorithm reduces the dimension when the classical adaptation still requires middle-to-high
dimensions.

2.2.3. Accelerated adaptation
In [40], two acceleration methods of basis adaptation are proposed. The first method corrects the low-order information of

the adapted PCE by utilizing the first-order pilot PCE constructed in the first step of adaptation, see Algorithm 1. The second
method updates the rotation matrix by accounting for the information from higher dimensions and high-order adaptations while
the dimension is sequentially increased. We will introduce the ideas behind these two methods briefly. For a detailed algorithm,
please refer to [40].

Suppose the first-order pilot PCE in the original space is constructed as

Y (ξ) =
∑

α∈Jd,1

Yαψα(ξ) = Ye0 + Ye1ξ1 + · · ·+ Yedξd . (17)

Denoting the vector of Gaussian coefficients as Y ecoeff = (Ye1 , . . . , Yed), then the r-dimensional adaptation of order up to one can
be expanded as

Y Ar (ηr) =
∑
β∈Jr,1

Y Ar

β ψβ(ηr) = Y Ar
e0 + Y Ar

e1 η1 + · · ·+ Y Ar
er ηr . (18)

To measure the difference in the zero and first-order expansions, the PCE (18) can be projected to the original space to obtain the
associated PCE coefficients as

Ỹe0 = Y Ar
e0 , Ỹe1 =

r∑
i=1

Y Ar
ei Ai1 , . . . , Ỹed =

r∑
i=1

Y Ar
ei Aid , (19)

where Aij denotes the (i, j) component of the rotation matrix A. When r = 1, the projected coefficients can be computed
explicitly as

Ỹe0 = Y Ar
e0 , Ỹe1 =

Y Ar
e1 Ye1
‖Y ecoeff‖2

, . . . , Ỹed =
Y Ar
e1 Yed
‖Y ecoeff‖2

. (20)

Defining Ỹ ecoeff = (Ỹe1 , . . . , Ỹed), then the errors of the Gaussian coefficients are quantified as

ε1 = Y ecoeff − Ỹ ecoeff =

(
1−

Y Ar
e1

‖Y ecoeff‖2

)
Y ecoeff . (21)

We see that the arithmetic errors are proportional to the exact Gaussian coefficients Y ecoeff, implying that more significant errors
appear in the terms with greater Gaussian coefficients. However, greater Gaussian coefficients imply greater sensitivities in the
variable, and greater errors in the terms with greater sensitivity introduce more significant errors in the PCE. As dimension r of
the adaptation increases, the errors in Gaussian coefficients decrease and will recover to the exact values when r = d. In order
to eliminate the errors in the zero and first-order information of the adapted PCE, the authors proposed to correct the zero and
first-order PCE coefficients on the adapted space by the exact zero and first-order PCE coefficients on the original space. The
idea is accomplished by projecting Eq (17) to the r-dimensional adapted space and obtaining the projected coefficients as

Ỹ Ar
e0 = Ye0 , Ỹ Ar

e1 =

d∑
i=1

YeiA1i , . . . , Ỹ Ar
er =

d∑
i=1

YeiAri . (22)

These coefficients are the exact zero and first-order PCE coefficients in the r-dimensional adapted space and can be used to
correct the coefficients in Eq (18). Then, the zero and first-order information are guaranteed to be accurate.

For the second method, we noticed that with the increased r in the adaptation, the QoI could be better represented by the
adapted PCE. In addition, the r-dimensional adapted PCE retains the information of the first r rotated variables up to order p.
However, the rotation matrix in the classical adaptation only considers the first-order information and remains constant even when
more probabilistic information becomes available. The second method in [40] proposed to update the rotation matrix A as r is
sequentially increased. Specifically, suppose the r-dimensional adaptation from the rotation matrix A is available. In that case,
the best one-dimensional adaptation close to the r-dimensional adaptation is discovered from an updated rotation matrixB. The
one-dimensional adaptation byB can be written as

Y B1(ζ1) =
∑
γ∈J1,p

Y B1
γ ψγ(ζ1) =

∑
γ∈J1,p

Y B1
γ ψB1

γ (ξ) , (23)
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where ζ = Bξ is the new adapted variable by B. To compute the PCE coefficients of the new one-dimensional adaptation, one
would usually require to evaluate the physical model Y on some parameters. To avoid the additional computation, the evaluation
is instead performed on the r-dimensional adapted PCE by A, the best available model. For any choice of B, one can easily
construct the one-dimensional adapted PCE of the QoI. Then, an optimization procedure can be employed to find the bestB that
minimizes the difference between the one-dimensional adaptation by B and the r-dimensional adaptation by A. This method
can be combined with the first method that always corrects the zero and first-order PCE coefficients in the adapted PCEs. The
combined method is named the sequentially optimized adaptation (SOA) with its workflow in Figure 1. Please refer to [40] for
details.

start r = 2
B(1) = A

(r − 1)-d adap-
tation by B(r−1)

r-d adaptation
by B(r−1)

Converge
or not

stop

Obtain new B(r)

from r-d adapta-
tion by B(r−1)

Yes

Nor = r + 1

Figure 1: Workflow of the sequentially optimized adaptation method [40].

