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ABSTRACT 

A new method for nonparametric multiple regression is presented. 

The procedure models the regression surface as a sum of general 

- smooth functions of linear combinations of the predictor variables 

in an iterative manner. It is more general than standard stepwise 

and stagewise regression procedures, does not require the defin- 

ition of a metric in the predictor space, and lends itself to graphi- 

cal interpretation. 
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1. INTRODUCTION 

In the regression problem, one is given a p-dimensional random vec- 

tor ,X, the components of which are called predictor variables, and a 

random variable Y, which is called the response. The aim of regression 

analysis is to estimate the conditional expectation of Y given i on the 

basis of a sample ((zi,yi) : i = 1, 2, . . . . n). Typically, one makes 

the assumption that the functional form of the regression surface is 

known, reducing the problem to that of estimating a set of parameters. 

To the extent that this model is correct, such parametric procedures can 

be successful; unfortunately, model correctness is difficult to verify 

in practice, and an incorrect model can yield misleading results. For 

this reason, there is a growing interest in nonparametric methods which 

make only a few very general assumptions about the regression surface. 

The most extensively studied nonparametric regression techniques 

(kernel, nearest-neighbor, and spline smoothing) are based on p-dimen- 

sional local averaging: the estimate of the regression surface at a 

point z. is the average of the responses of those observations with pre- 

dictors in a neighborhood of -x0. These techniques can be shown to have 

desirable asymptotic properties (Stone, 1977). In high dimensional set- 

tings, however, they do not perform well for reasonable sample sizes. 

The reason is the inherent.sparsity of high-dimensional samples. 

This is illustrated by the following simple example: Let ,X be uniformly 

distributed over the unit hypercube in R 
10 

, and consider local averaging 

over hypercubical neighborhoods. If the dimensions of the neighborhood 

are chosen to cover 1% of the range of each coordinate, then it will 

(on the average) contain only (.l)'O of the sample, and thus will 
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nearly always be empty. If, on the other hand, one adjusts the neighbor- 

hood to contain 10% of the sample, it will cover (on the average) 

( l)l/lO . -80% of the range of each coordinate. This pro.blem of sparsity 

basically limits the success of direct p-dimensional local averaging. 

In addition, these methods do not provide any comprehensible information 

about the nature of the regression surface. 

The successful nonparametric regression procedures that have been 

proposed are based on successive refinement. A hierarchy of models of 

increasing complexity is formulated. The complexity of a model is the 

number of degrees of freedom used to fit it. The aim is to find the 

particular model that, when estimated from the data, best approximates 

the regression surface. The search usually proceeds through the hierarchy 

in a stepwise manner. At each step, the model of the subsequent level of 

the hierarchy that best fits the data is selected. Since the sample size 

limits the complexity of the models that can be utilized, these procedures 

will be successful to the extent that the regression surface can be approxi- 

mated by models on levels of low complexity in the hierarchy. 

Applying this concept with a hierarchy of polynomial functions of 

the predictors leads to the stepwise, stagewise, and all-subsets poly- 

nomial regression procedures. These procedures have proven to be success- 

ful in many applications. Unfortunately, regression surfaces occurring 

in practice often are not represented well by low-order polynomials (e.g., 

surfaces with asymptotes); use of higher-order polynomials is limited by 

considerations of sample size and computational feasibility. 

A hierarchy of piecewise constant (Sonquist, 1970) or piecewise 

linear (Breiman and Meisel, 1976, Friedman, 1979) models leads to recur- 
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sive partitioning regression. These procedures basically operate as 

follows: For a particular predictor and a value of this predictor, the 

predictor space is split into two regions, one projecting to the left 

and the other to the right of the value. A separate constant or linear 

model is fit to the sample points lying in each region. The particular 

predictor and splitting value are chosen to minimize the residual sum 

of squares over the sample. The procedure is then recursively applied 

to each of the regions so obtained. 

These recursive partitioning methods can be viewed as local aver- 

aging procedures, but unlike in kernel and nearest-neighbor procedures, 

the local regions are adaptively constructed based on the nature of the 

response variation. In many situations, this results in dramatically 

improved performance. However, as each split reduces the sample over 

which further fitting can take place, the number of regions, and thus 

the number of separate models, is limited. 

