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ABSTRACT

In high-dimensional data, one often seeks a few interesting low-dimensional projections that reveal important

features of the data. Projection pursuit is a procedure for searching high-dimensional data for interesting

low-dimensional projections via the optimization of a criterion function called the projection pursuit index.

Very few projection pursuit indices incorporate class or group information in the calculation. Hence, they

cannot be adequately applied in supervised classification problems to provide low-dimensional projections

revealing class differences in the data . We introduce new indices derived from linear discriminant analysis

that can be used for exploratory supervised classification.

Key Words: Data mining; Exploratory multivariate data analysis; Gene expression data; Discriminant

analysis;
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1. Introduction

This paper is about methods for finding interesting projections of multivariate data when the observations

belong to one of several known groups. The type of data is denoted as a p-dimensional vector Xij representing

the jth observation of the ith class, i = 1, . . . , g, g is the number of classes, j = 1, . . . , ni, and ni is the number

of observations in class i. Let X̄i. =
∑ni

j=1 Xij/ni be the ith group mean and X̄.. =
∑g

i=1

∑ni

j=1 Xij/n be

the total mean, where n =
∑g

i=1 ni. Interesting projections correspond to views where there are the biggest

difference between the observations from different classes, that is, the classes are clustered in the view. In

this paper, the approach to finding interesting projections uses the measures of between group variation,

relative to within-group variation. These new methods are important for exploratory data analysis and data

mining purposes when the task is to (1) examine the nature of clustering in the space of the data due to

class information, and (2) to build a classifier for predicting the class of new data.

Projection pursuit is a method to search for interesting linear projections by optimizing some pre-

determined criterion function, called a projection pursuit index. This idea originated with Kruskal (1969),

and Friedman and Tukey (1974) first used the term “projection pursuit” describing a technique for ex-

ploratory analysis of multivariate data. It is useful for an initial data analysis, especially when data is in

a high dimensional space. A problem many multivariate analysis techniques face is “the curse of dimen-

sionality”, that is, most of high dimensional space is empty. Projection pursuit methods help us explore

multivariate data in interesting low dimensional spaces. The definition of an “interesting” projection depends

on the projection pursuit index and on the application or purpose.

Many projection pursuit indices have been developed to define interesting projections. Because most

low-dimensional projections are approximately normal (Huber, 1985), most of the projection pursuit indices

are focused on non-normality. For example, the entropy index and the moment index (Jones and Sibson,

1987), the Legendre index (Friedman, 1987), the Hermite index (Hall, 1989), and the Natural Hermite index

(Cook, et al, 1993), all search for projections where the data exhibit a high degree of non-normality.
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Visual inspection of high dimensional data using projections is helpful to understand data, especially

when it is combined with dynamic graphics. GGobi is an interactive and dynamic software system for data

visualization and projection pursuit is implemented in it dynamically (Swayne, et al, 2003). The Holes index

and the central mass index in GGobi are helpful in finding projections with few observations in the center

and projections containing an abundance of points in the center, respectively (Cook, et al, 1993).

As the data mining area has grown, projection pursuit methods are increasingly used in classification

and clustering to escape the curse of dimensionality. Posse (1992) suggested a method for projection pursuit

discriminant analysis for two groups. He used kernel density estimation of the projected data instead of

the original data and used the total probability of misclassification of the projected data as a projection

pursuit index. Polzehl (1995) considered the cost of misclassification and used the expected overall loss

as a projection pursuit index. Flick, et al (1990) uses a basis function expansion to estimate density and

minimizes a measure of scatter. These projection pursuit methods for classification focus on 1-dimensional

projections and it is hard to extend them to k-dimensional projections. Examining higher than 1-dimensional

projections is important for visual inspection of high-dimensional data.

The methods presented in this paper start from a well-known classification method called linear discrim-

inant analysis(LDA). This approach is extended to provide new projection pursuit indices for exploratory

supervised classification. These indices use Fisher’s linear discriminant ideas and expand Huber’s ideas on

projection pursuit for classification. These new indices are helpful for building understanding about how

class structure relates to measured variables and they can be used to provide graphics to assess and ver-

ify supervised classification results. These indices are implemented as an R package, and these indices are

available in GGobi for dynamic graphics (Swayne, et al, 2003)

This paper is organized as follows. Section 2 introduces the new projection pursuit indices and describes

their properties. The optimization method to find the interesting projections is discussed in Section 3.