The basis adaptation is a great tool for dimension reduction in UQ. However, when it comes to computing the adapted PCE
coefficients, for example, by Eq (15), we typically use sparse quadrature rules to reduce the number of evaluations while having
good accuracy at the same time. In this setting, the model must be evaluated at specific quadrature points. We will next introduce
a novel data-driven method that can simultaneously find the optimal rotation matrix and the PCE coefficients.

3. Projection pursuit adaptation

3.1. Projection pursuit regression

Projection pursuit (PP) intends to find the most “interesting” projections in high-dimensional data. These projections are
discovered such that they reveal the most information embedded in the data. Therefore, the projections of PP and the adaptation
directions by the basis adaptation method have the same purpose but are discovered with different algorithms. The advantages and
disadvantages of these two methods are worth exploring. In the sense of adapting input to output, the projection pursuit regression
(PPR) was introduced [59], where the projections and the functions from input space to output space are built simultaneously.

In a general supervised learning setting, assume we have a data set {(xi, yi)}Ni=1 with xi ∈ Rd and yi ∈ R. Let cj ,
j = 1, . . . , r be d-dimensional known vectors. Then the PPR model seeks to approximate yi as follows

yi ≈
r∑
j=1

fj(c
T
j x

i) , (24)

where {fj : R 7→ R} is a set of univariate smooth functions. This model aims to find (fj , cj) such that the approximation fits the
data in some optimal sense. Specifically, the following optimization problem is solved to fit such a model with the given data

arg min
(fj ,cj)

N∑
i=1

yi − r∑
j=1

fj(c
T
j x

i)

2

. (25)

In this optimization problem, the number of required projections, r, is determined by a stage-wise greedy algorithm where we
add a pair of (fj , cj) at each stage and stop the procedure if additional information cannot improve the model fitting significantly.
For example, suppose we are in stage j and want to find the optimal (fj , cj). Let the previously found parameters, {(fl, cl)}j−1l=1

be fixed, then the residual of the ith data point is obtained as

νi = yi −
j−1∑
l=1

fl(c
T
l x

i) . (26)

7



Then, the optimal (fj , cj) can be found by solving the following optimization problem

arg min
(fj ,cj)

N∑
i=1

[
νi − fj(cTj xi)

]2
. (27)

When the total residual of the data
∑N
i=1 ν

i is converged, we stop the procedure.
An alternative to the greedy procedure is to iteratively update the pairs (fk, ck) for k = 1, . . . , j through backfitting. While

this approach could result in significantly fewer terms in the model, the computation cost is increased, and the improvement in
predictions is insignificant [60]. In addition, the same performance can usually be achieved by adding more terms to the model.
Therefore, we will focus on the stage-wise greedy procedure.

The optimization problem (27) remains to be solved in each stage. The solution can be obtained by an alternating optimization
procedure, where the optimization switches between fj and cj until converge. Specifically, if the vector cj is given, then the
argument of fj is a one-dimensional variable. The problem becomes finding the optimal fj such that the residual is minimized.
This can be done by the regression method. On the other hand, assuming fj is given, one needs to find the optimal cj to minimize
the residual. This can be done by a Gauss-Newton search, a quasi-Newton method that keeps only the zero and first derivatives
in a Taylor expansion. Let cj,old be the current estimate of cj , then we can write the following Taylor expansion

fj(c
T
j x

i) ≈ fj(cTj,oldx
i) + ḟj(c

T
j,oldx

i)(cj − cj,old)Txi . (28)

Substituting Eq (28) into Eq (27) (with fj given) leads to

arg min
cj

N∑
i=1

[
νi − fj(cTj xi)

]2 ≈ arg min
cj

N∑
i=1

ḟj(c
T
j,oldx

i)2

[(
cTj,oldx

i +
νi − fj(cTj,oldx

i)

ḟj(cTj,oldx
i)

)
− cTj xi

]2
. (29)

The optimization problem (29) can be solved by the weighted least squares regression with target u = cTj,oldx
i +

νi−fj(cTj,oldx
i)

ḟj(cTj,oldx
i)

,

regressors xi, weight ω = ḟj(c
T
j,oldx

i)2, and no bias term. Let W ∈ RN×N denote the diagonal matrix with entries ω, u ∈ RN

be the vector with entries u, and use the full data matrixX ∈ RN×d, then cj is found by solving the following

arg min
cj

‖u−Xcj‖2W=
(
XTWX

)−1
XTWu . (30)

With an updated cj , we find new projections cTj x
i and refit fj to minimize the residual. Then cj can be updated again with the

new fj . We repeat the alternating procedure until (fj , cj) pair is converged.
Although there is no restriction to the smooth functions {fj}, it is better if the functions are once differentiable. PCE is a

good fit here where each smooth function fj is a univariate PCE with respect to the projected variable cTj x
i. In this case, the

variables x that can be arbitrarily distributed (based on prior knowledge or from the data) need to be first transformed to standard
Gaussian distributions via, for example, inverse transform sampling or Rosenblatt transformation [68]. Then, with a given cj ,
finding the optimal fj is equivalent to finding the PCE coefficients of fj . One of the benefits of using PCEs as smooth functions
is that the order of the PCE is adjustable, and we can gradually increase the polynomial orders until convergence is reached.
Based on the flexibility of PCE, r can be arbitrarily large to approximate any function in L2(Ω), and the computational cost lies
in constructing r univariate PCEs.