In this paper, we apply the successive refinement concept in a new 

way that attempts to overcome the limitations of polynomial regression 

and recursive partitioning. The procedure is presented in Section 2. 

Univariate smoothing is discussed in Section 3; implementation specifics 

are considered in Section 4. In Section 5, we illustrate the procedure 

by applying it to several data sets. The merits of this procedure, rela- 

tive to other nonparametric procedures, are discussed in Section 6. In 

Section 7, we relate projection pursuit regression to the projection pur- 

suit technique for cluster analysis presented by Friedman and Tukey 

(1974). 
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2. THE ALGORITHM 

The regression surface is approximated by a sum of empirically de- 

termined univariate functions S, of linear combinations of the predictors: 
-m 

cp(_x> = ‘E s, (cl ._x), 
m=l -m -m 

(1) 

where CY -m. ,X denotes the inner product. The approximation is constructed 

in an iterative manner: 

(1) Initialize current residuals and term counter 

ri e y., i=l...n 
1 

Me0 

(We assume that the response is centered: cyi = 0) 

(2) Search for the next term in the model: 

For a given linear combination Z = cy. ,X, construct a smooth repre- 

sentation Sty(Z) of the current residuals as ordered in ascending value 

of Z (see Section 3). Take as a "figure of merit" (criterion of fit) I(z) 

for this linear combination the fraction of so far unexplained variance 

that is explained by Scr: 

I(4 = 1 - 5 (ri 
i=l 

- s, (5 Xi) / 5 r: 
i=l 

(2) 

Find the coefficient vector 5M+1 that maximizes I(cY) ("projection pursuit") 

= max 
%+l g --I I(fg, 

and the corresponding smooth S, 
-M+l 

(3) Termination 

If the figure of merit is smaller than a user specified threshold, 

stop. (The last term is not included in the model.') Else update the cur- 

rent residuals and the term counter 

ri e r. - S 
1 

-M+ 1 
kM+l - Xi), i=l...n 

. 

M e M+l 

and go to step (2). 
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This procedure directly follows the successive refinement concept 

outlined in the previous section: The models at the mth level of the 

hierarchy are sums of m smooth functions of arbitrary linear combinations 

of the predictors. . 

Standard additive models approximate the regression surface by a 

sum of functions of the individual predictors. Such models are not com- 

pletely general in that they cannot deal with interactions of predictors. 

Considering functions of linear combinations of the predictors removes 

this limitation. As an example, consider a simple interaction: Y = X1 X2. 

A standard additive model cannot represent this multiplicative dependence; 

however, Y can be expressed in the form (l), with cyl = I (l,l), 
JT 

(1,-l), S1 (Z) = i Z2, S2 (Z) = -i Z2. The introduction of 

arb.itrary linear combinations of predictors allows the representation of 

general regression surfaces. 

3. UNIVARIATE SMOOTHING 

The purpose of smoothing a set of observations IY~,z~]:=~, sequenced 

+n ascending order of z, is to produce a decomposition yi = S(zi) + ri, 

where S is a smooth function and the ri are called residuals. The degree 

of smoothness of a function S can be formally defined (e.g., 
I 

Si12(z)dz ), 

but for the purpose of this discussion an intuitive notion of smoothness 

will be sufficient. Many procedures for smoothing have been described 

(Tukey, 1977, Cleveland, 1979, Gasser and Rosenblatt, 1979). They are 

based on the notion of local averaging: 

S(zi) = AVE 
i-k I j 5 itk 

(Yj) 

with suitable adjustment for the boundaries. Here "AVE" can denote the 
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mean, median or other ways of "averaging". The parameter k defines the 

bandwidth of the smoother. 

The assumption underlying traditional smoothing procedures is that 

the observed responses yi are generated according to the model 

yi = f(xi) + Ei, Ei iid, E(Ei) = 0, f smooth. The resulting smooth S is 

then taken as an estimate for f. Choosing too small a bandwidth will 

tend to increase the variance component of the mean squared error of the 

estimate, whereas too large a bandwidth may increase the bias. The op- 

timum bandwidth will, of course, depend on f and the variance of E, which 

are generally unknown. Formal methods for estimating the optimal band- 

width using cross-validation have been proposed (Wahba and Wold, 1975). 

Often, however, the degree of smoothing is determined experimentally. 

One attempts to use as large a bandwidth as possible, subject to the m 

smooth not lying systematically above or below the data in any region 

("oversmoothing"). 