Section 4 describes how to apply these indices using two gene expression data sets.
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2. Index Definition

2.1 LDA projection pursuit index

The first index is derived from classical linear discriminant analysis (LDA). The approach, first developed

by Fisher (1938), finds linear combinations of the data which have large between-group sums of squares

relative to within-group sums of squares. (For detailed explanations, see Johnson and Wichern, 2002 and

Duda et al. 2001) Let

B =
g∑

i=1

ni(X̄i. − X̄..)(X̄i. − X̄..)T : between-group sums of squares, (1)

W =
g∑

i=1

ni∑
j=1

(Xij − X̄i.)(Xij − X̄i.)T : within-group sums of squares. (2)

Dimension reduction is achieved by finding the linear projection, a, that maximizes (aT Ba)/(aT Wa), which

leads to the natural definition of a projection pursuit index. (aT Ba)/(aT Wa) ranges between 0 and 1,

where low values correspond to projections that display little class difference and high values correspond to

projections that have large differences between the classes. To extend to an arbitrary-dimensional projection,

we consider a test statistic used in multivariate analysis of variance (MANOVA) called Wilks Λ∗ =
∣∣W∣∣/∣∣W+

B
∣∣. This quantity also ranges between 0 and 1, although the interpretation of numerical values are reversed

from the 1-dimensional measure defined above. Small values of Λ∗ correspond to large differences between

the classes.

Let A = [a1 a2 · · · ak] define an orthogonal projection onto a k-dimensional space. In projection pursuit

the convention is that interesting projections are the ones that maximize the projection pursuit index, so we

use the negative value of Wilks Lambda and add 1 to keep this index between 0 and 1. This gives the LDA

projection pursuit index (LDA index) as:

ILDA(A) =


1−

∣∣ATWA
∣∣∣∣AT

(
W+B

)
A
∣∣ for

∣∣AT
(
W + B

)
A
∣∣ 6= 0

0 for
∣∣AT

(
W + B

)
A
∣∣ = 0

(3)

4



Low index values correspond to little difference between classes and high values correspond to large differences

between classes. The next proposition quantifies the minimum and maximum values. For simplicity, we

denote W + B as Φ.

Proposition 1. Let rank(Φ) = p, k ≤ min(p, g). Then,

1−
k∏

i=1

λi ≤ ILDA(A) ≤ 1−
p∏

i=p−k+1

λi (4)

where λ1,≥ λ2 ≥ · · · ≥ λp ≥ 0 : eigenvalues of Φ−1/2WΦ−1/2,

e1, e2, · · · , ep : corresponding eigenvectors of Φ−1/2WΦ−1/2,

f1, f2, · · · , fp : eigenvectors of Φ−1/2BΦ−1/2.

In (4), the right equality holds when A= Φ−1/2[ep ep−1 · · · ep−k+1] = Φ−1/2[f1 f2 · · · fk] and the

left equality holds when A= Φ−1/2[ek ek−1 · · · e1] = Φ−1/2[fp−k+1 fp−k+2 · · · fp].

A problem arises for LDA when rank(W) = r < p. We need to remove collinearity by removing vari-

ables, before applying LDA. Otherwise, we need to modify the W−1 calculation, for example, to use the

pseudo-inverse (pseudo LDA : Fukunaga, 1990) , or to use a ridge estimate instead of W such as regu-

larized discriminant analysis (Friedman, 1989). For projection pursuit, because we make calculations in

k-dimensional space instead of p-dimensional space, we can find interesting projections without an initial

dimension reduction or modified W calculation. The next proposition shows how the LDA index works when

rank(W) < p.

Proposition 2. Let rank(Φ) = r < p, k ≤ min(r, g). Then,

1−
k∏

i=1

δi ≤ ILDA(A) ≤ 1−
r∏

i=r−k+1

δi (5)
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where Φ =
[

P Q

] Λ 0

0 0


 PT

QT

 = PΛPT : spectral decomposition of Φ,

P : k × r matrix, PT P = Ir,

Q : k × (k − r) matrix, QT Q = Ik−r,

Λ = diag[δ1, δ2, · · · , δr] : r × r diagonal matrix,

δ1, δ2, · · · , δr : eigenvalues of Λ−1/2PT WPΛ−1/2,

e1, e2, · · · , er : corresponding eigenvectors of Λ−1/2PT WPΛ−1/2.