Note that there is no restriction on the projection in the optimization problem (30), and each projection is discovered based on
the current residual. The initial guess of cj and the data determine where the “optimal” value land. Therefore, there are chances
that the weighted least squares find the local optima and stop the stage-wise procedure when the local optima suggest there is not
much room for improvement. In addition, there is no restriction on the projections. No coupling effects are considered among the
projections since the smooth function fj only considers information on the jth projected variable. One of the advantages of such
construction is that {fj} are univariate functions and are easy to compute with given projections and a given number of samples.

3.2. Integration of projection pursuit and basis adaptation

In the basis adaptation method, we already discovered that many scalar QoI could be represented in a low-dimensional space
([39, 38, 40, 69]). So the question is how to find the optimal low-dimensional space and the PCE on that space. The PPR method
is an excellent tool for achieving that in a data-driven setting.

However, the original construction considers univariate representations in PPR with PCE employed as smooth functions.
Therefore, it does not take advantage of the good mean-squared convergence property and the ability to represent any variable
in the parameter space of the multivariate PCE construction. Accordingly, we will explore using multivariate PCE as a smooth
function in PPR. In addition, the projections in this effort are assumed to be orthonormal, which has control of the exploring
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space of the next projection based on the current projections. Therefore, in this case, the projections are equivalent to the rows of
the rotation matrix, and the smooth function is equivalent to multivariate PCE in the basis adaptation method. Hence, we refer to
this method as the projection pursuit adaptation (PPA).

LetCr =
[
c1 . . . cr

]T
, with each row representing a projection and with the projections being mutually orthogonal. Also

let zi denote the projected variables such that

zi =
[
zi1 . . . zir

]T
= Crx

i =
[
c1 . . . cr

]T
xi , xi ∈ Rd, zi ∈ Rr (31)

The PPA method seeks the following model
yi ≈ gr(zi) , (32)

where gr(·) is r-dimensional PCE. We want to find (gr,Cr) such that the approximation fits the data well. Unlike PPR, where
the regression model is an additive of many univariate functions, the PPA seeks an r-dimensional multivariate model. Same as in
PPR, the following optimization problem is solved

arg min
(gr,Cr)

N∑
i=1

[
yi − gr(zi)

]2
. (33)

We will use a stage-wise greedy strategy to solve the optimization problem. In the rth stage, for example, the previously computed
projectionsCr−1 are unchanged, and we want to get the optimal cr that is appended toCr−1. While for the smooth function, the
optimal r-dimensional gr is computed independently of the previous information in gr−1. That is, the stage-wise greedy strategy
finds optimal (gr, cr) at each stage. Like PPR, gr and cr are computed by an alternating optimization procedure, in which the
optimization switches between gr and cr until they converge. We can discover the optimal r-dimensional PCE gr by regression
if Cr is given. While for a given gr, we calculate the optimal cr that is appended to the previously computed Cr−1. The reason
for not updating the whole Cr matrix at each stage is to avoid excessive computation and propose a convenient Gauss-Newton
search algorithm for optimization. With a fixed gr, the following problem remains to be solved

arg min
cr

N∑
i=1

[
yi − gr(zi)

]2
, (34)

which is similar to Eq (27) with fj fixed. However, the function gr(·) here is a multivariate function. In order to use the
Gauss-Newton search, let cr,old be the current estimate of cr, the following multi-dimensional Taylor expansion is applied

gr(z
i) = gr(

[
zi1 . . . zir−1 zir

]T
) = gr(

[
c1 . . . cr−1 cr

]T
xi)

≈gr
([
c1 . . . cr−1 cr,old

]T
xi
)

+∇gr
([
c1 . . . cr−1 cr,old

]T
xi
)

×
([
c1 . . . cr−1 cr

]T − [c1 . . . cr−1 cr,old
]T)

xi

=gr

([
c1 . . . cr−1 cr,old

]T
xi
)

+
∂gr
∂zir,old

([
c1 . . . cr−1 cr,old

]T
xi
)

(cr − cr,old)Txi

=gr
(
ziold

)
+
∂gr

(
ziold

)
∂zir,old

(cr − cr,old)Txi ,

(35)

where∇gr(·) denotes the gradient of gr(·); ziold =
[
c1 . . . cr−1 cr,old

]T
xi; zir,old = cTr,oldx

i. In (35), {cj} for j < r are the
known previously obtained projections. Although the Taylor expansion is multi-dimensional, we avoid the gradient operations,
thus replacing a multi-dimensional regression with a one-dimensional regression by updating only the rth projection. Substituting
(35) to (34) leads to the following optimization problem

arg min
cr

N∑
i=1

(
∂gr

(
ziold

)
∂zir,old

)2 [(
cTr,oldx

i +
yi − gr

(
ziold

)
∂gr

(
ziold

)
/∂zir,old

)
− cTr xi

]2
, (36)

Again, the optimization problem (36) can be solved by the weighted least squares regression with target û =
yi−gr(zi

old)
∂gr(zi

old)/∂zir,old
,

regressors xi, weight ω̂ =
(
∂gr

(
ziold

)
/∂zir,old

)2
, and no bias term. Let Ŵ ∈ RN×N denote the diagonal matrix with entries ω̂,
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and û ∈ RN be the vector with entries û, then cr can be found by a solution to the following optimization problem

arg min
cr

‖û−Xcr‖2Ŵ=
(
XTŴX

)−1
XTŴ û . (37)

Once cr is computed, we apply a Gram-Schmidt procedure to all the projections to maintain orthogonality among them. Then,
with the updated cr, we find new projections of xi and refit gr to minimize the residual. Then cr can be updated again with the
new gr. We repeat the alternating procedure until (gr, cr) pair is converged.