Our design of a smoother is guided by the fact that the model under- 

lying traditional smoothing procedures is not appropriate. Our model 

seeks to explain response variability by not just one smoothed sequence, 

but by a sum of smooths of several sequencings of the response (as in; 

duced by the several linear combinations of the predictors). High local 

variability encountered in a particular sequence may be caused by smooth 

dependence of the response on other linear combinations. In order to 

preserve the ability of fitting this structure in further iterations, it 

is important to avoid accounting for it by spurious fits along existing 

directions. As a consequence, we use a variable bandwidth smoother. 

An average smoother bandwidth is specified by the user. The actual band- 

width used for local averaging at a particular value of Z can be larger 
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or smaller than the average bandwidth. Larger bandwidths are used in 

regions of high local variability of the response. 

To reduce bias, especially at the ends of the sequence, we smooth 

by locally linear, rather than locally constant, fitting (Cleveland, 

1979). Furthermore, each observation is omitted from the local average 

that determines its smoothed value. This cross-validation makes the 

average squared residual a more realistic indicator of variability about 

the smooth (for example, it is not possible to make the average squared 

residual arbitrarily small by reducing the bandwidth). To protect against 

isolated outliers, we use running medians of three (Tukey, 1977) as a 

first pass in our smoother. 

Our smoothing algorithm thus makes four passes over the data: 

(1) 

(2) 

(3) 

(4) 

Running medians of three. 

Estimation of the response variability at each point by 

the average squared residual of a locally linear fit with 

constant bandwidth. 

Smoothing of these variance estimates by a fixed-bandwidth 

moving average. 

Smoothing of the sequence (1) by locally linear fits with 

bandwidths determined by the smoothed local variance 

estimates (3). 

4. IMPLEMENTATION 

For a particular linear combination, the smoother yields a residual 

sum of squares from the corresponding smooth. The optimal linear combin- 

ation is sought by numerical optimization. Considerations governing the 

choice of the optimization algorithm are: 
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- the function evaluations are expensive (each one requires several 

passes over the data); 

- the search usually starts far from the solution; 

- the search can be restricted to the unit sphere in Rp. 

For these reasons, we have chosen a Rosenbrock method (Rosenbrock, 1960) 

modified to search on the unit sphere. The search is started at the best 

coordinate direction. On any given search, there is no guarantee that 

the global optimum will be found. If the local optimum is not acceptable, 

the search is restarted at random directions. This guards against pre- 

mature termination. If the local optimum is acceptable but not identical 

to the global optimum, no great harm is done because a new search is per- 

formed in the next iteration on an object function for which the previous 

optima have been deflated. 

Projection pursuit regression can be implemented with or without re- 

adjustment of the smooths along previously determined linear combinations 

when a new linear combination has been found ("backfitting"). In the 

terminology of linear regression, this would correspond to the difference 

between a stepwise and a stagewise procedure. We have implemented the 

stepwise version. 

In some situations, it may be useful to restrict the search for 

solution directions to the set of predictors ("projection selection") 

rather than allowing for linear combinations. Although the resulting 

additive model cannot represent completely general regression surfaces, 

it is still more general than linear regression in allowing for general 

smooth functions rather thanonly linear functions of the predictors. 

Projection selection is computationally less expensive then full pro- 



- 10 - 

jection pursuit and the resulting models are often more easily interpreted. 

One could also run projection selection, followed by projection pursuit, 

thereby separating the additive and interactive parts of the model. 

Another strategy would be to run projection pursuit and get some easily 

interpreted linear combinations (as in example 2 of Section 5, with 

X1-X2, X4' X5) and then run projection selection on these directions to 

see how much is lost. Forming a parametric model based on these directions 

is another possibility. 

5. EXAMPLES 

In this section, we present and discuss the results of applying pro- 

jection pursuit regression (PPR) to three data sets. (A FORTRAN program 

implementing the PPR procedure is available from the authors upon request). 

For all three examples, the iteration was terminated when the figure of 

merit for the next term was less than 0.1. The average bandwidth of the 

one-dimensional smoother was taken to be 30% for the first two examples 

and 10% for the third. All predictors were standardized to have median 

zero 

prob 

pie 

and interquartile range one. (Widely different scales can cause 

ems for the numerical optimizer.) 