In (5), the right equality holds when A = PΛ−1/2[er er−1 · · · er−k+1], and the left equality holds

when A = PΛ−1/2[ek ek−1 · · · e1].

(b)

(c)

(a)  

1D projected data
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Figure 1. (a) Huber’s plot(1990) using ILDA on data simulated from two bivariate normal population. The symbols

© and + represent two different classes. The solid ellipse represents ILDA value for all 1-dimensional projections,

and the dashed circle is a guide set at the median ILDA value. The straight dotted line labelled (b) is the optimal

projection direction using ILDA and the histogram of the projected data is shown in the correspondingly labelled plot

(b). In plot (a) the dotted line labelled (c) is the first principal component direction and the the histogram of the

projected data is shown in the correspondingly labelled plot (c).

The proofs of these two propositions are provided in Lee (2003). To illustrate the behavior of the LDA
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index (Figure 1), we use a type of plot that was introduced by Huber (1990). In one-dimensional projections

from a 2-dimensional space, for θ = 0◦, · · · , 179◦, the projection pursuit index is calculated using projection

aθ = (cosθ, sinθ) and displayed radially as a function of θ. In each figure, the data points are plotted in the

center. The solid ellipse represents the index value, ILDA, plotted at distances relative to the center. The

dotted circle is a guide line plotted at the median index value.

Figure 1 shows how the LDA index works. Data are simulated from two normal distributions with

the same variance, Σ =

 1 0.95

0.95 1

 , and different means, µ1 =

 −1

0.6

 and µ2 =

 1

−0.6

.

Each group has 50 samples. Figure 1(a) shows that the LDA index function (solid line) is smooth and

has a maximum value when the projected data reveals two separated classes. Figure 1(b) and Figure 1(c)

are the histograms of the optimal projected data using the LDA index and the data projected onto the

first principal component. The LDA index finds separated class structure. Principal component analysis is

commonly used to find revealing low-dimensional projections, but it really does not work well in classification

problems. Here, principal component analysis solves a different problem: It finds a projection that shows

large variation (Johnson and Wichern, 2002).

The LDA index works well generally, but it has some problems in special circumstances. One special

situation is 2-dimensional data generated from a uniform mixture of three Gaussian distributions, with

identity variance-covariance matrices and centers at the vertices of an equilateral triangle. Figure 2(a) shows

the theoretical case where three classes have the exact same variance-covariance matrix and three class means

are the vertices of an equilateral triangle. In this case, all directions have the same LDA index values. The

best projection is the full 2-dimensional data space. Figure 2(b) shows data simulated from this distribution.

Because of the sampling, variances are slightly different in each class and the three means do not lie exactly

on an equilateral triangle. Therefore the optimal direction(the dotted straight line in Figure 2(b)) depends

on the sampling variation. If a new sample is generated, a completely different optional projection will occur.

This is not what we want in exploratory methods. We would like to be able to find all the interesting data
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structures, which in this case would be the three 1-dimensional projections revealing each group separated

from the other two groups. We extend this problem of the LDA index to define a new index that is able to

detect interesting structures in this situation.

2.2 LDA extended projection pursuit index using Lr-norm

We start from the 1-dimensional index. Let yij = aT Xij be a projected observation onto a 1-dimensional

space. In the LDA index, we use aT Ba and aT Wa as the measures of between-group and within-group

variations, respectively. These two measures can be explained as the square of L2 vector norm, as follows.
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Figure 2. This plot illustrates a problem situation for ILDA. (a) The theoretical case where the three classes

have the exact same variance and the three class means come are located on the vertices of an equilateral triangle.