The detailed PPA procedure is summarized in Algorithm 2.

Algorithm 2: Projection Pursuit Adaptation (PPA)

1 Let r = 1;
2 while {gr(Crxi)} is not converged do
3 Initial guess of cr;
4 Project the original variables {xi} to projected variables {zi};
5 Find the optimal gr (PCE) with respect to zi by least squares;
6 while (gr, cr) is not converged do
7 Compute corresponding ĉ, ω̂ in (37);
8 Solve (37) to obtain an updated cr;
9 Perform Gram-Schmidt on Cr to maintain orthogonality;

10 Update the projected variables {zi};
11 Find the updated gr (PCE) with respect to zi by least squares;

12 r = r + 1.

The PPA method always finds the optimal r-dimensional PCE adapted to the output or the QoI, starting from r = 1. The
optimal model is in the sense of optimal directions and optimal PCE. Same as in basis adaptation, the dimension r is sequentially
increased, resulting in PCE models that can better approximate the data. The procedure is stopped when adding a new projection
cannot reduce the residual significantly.

Generally, fitting a multi-dimensional PCE model is much more expensive than fitting multiple univariate PCEs. However, the
goal is to propose a representation of the actual model on a low-dimensional manifold. If the reduced dimension is small enough,
the increase in computational cost is usually acceptable. In addition, the procedure here is entirely data-driven; no additional
model evaluations are required to find the projections and the PCE coefficients.

4. Applications

4.1. Borehole model

The PPA method is first applied on a borehole model (the same model as in [40]) to make a comparison with the classical
basis adaptation and the accelerated basis adaptation,

f(x) =
2πTu(Hu −Hl)

ln(r/rw)
(

1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

) , (38)

which models the water flow through a borehole drilled from the ground surface through two aquifers. In this model we assume
the radius of the borehole is rw = 0.1 (m). The other parameters are randomized and listed in Table 1. The QoI f(x) is the water
flow rate of the borehole (m3/yr).

A previous UQ exploration [40] of the borehole model showed that an accurate probability density function (PDF) of the
water flow rate could be obtained through (i) MCS of 3000 samples; (ii) classical basis adaptation of dimension 5 that requires
995 samples evaluated at specific Gauss quadrature points; (iii) accelerated basis adaptation of dimension 3 that required 308
samples evaluated on quadrature points. The maximum PCE order is p = 3 in the last two methods, which is verified to be
adequate.

We now apply the data-driven PPA method to learn the adapted projections and the PCE model with respect to the projected
variables with a different number of MC samples {20, 40, 60, 80, 100, 125, 150, 200}. Using the same maximum PCE order
p = 3, we learn the converged optimally adapted projections and the corresponding optimal PCE models. Then we can generate
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Table 1: Random parameters and distributions of the borehole model

Variable Distribution Description

r Lognormal(µ = 7.71, σ = 1.0056) Radius of influence (m)
Tu Uniform(63070, 115600) Transmissivity of upper aquifer (m2/yr)
Hu Uniform(990, 1110) potentiometric head of upper aquifer (m)
Tl Uniform(63.1, 116) transmissivity of lower aquifer (m2/yr)
Hl Uniform(700, 820) potentiometric head of lower aquifer (m)
L Uniform(1120, 1680) length of borehole (m)
Kw Uniform(9855, 12045) hydraulic conductivity of borehole (m/yr)

many MC samples based on the resulting PCE models and estimate the PDF of the QoI by the KDE. A reference PDF is generated
from 100,000 MC simulations of the borehole model by KDE for comparison. For any two vectors u and v, we define the relative
l2 difference of u with respect to v as the following

e =
‖u− v‖2
‖v‖2

(39)

where ‖·‖2 represents the l2 norm. Then, compared to the reference PDF, we can compute the relative l2 error of the PDFs
generated from PPA with a different number of MC samples. The results are shown in Figure 2. We see that the relative l2 errors
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Figure 2: The convergence curve of the relative l2 error of the PDF ob-
tained from PPA with different number of MC samples for the borehole
model.
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Figure 3: PDF comparison of the PPA method for the borehole model.
Three PDFs are compared: the reference from 100,000 MC samples, the
data, and the converged PPA model.

are smaller than 5% when the MC samples are greater than 80 and converge with 150 MC samples. Therefore, we show the
PDF comparison when 80 MC samples are used to learn the PPA model in Figure 3. In the figure, three PDFs are compared, the
reference PDF, the PDF generated by the data, and the PDF by the PPA model. Clearly, the PPA PDF is close to the reference,
with a relative l2 error of 3.8%. In comparison, the PDF generated directly by the data has a large discrepancy from the reference,
with an l2 error of 23.7%.