The first example is artificially constructed to be especially sim- 

n order to illustrate how PPR models interactions between predictors. 

A sample of 200 observations was generated according to the simplest 

interaction model Y = X1X2 + E with (X1,X2) uniformly distributed in 

(-1,l) X (-1,l) and E - N(0,.04). Figure la shows Y plotted against X2 

with the corresponding smooth. Figure lb shows Y plotted against the 

first linear combination Z1 = CYY._X, El = (.71,.70), found by projection 
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pursuit, with the corresponding smooth S (gl ._X). Figure lc shows the 
%l . 

residuals rl = Y -S, (gl . 8) plotted against the second linear combination 

3 = 52’2 * 89 !+ = (.;:,-.69), together with Sg2(g2. ,X). Figure Id shows 

the residuals r2 = Y - Scu ((Y . ,X) - Scu (%,.I) plotted against the third 
-1 -2 

linear combination with the corresponding smooth. This projection was not 

accepted because the figure of merit was below the threshold. (Note that 

the figure of merit, as defined in (2), measures the improvement in good- 

ness of fit.) It is evident from inspection of Figure Id that this pro- 

jection does not substantially contribute to the model. The pure quad- 

ratic shapes of S, and S , 
Q 

together with the corresponding coefficient 

-1 2 
vectors CY and :2, 

-1 
reveal that PPR has essentially expressed the model 

Y = X1X2 in the additive form Y = $ (Xl + X2)2 - $ (X1 - X2)2. 

In the second example, PPR was applied to air pollution data. The 

data (213 observations) were taken from the contaminant and weather sum- 

mary of the Bay Area Pollution Control District (Technical Services Divi- 

sion, 993 Ellis Street, San Francisco). In this example, we study the 

relation between the amount of suspended particulate matter (Y) and pre- 

dictor variables mean wind speed (Xl), average temperature (X2), insola- 

tion (X3), wind direction at 4:00 A.M. (X4) and 4:00 P.M. (X5) at the 

San Jose measuring station. Three projections were accepted. Figures 

2a - 2c show the three final smooths (after backfitting) plotted against 

their corresponding linear combinations. The points plotted are obtained 

by adding the residuals from the final model to each smooth. The first 

projection (Figure 2a) shows that a good indicator of suspended particu- 

late matter is (standardized) temperature minus wind speed. For small 

values of this indicator, the amount of pollution is seen to be roughly 
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constant; for higher values, there is a strong linear dependence. The 

second smooth (Figure 2b) and the corresponding direction (essentially 

X4) show a much smaller pollutant dependence on 4:00 A.M. wind direction. 

The third projection suggests an additional dependence on 4:00 P.M. wind 

direction but the effect, if any, is clearly small. 

In order to illustrate PPR on highly structured data, common in the 

physical sciences , we apply it to data taken from a particle physics ex- 

periment (Ballam, et.al., 1971). This data set (500 observations) is 

described in Friedman and Tukey (1974). Here we study the combined 

energy of the three n mesons (Y) as a function of the six other variables. 

Figure 3a shows Y plotted against the first linear combination and 

the corresponding smooth found in the first iteration. Figures 3b - 3d 

shoti the final smooths (after backfitting) for the first three of the 9 

accepted projections. As in Figures 2a - 2c, we show the residuals from 

the final model added to the final smooths. Note the substantial change 

in the first smooth due to backfitting, which readjusts for later pro- 

jections. Note also the striking nonlinearity in Figures 3c and 3d and 

the high degree of structuring in the data expressed by the fact that the 

model explains over 99% of the variance. 
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6. DISCUSSION 

Although simple in concept, projection pursuit regression overcomes 

many limitations of other nonparametric regression procedures. The 

sparsity limitation of kernel and nearest-neighbor techniques is not 

encountered since all estimation (smoothing) is performed in a univariate 

setting. PPR does not require specification of a metric in the predictor 

space. Unlike recursive partitioning, PPR does not split the sample, 

thereby allowing, when necessary, more complex models. In addition, 

interactions of predictors are directly considered. 

One can view linear regression, projection selection, and full pro- 

jection pursuit as a group of regression procedures ordered in ascending 

generality. Linear regression models the regression surface as a sum 

of linear functions of the predictors. Projection selection allows for 

nonlinearity by modeling with general smooth functions of the predictors. 