All directions have exactly same ILDA values (solid circle). The best projection is really the full 2-dimensional data

space! (b) What happens in practice? This plot contains data generated from the theoretical distribution. An optimal

projection is found purely due to sampling variation. If a new sample were generated a completely different optimal

projection will be found.
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aT Ba =
g∑

i=1

ni∑
j=1

(ȳi. − ȳ..)
2 =

{
||Mȳg − 1nȳ..||2

}2 (6)

aT Wa =
g∑

i=1

ni∑
j=1

(yij − ȳi.)
2 =

{
||y−Mȳg||2

}2 (7)

aT Φa =
g∑

i=1

ni∑
j=1

(yij − ȳ..)
2 = {||y− 1nȳ..||2}2 =

{
||Mȳg − 1nȳ..||2

}2 +
{
||y−Mȳg||2

}2 (8)

where M = diag(1n1 , · · · ,1ng
), ȳg = [ȳ1., ȳ2., · · · , ȳg.]

T , y =
[
y1

T ,y2
T , · · · ,yg

T
]T , yi =

[
yi1, yi2, · · · , ying

]T ,

and 1n = [1, 1, · · · , 1]T : n× 1 vector. We extend to the Lr norm. Let

Br =
{
||Mȳg − 1nȳ..||r

}r =
g∑

i=1

ni∑
j=1

|ȳi. − ȳ..|r (9)

Wr =
{
||y−Mȳg||r

}r =
g∑

i=1

ni∑
j=1

|yij − ȳi.|r. (10)

Then

{||y− 1nȳ..||r}r =
g∑

i=1

ni∑
j=1

|yij − ȳ..|r ≤
g∑

i=1

ni∑
j=1

|ȳi. − ȳ..|r +
g∑

i=1

ni∑
j=1

|yij − ȳi.|r = Br + Wr. (11)

Even though the additivity does not hold for the Lr vector norm, Br and Wr can be substitutes for the

measures of between-group and within-group variabilities. We use these measures to define our new index.

The 1-dimensional Lr projection pursuit index (Lr index) is defined by

ILr
(a) =

(
Br

Wr

)1/r

=
||Mȳg − 1nȳ..||r
||y−Mȳg||r

(12)

=

(∑g
i=1

∑ni

j=1 (ȳi. − ȳ..)
r∑g

i=1

∑ni

j=1 (yij − ȳi.)
r

)1/r

. (13)

Taking the ratio to the 1/r power, prevents this index value from getting too big. The 1-dimensional LDA

index is a special case of this index when r = 2.

For a k-dimensional projection A, let Yij = AT Xij = [yij1, yij2, · · · , yijk]T be a projected observation
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(a) r=1
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(b) r=3

1 3

2

(c) r=5

Figure 3. Huber’s plot showing behavior of ILr index on the special data that caused problems for ILDA. (a) IL1 :

The optimal projections separate each class from the other two. (b) IL3 : The optimal projections separate all three

classes. (c) IL5 : The optimal projections separate each class from the other two. When r=2 and r=4, the index is

the same as ILDA, shown in Figure 2(a).

onto the k dimensional space spanned by A. Then

[AT BA]lm =
g∑

i=1

ni∑
j=1

(ȳi.l − ȳ..l) (ȳi.m − ȳ..m) , (14)

[AT WA]lm =
g∑

i=1

ni∑
j=1

(yijl − ȳi.l) (yijm − ȳi.m) (15)

where l,m = 1, 2, · · · , k. The diagonals of these matrices represent the variances of the between (or within)

group for each variable and the off-diagonals represent covariances between variables. We take only the

diagonal parts of these between-group and within-group variance and extend these sums of squares to Lr

norms. Then,

ILr (A) =

(∑k
l=1

∑g
i=1

∑ni

j=1 (ȳi.l − ȳ..l)
r∑k

l=1

∑g
i=1

∑ni

j=1 (yijl − ȳi.l)
r

)1/r

. (16)

For detailed explanations, see Lee (2003).

Figure 3 shows how the new index ILr
(r = 1, 2, 3) performs for the special situation that caused problem

for ILDA. When r = 1, all three optimal projections separate one class from the other two classes. When

r = 3, the optimal projections separate the three classes. With the L5 index, we found the same optimal
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projections as the L1 index but the index function is smoother than the L1 index. When r is 2 and 4, these

indices have the same value for all directions, just like the LDA index.