While for evaluating lower order statistics, the accuracy of this PPA model using 80 MC samples is adequate, other evalua-
tions, such as reliability and failure probabilities, could require more samples. It is clear from Figure (2) that 150 MC samples
are sufficient for l2 convergence, from which convergence in distribution, relevant for tail analysis, follows.

To check the accuracy of the PPA model, Figures 4 and 5 present a comparison of PDFs and CDFs obtained from the reference
model, the 150 data, and the PPA model generated from the 150 data. The first observation is that the resulting PDF of the PPA
method is even closer to the reference compared to the case of using 80 MC samples. The relative l2 difference between the
PPA model and the reference decreases to 1.9%. The accuracy improvement in the left tail region is noticeable. The second
observation is that the PDF generated directly from the data differs from the reference, especially in the left tail region. From
the CDF figure, the curve associated with the data is far from the reference, while the result from PPA is consistent with the
reference.

Since the PPA method is developed based on the PPR method, a comparison of these two techniques is conducted. PCEs are

11



20 40 60 80 100 120 140
Water flow rate (m3/yr)

0.000

0.005

0.010

0.015

0.020

0.025
PD

F

Relative l 2 err of data and PPA are 0.132 and 0.019
Ref
Data (150)
4d PPA

Figure 4: PDF comparison of the PPA method for the borehole model.
Three PDFs are compared: the reference from 100,000 MC samples, the
data, and the converged PPA model.
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Figure 5: CDF comparison of the PPA method for the borehole model.
Three PDFs are compared: the reference from 100,000 MC samples, the
data, and the converged PPA model.

used as smooth functions in PPR, leading to an additive model of many univariate PCEs. We apply the PPR method on the 150
MC samples to obtain a converged model with the same stopping criterion as the PPA method. Then, the PPR model is compared
to the PPA model. The resulting PDFs and CDFs are shown in Figures 6 and 7. We see that the PPR model also has improved
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Figure 6: PDF comparison of the PPA method for the borehole model.
Three PDFs are compared: the reference from 100,000 MC samples, the
data, the converged PPA model, and the converged PPR model.
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Figure 7: CDF comparison of the PPA method for the borehole model.
Three CDFs are compared: the reference from 100,000 MC samples, the
data, the converged PPA model, and the converged PPR model.

over the data and is consistent with the reference overall. However, it misses the left and right tail regions, and the PDF peak
at around 70 m3/yr water flow rate. The relative l2 error of the PPR model is 7.7% compared to 1.9% of the PPA model. The
tail regions usually correspond to reliability or failure probability and thus are important in engineering. The CDF comparison
presents no clear separation between PPA and PPR. However, we can still see a difference if we examine the right tail. For
example, P (f(x) < 97) = 0.95 for PPR, while P (f(x) < 99) = 0.95 for PPA, suggesting that these two models could make
different conclusions regarding the reliability and failure probability.

Compared to MCS, where 3000 samples are required for a converged PDF, we use only 150 samples in PPA to construct a
model with the same accuracy. The massive computation saving is because (i) the QoI can be represented on a low-dimensional
manifold; (ii) the PPA method can discover the low-dimensional manifold and the function that maps the parameter space to
the output space. In this application, the PPA reduced the dimension from 7 to 4, and the number of PCE terms of order 3 has
reduced from 120 to 35. Moreover, the number of MC samples required to compute the PCE coefficients accurately will reduce
significantly. However, even if we use the accelerated basis adaptation method where the dimension could be reduced to 3, the
number of sparse quadrature points is 308, which is still two times greater than 150. In addition, the model is evaluated on
specific quadrature points in accelerated basis adaptation to save cost, which in many applications might not be available.

The PPA model can not only be used for UQ but can also be used in model prediction. In the latter, the PPA model can serve
as a surrogate model to predict QoI with different input parameters. The PPA model essentially constructed a nonlinear mapping
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from input space to output space based on the given data. For any given input parameter, the prediction of the associated output
value can be obtained by querying from the PPA model. We call the data used to construct the PPA model training data, which
in this case, is the 150 MC samples. To check the accuracy of the PPA model in prediction, we generate 100 MC samples that
are different from the training data. We can predict the QoI on these 100 samples using the PPA model. The comparison of the
prediction and the reference model on the test set is shown in Figure 8. From the left figure, the PPA prediction (in orange) is
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Figure 8: Test data (100) of the PPA method for the borehole model. Figure on left shows the QoI value comparison of reference and prediction on various test
data. Figure on the right plot the prediction against the test data where the solid line is of slope 1.

close to the reference (in blue) on the majority of the test data. From the right figure, the scatter dots of prediction against the
test set are closely aligned in the unit slope line, meaning that the predictions are close to the reference. The relative l2 difference
of the 100 test data is 2.0%, which is close to the relative l2 error of the PPA PDF compared to the reference PDF. The results
suggest that the prediction is accurate.

To check the robustness of the PPA method, we generated 100 sets of MC samples, each containing 150 samples. Within
each set, we apply the PPA method to find a converged PCE model and generate many MC samples and compute the associated
KDE estimation of the PDF. The PDFs from these sets are plotted in Figure 9, where the reference PDF in thick black is also
presented. Although generated with different MC samples, the PDFs are all close to the reference. To quantify the difference, we
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Figure 9: Plot of 100 PDF batch generated by PPA method with different
150 MC samples. The thick black curve represent the reference PDF.
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Figure 10: The histogram of relative l2 errors of the 100 PDFs from
Figure 9 compared to the reference PDF.

computed the relative l2 errors of these 100 PDFs with respect to the reference. The histogram of the relative l2 errors is shown
in Figure 10. The mean value and standard deviation of the relative l2 errors are 0.026 and 0.0092, respectively. All the relative
l2 errors are less than 5%, and most of the l2 errors are less than 3%. This means that the variation in the accuracy of the PDF
estimation is small when different MC samples are used in the PPA method.

4.2. Structural Dynamics
The second application considers a space structure subjected to impulse load in the Z direction. The computational model is

shown in Figure 11. The model can be separated into upper and lower parts connected by a three-point mounting pedestal. The
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Figure 11: The overall finite element model of the space structure (left); the finite element model of the space structure without the outer shell and shock
absorption block (middle); time history of the impulse load (right).

upper part is open and is subjected to impulse load with the time history shown in Figure 11. The lower part contains an outer
shell, a solid shock absorption block, and essential components that can be seen in the middle figure of Figure 11. The effects of
the impulse loading are transferred from the upper part to the lower parts through the three-point mounting pedestals. Therefore,
they can affect the functionality of the essential components in the lower part. In this application, we are particularly interested
in one essential part maximum acceleration and maximum velocity responses. The time history of the acceleration and velocity
of the essential part is shown in Figure 12.
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Figure 12: Time history of acceleration (left) and velocity (right) of the essential part under the impulse loading shown in Figure 11.

4.2.1. Uncertainty quantification and prediction
The maximum acceleration and velocity can be directly read from the response histories in a deterministic setting. However,

the material properties of the model are almost inevitably subjected to variations, especially for some special materials. The
randomness of the materials can affect the results a lot. Therefore, in this application, some material properties are randomized,
see Table 2. Note that the randomization here differs from the model in [40]. In this space model, many structural components are
modeled in two parts, a solid element part and a shell element part that wraps around the solid part. In this paper, we randomized
the shell and solid elements, while in [40], only shell elements are randomized. However, a shared random germ is used for a
single structure component, leading to a random dimension of 24, the same as in [40].

In the first calculation, the QoI is the maximum X acceleration along the time. Several methods can be applied to solve
the forward UQ problem. Since the dimension is relatively high, a MCS requires hundreds of thousands of samples to reach a
converged result. If a 3rd order PCE model is to be built, we can use a level 3 sparse Smolyak quadrature to reduce the cost;
however, even in this case, the required quadrature points are 24, 449, which is still too expensive to compute. Therefore, we
considered using basis adaptation and accelerated basis adaptation to solve the forward UQ problem. A first-order pilot PCE is
first built from 49 level 1 quadrature points. Then, the rotation matrix adapted to the QoI is built for the classical adaptation and
can be utilized to construct adaptations with sequentially increased dimensions. We update the rotation matrix for the accelerated
algorithm whenever new information is fed into the model. The generated PDFs of the classical basis adaptation are shown in
Figure 13, where we see that it converges at dimension 7. The required quadrature points are 2731. In contrast, the generated
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Table 2: Random parameters and distributions of the space model

Variable Distribution Mean Coefficient of variation

Modulus of elasticity of 3 major compo-
nents of the upper parts

Lognormal 1.6× 107 psi 10%

Stiffness of the 3 point mounting
pedestals

Lognormal 5.7× 107 lbs/in 20%

Modulus of elasticity of 18 components
in the lower part

Lognormal 14 with 1.0×107 psi; 2 with 9.76×107
psi; 1 with 2.93×107 psi; 1 with 8829.0
psi

20%

PDFs of the accelerated basis adaptation are shown in Figure 14, where we see that it converges at dimension 6. The required
quadrature points are 1708. Then, for these two methods, the total model evaluation on the specific quadrature points is 2780 and
1757, respectively. The required samples are much fewer than PCE and MC methods.
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Figure 13: Classical basis adaptation of the space structure.
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Figure 14: Accelerated basis adaptation method of the space structure.

When model evaluation on specific quadrature points is unavailable, the above method will require much more MC samples to
get accurate PCE models. However, the number of samples in practice is usually limited, and no more samples can be generated.
Therefore, we can apply the PPA method introduced in this paper to use the available data to solve the forward UQ problem.

As in the borehole model, we first use increasing MC samples in the data set to train converged PPA models. Then, once
the PPA models were obtained, we generated many MC samples based on the model and compared the resulting PDF with the
reference PDF obtained from the accelerated basis adaptation method. The relative l2 errors of the PPA model obtained from
different numbers of MC samples are shown in Figure 15. In this model, the relative l2 errors are smaller than 5% when the MC
samples are greater than 700 and converge with 1100 MC samples. The number of MC samples required to obtain a converged
PPA model is much greater than in the borehole model. Note that in practice, the reference PDF might not be available. In that
case, one could compare the PDFs of the PPA model with different MC samples to check if they converge. For most engineering
applications, the accuracy of the PPA model with 700 MC samples is good enough. The PDF comparison, in this case, is shown
in Figure 16. We see that the PPA PDF is close to the reference with a relative l2 error of 3.5%, while the PDF generated directly
by the data has apparent discrepancies from the reference, the l2 error of which is 10.3%.