The LDA index and the Lr index (r ≥ 2) are usually sensitive to outliers, mainly due to use the sums

of squares or higher power, which are sensitive measure to outliers. On the other hand, the L1 index uses

the sums of absolute values. Therefore it is more robust to outliers than other indices. Figure 4 shows how

these indices work in the presence of an outlier. In each plot, there are two classes (1 and 2). The class

1 has 21 observations with one outlier and the class 2 has 20 observations. The histogram of the optimal

1-dimensional projected data using the L1 index (Figure 4 (a-1)) shows that the outlier is separated from

two groups and the best projection is not affected by this outlier. When r ≥ 2, the best projections are

leveraged towards the direction of the outlier. With the exception of the outlier, the L1 index provides a

more separated view of the two classes than the best projection of the Lr(r ≥ 2) index.
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Figure 4. The behavior of the ILr in the presence of a outlier, using simulated data with 2 classes, where class 1
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has an outlier. (a) Huber’s plot of IL1 , (a-1) Histogram of the projected data onto the L1 optimal projection (b)

Huber’s plot of IL2 , (b-1) Histogram of the projected data onto the L2 optimal projection (c) Huber’s plot of IL3 , (c-1)

Histogram of the projected data onto the L3 optimal projection.

3. Optimization

A good optimization procedure is an important part of projection pursuit. The purpose of projection

pursuit optimization is to find all of the interesting projections, not only to find one global maximum,

because sometimes the local maximum can reveal unexpectedly interesting data structure. For this reason,

the projection pursuit optimization algorithm needs to be flexible enough to find global and local maxima.

Posse (1990) compared the several optimization procedures, and suggest a random search for finding

the global maximum of a projection pursuit index. Cook, et al (1995) use a grand tour alternated with a

simulated annealing optimization of a projection pursuit index, to creating a continuous stream of projections

that are displayed for exploratory visualization of multivariate data. Klein and Dubes (1989) showed that

simulated annealing can produce results as good as those obtained by conventional optimization methods

and this method performs well for large data sets.

Simulated annealing was first proposed by Kirkpatrick, et al (1983) as a method to minimize objective

functions that have many variables. The fundamental idea of simulated annealing is that a re-scaling pa-

rameter, called the “temperature”, allows control of the speed of convergence to a minimum value. For an

objective function h(θ), called the “energy”, we start from the initial value θ0. A value, θ∗ is generated in

the neighborhood of θ0. Then, θ∗ is accepted as a new value with probability ρ, defined by the temperature

and the energy difference between θ0 and θ∗. This probability ρ guards against getting trapped into a local

minimum allowing the algorithm to visit a local minimum and then jump out and explore for other minima.

For detailed explanations, see Bertsimas and Tsitsiklis (1993).

For our projection pursuit optimization we maximize an objective function. We use two different tem-
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peratures, one (Di) is for neighborhood definition, and the other (Ti) is for the probability ρ . Di is re-scaled

by the predetermined cooling parameter c and Ti is defined by T0/ log(i + 1). Before we start, we need to

choose the cooling parameter, c, and the initial temperature, T0. The cooling parameter, c, determines how

many iterations are needed to converge and whether the maximum is likely to be a local maximum or a

global maximum. The initial temperature, T0, also controls the speed of convergence. Even if the cooling

parameter c is small, there is a chance that the algorithm will stop before it reaches the peak. If c is large,

more iterations are needed to get a final value, but this final solution is more likely to be at the peak value,

and that it is a global maximum. Therefore this algorithm is quite flexible for finding interesting projections.

(For detailed discussion, see Lee, 2003.)

Simulated Annealing Optimization Algorithm for Projection Pursuit

1. Set an initial projection, A0, and calculate the initial projection pursuit index value I0 = I(A0) .

For the ith iteration,

2. Generate a projection Ai from NDi
(A0),

where Di = ci, c is the predetermined cooling parameter in the range (0,1),

NDi
(A0) = {A : A is an orthonormal projection with direction A0 + DiB, ∀ random projections B}

3. Calculate Ii = I(Ai), ∆Ii = Ii − I0, Ti = T0
log(i+1) ,

4. Set A0 = Ai and I0 = Ii with probability ρ = min
(
exp

(
∆Ii

Ti

)
, 1
)

and increase i to i+1

Repeat 2-4 until ∆Ii is small.