To perform precise analyses, we will choose 1100 MC samples for further analysis. Figures 17 and 18 compare PDFs and
CDFs obtained from different models. We see that the resulting PDF of the PPA method is even closer to the reference than
the case of using 700 MC samples. The relative l2 difference between the PPA PDF and the reference PDF has been reduced
to 1.9%. The accuracy is improved in all support of the QoI. In addition, the PDF generated directly from the data is different
from the reference, especially in the left tail region. Also, comparing the PDF generated from 1100 data in Figure 17 and the
PDF generated from 700 data in Figure 16, the data increase only slightly improves the PDF, implying a slow convergence of the
MCS. From the CDF figure, the curve associated with the data slightly deviates from the reference, while the result from PPA
almost overlaps with the reference.

For this model, we also present the comparison to the PPR model, the additive of univariate PCE models. The same 1100
MC samples are used for PPA and PPR. The results of PDFs and CDFs are shown in Figures 19 and 20. We see that the PPR
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Figure 15: The convergence curve of the relative l2 error of the PDF
obtained from PPA with different MC samples for the space structure.
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Figure 16: PDF comparison of the PPA method for the space structure.
Three PDFs are compared: the reference, the data, and the converged
PPA model.
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Figure 17: PDF comparison of the PPA method for the space structure.
Three PDFs are compared: the reference, the data, and the converged
PPA model.
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Figure 18: CDF comparison of the PPA method for the space structure.
Three CDFs are compared: the reference, the data, and the converged
PPA model.

model has improved in the left half of the PDF compared to the data. However, it gives unsatisfactory predictions in the right tail
regions. The relative l2 error of the PPR model is 11.2% compared to 1.8% of the PPA model. From the CDF comparison, we
can also clearly see that the PPR model gives inaccurate reliability information on the right tail.

In the case where the PPA model serves as a surrogate model to predict QoI with different input parameters, we generate
200 MC samples that are different from the training data. We can predict the QoI on these 200 samples using the PPA model.
The comparison of the prediction and the reference model on the test set is shown in Figure 21. From the left figure, the PPA
prediction is close to the reference on most of the test data. From the right figure, although several data have relatively worse
predictions, the scatter dots of prediction against the test set are closely aligned in the unit slope line, meaning that the predictions
are close to the reference. The relative l2 difference of the 200 test data is 3.08%, which is close to the relative l2 error of the
PPA PDF compared to the reference PDF. The results suggest that the prediction is accurate.

We see that the PPA model has reduced the dimension from 24 to 4 with only 1100 MC samples. The accuracy of the
PPA model is comparable to the models proposed by basis adaptation and accelerated basis adaptation methods. The latter two
methods adopted the sparse quadrature rule to compute the PCE coefficients and reduce computational costs. Even in that case,
the required quadrature points are 2780 and 1757, respectively, which is still greater than 1100. Another observation is that the
reduced dimension discovered by PPA is less than that of the basis adaptation methods, which suggests that the low-dimensional
manifold found by PPA is better at revealing the probabilistic information of the QoI.

4.2.2. Multi-QoI capability
Another valuable feature of the data-driven essence of PPA is that the data can be reused for different QoIs. One of the

limitations of the basis adaptation methods is that each rotation matrix is associated with a scalar QoI. If the QoI is changed, the
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Figure 19: PDF comparison of the PPA method for the space structure.
Three PDFs are compared: the reference, the data, the converged PPA
model, and the converged PPR model.
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Figure 20: CDF comparison of the PPA method for the space structure.
Three CDFs are compared: the reference, the data, the converged PPA
model, and the converged PPR model.
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Figure 21: Test data (200) of the PPA method for the space structure. Figure on left shows the QoI value comparison of reference and prediction on various test
data. Figure on the right plot the prediction against the test data where the solid line is of slope 1.

whole procedure must be repeated to discover a low-dimensional space for the new QoI. This means that new model evaluations
are required to compute the PCE coefficients of the newly adapted model. In the PPA, however, the data we are starting from can
be reused to train a new model associated with any new QoI. The only additional computation lies in the training process, which
is usually much easier, especially when a low-dimensional manifold is discovered. To test its capability, we use the same data
and try to train a model for the maximum velocity of the space structure.

In this case, we are not showing the results from basis adaptation and accelerated basis adaptation. However, the accelerated
basis adaptation method provides a reference model of the maximum velocity from a 6-dimensional PCE.

Starting from 100 MC samples in the data set, we gradually increase more MC samples. First, a converged PPA model is
trained for each data set expressed in PCE. Then, we generate many MC samples based on the PPA model and obtain its PDF by
KDE. Finally, the PDFs of the PPA from the data with different samples are compared to the reference PDF. Then, a convergence
curve of the relative l2 error can be obtained; see Figure 22. For the maximum velocity, the PPA model has an l2 error close to
5% when the number of samples in the training data set is 800. Again, in most engineering applications, the accuracy is already
enough. The PDF comparison, in this case, is shown in Figure 23. Clearly, the PDF generated by the PPA model is close to the
reference with an l2 error of 5.4%, while the PDF generated from the data directly has an l2 error of 19.2%, a large discrepancy
from the reference.