4. Application

DNA microarray technologies provide a powerful tool for analyzing thousands of genes simultaneously.

Comparison of gene expression levels between samples can be used to obtain information about important
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genes and their functions. Because microarrays contain a large number of genes on each chip but typically

few chips are used, analyzing DNA microarray data usually means dealing with large p, small n challenges.

A recent publication that compares classification methods for gene expression data (Dudoit, et al., 2002) has

focused on the classification error. We will use the same data sets to demonstrate the use of new projection

pursuit indices.

4.1 Data sets

Leukemia This data set originated from a study of gene expression in two types of acute leukemias, acute

lymphoblastic leukemia(ALL) and acute myeloid leukemia(AML). The data set consists of n1 = 25 cases of

AML and n2 = 47 cases of ALL(38 cases of B-cell ALL and 9 cases of T-cell ALL), giving n = 72. After pre-

processing, we have p = 3571 human genes. This data set is available at http://www-genome.wi.mit.edu/mpr

and was described by Golub, et al. (1999).

NCI60 This data set consists of 8 different tissue types where cancer was found : n1 = 9 cases from breast,

n2 = 5 cases from central nervous system(CNS), n3 = 7 cases from colon, n4 = 8 cases from leukemia,

n5 = 8 cases from melanoma, n6 = 9 cases from non-small-cell lung carcinoma(NSCLC), n7 = 6 cases

from ovarian, and n8 = 9 cases from renal, and p=6830 human genes. Missing values are imputed by a

simple k nearest-neighbor algorithm (k = 5). We use these data to show how to use exploratory projection

pursuit classification when the number of classes is large. This data set is available at http://genome-

www.stanford.edu/sutech/download/nci60/index.html and was described by Ross, et al. (2000).

Standardization and Gene Selection The gene expression data were standardized so that each observa-

tion has mean 0 and variance 1. For gene selection, we use the ratio of between-group to within-group sums

of squares.

BW (j) =
∑n

i=1

∑g
k=1 I(yi = k)(x̄k,j − x̄.,j)2∑n

i=1

∑g
k=1 I(yi = k)(xi,j − x̄k,j)2

(17)

where x̄.,j = (1/n)
∑n

i=1 xi,j and x̄k,j = (
∑n

i=1 I(yi = k)xi,j)/(
∑n

i=1 I(yi = k)). At the beginning, we follow
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Figure 5. Leukemia data : 1-dimensional projection (p=40) (a) the histogram of the optimal projected data using IL1

(b) the histogram of the optimal projected data using IL2 (c) the histogram of the optimal projected data using IL3

the original study (Dudoit, et al, 2002) and start with p = 40 for the leukemia data and p = 30 for the

NCI60 data and discuss different numbers of genes later.

4.2 Results

1-dimensional projection

Figure 5 displays the histograms of the projected data onto the optimal 1-dimensional projections. For

this application, we choose a very large cooling parameter (0.999) which gives us the global maximum. In

the Leukemia data, when r=1 (Figure 5-a), the B-cell ALL class is separated from the other classes except

for one case. When r = 2 (Figure 5-b), the three classes are almost separable when the L2 index is used,

which is the same result as for the LDA index. As r is increased, the index tends to separate the T-cell ALL

from the others (Figure 5-c).

The NCI60 data is a quite challenging example. For such a small number of observations, there are too
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many classes. For these data, we try an isolation method that applies projection pursuit iteratively and takes

off one class at a time (Friedman and Tukey, 1974). The 8 classes are too many to separate with a single

1-dimensional projection. After finding one split, we apply projection pursuit to each partition. Usually one

class is peeled off from the others in each step. The tree diagram in Figure 6 illustrates the steps. In the

first step (Figure 6-a), we separate the Leukemia class from the others. At the second step, Colon class is

separated (Figure 6-b). Then, the Renal, the Breast, the NSCLC, and the Melanoma classes are separated

sequentially. Finally, the Ovarian and the CNS classes are separated.

2-dimensional projection

Figures 7 and 8 show the plot of the data projected onto the optimal 2-dimensional projections for the

Leukemia data. All three classes separate easily using the LDA index. Using the L1 index, the B-cell ALL

class is separated with one exception - the same outlier of the result of the 1-dimensional projection in Figure

5(c). In the 2-dimensional case, the LDA index is only the same as the L2 index if B and W are diagonal

matrices. The best result is obtained using the ILDA index, where all three classes are clearly separated. In

the NCI60 data, the Leukemia class is clearly separated from the others for all indices (Figure 8).

Classification

Table 1. Test set error. Median and Upper quartile of the misclassified samples from 200 replications. (ntest = 24)

Median Upper quartile

Fisher’s Linear Discriminant Analysis (LDA) 3 4

Diagonal linear discriminant analysis (DLDA) 0 1

Diagonal quadratic discriminant analysis (DQDA) 1 2

LDA projection pursuit method 2.5 4

L1 projection pursuit method 1 2

Even though our projection pursuit indices are developed for the exploratory data analysis, especially for
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Figure 7. Leukemia data : 2-dimensional projection (p=40). (a) ILDA : The three classes are separated. (b) IL1 :

The B-cell ALL class is separated from the other two except for one case. (c) IL2 : The three classes are separated,

although the gap between classes 2 and 3 is small.
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Figure 8. NCI60 : the 2-dimensional projection (p=30). (a) ILDA : The Leukemia and Colon classes are separated
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not clearly separated. (c) Only the Leukemia class is separated from the others.
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the visual inspection, they can be used for classification. For comparison to the other methods, we show the

results of Dudoit, et al(2001) on the Leukemia data with two classes : AML and ALL. For a 2/3 training set

(ntrain = 48), we calculate BW(Equation 17) values for each gene and select the 40 genes with the larger BW

values. Using this 40 gene training set, find the optimal projection. Let a∗ be the optimal projection, X̄AML

be the mean of the observations in AML groups, X̄ALL be the mean of the observations in ALL groups, and

X be an observation. Then, we build a classifier : If a∗T (X− X̄AML) < a∗T (X− X̄ALL), then X belongs to

the AML group. Else, X belongs to the ALL group. (For detailed explanation, see Johnson and Wichern,

2002). Using this classifier, we compute the test error. This is repeated 200 times. The median and upper

quartile of the test errors are summarized in Table 1. The results of Fisher’s LDA, DLDA, and DQDA are

from Dudoit, et al (2001). As we expect, ILDA has similar results to Fisher’s LDA. The L1 compares well

with the other methods.

5. Discussion

We have proposed new projection pursuit indices for exploratory supervised classification and examined

their properties. In most applications, the LDA index works well to find a projection that has well-separated

class structure. The Lr index can lead us to projections that have special features. With the L1 index, we

can get a projection that is robust to outliers. This index is useful for discovering outliers. As r is increased,

the Lr index tends to be more sensitive to outliers. For exploratory supervised classification, we need to use

several projection pursuit indices (at least LDA and L1 indices) and examine different results. These indices

can be used to obtain a better understanding of the class structure in the data space and their projection

coefficients help find the important variables that best separate classes (Lee, 2003). The insights learned

from plotting the optimal projections are useful when building a classifier and for assessing classifiers.

Projection pursuit methods can be applied to multivariate tree methods. Several authors have considered

the problem of constructing tree-structured classifiers that have linear discriminants at each node. Friedman

19



(1977) reported that applying Fisher’s linear discriminants, instead of univariate features, at some internal

nodes was useful in building better trees. This is a similar approach to the isolation method that we applied

to NCI 60 data (Figure 6).

A major issue revealed by the gene expression application is that when there are too few cases for variables

the reliability of the classifications is questionable. There is a high probability of a separating hyperplane

purely by chance when the number of genes is larger than half the sample size (the perceptron capacity

bound). When the number of genes is larger than the sample size, most of high dimensional space is empty

and we can find a separating hyperplane that divides groups purely by chance (see Ripley, 1996). For more

detailed discussion, see Lee (2003).

For a large number of variables, our simulated annealing optimization algorithm for projection pursuit

method is quite slow to find the global optimal projection. A faster annealing algorithm described by Ingber

(1989) may be better.

Finally we have used the R language for this research and provide the classPP package (available at

CRAN). These indices are also available for the guided tour in the software GGobi (http://www.ggobi.org).
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