To perform precise analyses, we chose 1200 MC samples in the data set (where the PPA model is converged) for further
analysis. The PDF and CDF comparisons of different models are shown in Figures 24 and 25. We see that the PDF obtained
from the PPA model is even closer to the reference than when 800 data are used. The relative l2 error has decreased from 5.4%
to 2.7%. However, for the PDF obtained from the data, the l2 error barely changes from the 800 data case to the 1200 data case.
A significant discrepancy still exists even if the number of samples has increased. This signifies the slow convergence of the
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Figure 22: The convergence curve of the relative l2 error of the PDF
obtained from PPA with different MC samples for the space structure
when QoI is the maximum velocity.
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Figure 23: PDF comparison of the PPA method for the space structure
when QoI is the maximum velocity. Three PDFs are compared: the ref-
erence, the data, and the converged PPA model.
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Figure 24: PDF comparison of the PPA method for the space structure
when QoI is the maximum velocity. Three PDFs are compared: the ref-
erence, the data, and the converged PPA model.
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Figure 25: CDF comparison of the PPA method for the space structure
when QoI is the maximum velocity. Three CDFs are compared: the
reference, the data, and the converged PPA model.

traditional MC methods. From Figure 25, we also see that the CDF of the PPA model is consistent with the reference, while the
CDF from the data is far from the reference.

Again, we can use the PPA model as a surrogate to predict QoI with different input parameters. For example, we generate
200 MC samples that differ from the training data as the test set. We can predict the QoI on these 200 samples using the PPA
model. The comparison of the prediction and the reference model on the test set is shown in Figure 26. From the left figure, the
PPA prediction is close to the reference on most of the test data. This can be seen more evident in the right figure, where the
scatter dots of prediction against the test set are closely aligned in the unit slope line, meaning that the predictions are close to the
reference. The relative l2 difference of the 200 test data is 2.9%, which is close to the relative l2 error of the PPA PDF compared
to the reference PDF. The results suggest that the prediction is accurate.

5. Conclusions

The paper proposed a novel, highly accurate, and efficient surrogate model for high-dimensional computational models and
high-dimensional data. Specifically, we proposed a data-driven projection pursuit adaptation method (PPA) that can discover
optimal low-dimensional space and polynomial chaos expansions (PCE) to represent the quantity of interest (QoI) accurately. The
method has the following significances. First, the dimension reduction capability and optimal PCE representation are based on
a-priori-specified data. No additional model evaluations are required. Second, the method can discover even a lower-dimensional
localization than other techniques, using even less data. Third, the required data are independent samples, which have less
restriction and are relatively easier to obtain than, for example, quadrature points. Lastly, the method has the multi-QoI capability
as the same data set can be reused to learn different representations for different QoIs.
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Figure 26: Test data (200) of the PPA method for the space structure when QoI is the maximum velocity. Figure on left shows the QoI value comparison of
reference and prediction on various test data. Figure on the right plot the prediction against the test data where the solid line is of slope 1.

The method is developed for uncertainty quantification (UQ) and prediction. In UQ, the basis adaptation method in PCE
and its accelerated algorithm present the potential to serve as a general dimension reduction technique. Although versatile,
sparse quadrature is often used to construct the PCE models to reduce the computational cost, which requires evaluating the
physical model on specific quadrature points. The projection pursuit regression (PPR) model approximates the response for high-
dimensional data by a sum of smooth functions of some projected variables. The optimal projections and the smooth functions are
found simultaneously from the given data. However, the convergence and capability to represent any variable in the admissible
space in PPR depend on the choice of smooth functions. In this paper, we combine the advantages of these two methods and
propose the novel PPA method for surrogate modeling of high-dimensional models or data. Specifically, we use multivariate PCE
as a smooth function and approximate the response by a multivariate PCE on the projected variables. A stage-wise greedy strategy
determines the number of projections, where we simultaneously compute the optimal projection and the optimal multivariate PCE
at each stage and stop the procedure if additional information does not improve the approximation significantly. The PPA model
inherits the convergence property and the capability to represent any variable in the admissible space from PCE. The applications
of a borehole model and a space structure model demonstrate that the PPA model can find low-dimensional spaces to represent
the responses accurately. In addition, the number of samples required to obtain accurate results in PPA is even less than the
accelerated basis adaptation, where the latter uses sparse quadrature points. The space structure example also shows that the
method can be applied to multiple QoIs using the same data set.

Acknowledgments

We acknowledge support through ONR Grant No. N00014-21-1-2475 with Dr. Eric Marineau as Program Manager. Financial
support is also acknowledged by the United States Department of Energy through Framework, Algorithms, and Scalable Tech-
nologies for Mathematics (FASTMATH) SciDac Institute under Grant No. DE-SC0021307 with Dr. Ceren Susut ad Program
Manager.

References

[1] R. Ghanem, P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991.

[2] R. Ghanem, J. Red-Horse, Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite
element approach, Physica D: Nonlinear Phenomena 133 (1999) 137–144.

[3] B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models–contributions to structural reliability and
stochastic spectral methods, Habilitationa diriger des recherches, Université Blaise Pascal, Clermont-Ferrand, France 147
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