Full projection pursuit allows for interactions by modeling with general 

smooth functions of linear combinations of the predictors. 

PPR is computationally quite feasible. For increasing sample size 

n, dimensionality p, and number of iterations M, the computation required 

to construct the model grows as Mpn logn. 

As Seen in the examples, an important feature of PPR Is that the re- 

sults of each iteration can be represented graphically, facilitating in- 

terpretation. This pictorial output can be used to adjust the main pa- 

rameters of the procedure , average smoother bandwidth and termination 

threshold. 

The average bandwidth should be chosen as large as possible, subject 

to the avoidance of oversmoothing. Whether in any projection the smooth 
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systematically deviates from the data is easily detected by visual in- 

spection. Whether a particular projection affects a significant improve- 

ment in the model can be judged subjectively by viewing its smooth and 

the corresponding residuals. Lack of a systematic tendency of the smooth 

indicates that including this projection into the model would only in- 

crease the variance, while not reducing the bias. One can also employ a 

more formal procedure based on cross validation (see Stone, 1981). 

The PPR procedure can clearly be applied to the residuals from any 

initial model. If the initial model does not fit the data well, PPR will 

so indicate by augmenting it. 

All stepwise procedures have difficulties modeling regression sur- 

faces that cannot be well represented by models of low complexity in 

their hierarchy. As models in PPR are sums of functions, each varying * 

only along a single linear combination of the predictors, PPR has diffi- 

culties modeling regression surfaces that vary equally strongly along 

all possible linear combinations. 

7. PROJECTION PURSUIT PROCEDURES 

The idea of projection pursuit is not a new one. Interpreting high- 

dimensional data through the use of well chosen lower-dimensional pro- 

jections is a standard procedure in multivariate data analysis. The 

choice of a projection is usually guided by an appropriate figure of 

merit. If the goal is to preserve interpoint distances as well as possible, 

then the appropriate figure of merit is the variance of the projected 

data, leading to projection on the largest principal component. If the 

purpose is to separate two Gaussian samples with equal covariance 
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matrices, the figure of merit is the error rate of a one-dimensional 

classification rule in the projection, leading to linear discriminant 

analysis. In both cases, the figure of merit is especially simple and 

the solution can be found by linear algebra. In a similar spirit, 

Friedman and Tukey (1974) suggested detecting clusters by searching for 

clustered projections. Their figure of merit measuring the degree of 

clustering in a projection (P-index) is too complex to be optimized by 

linear algebra. Instead, the optimal projection was sought by numerical 

optimization; this was referred to as projection pursuit. As multi- 

variate structure often will not be completely reflected in one projection, 

it is important to remove structure already discovered (deflate previous 

optima of the figure of merit), allowing the algorithm to find additional 

interesting projections. Friedman and Tukey suggested splitting the data 

into clusters, once a clustered projection had been found, and applying 

the procedure to the data in each of the clusters separately. 

Projection pursuit regression follows a similar prescription. It 

constructs a model of the regression surface, based on projections of the 

data on planes spanned by the response Y and a linear combination g.X of 

the predictors. Here the figure of merit for a projection is the frac- 

tion of variance explained by a smooth of Y versus cu.X. Structure is - - 

removed by forming the residuals from the smooth and substituting them 

for the response. The model at each iteration is the sum of the smooths 

that were previously subtracted and thus incorporates the structure so 

far found. 
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FIGURE CAPTIONS 

FIGURE la: 

FIGURE lb: 

FIGURE lc: 

FIGURE Id: 

Y = x1x2 + E, E - N(0,.04), vs. X2. (Y is plotted on the 

vertical axis, X2 on the horizontal axis. The I'+' symbols 

represent data points, numbers indicate more than one data 

point. The smooth is represented by I'*" symbols.) 

Y vs. first solution linear combination. 

Residuals from first solution smooth vs. second 

solution linear combination. 

Residuals from first two solution smooths vs. third 

solution linear combination. 

FIGURES Za-2c: Air pollution (suspended particulate matter) 

model smooths (with residuals from model added) vs. 

corresponding solution linear combinations. 

FIGURE 3a: Combined energy of three n mesons E3rr (particle physics 

data) vs. first solution linear combination. 

FIGURES 3b-3d: First three (out of nine) model smooths (with 

residuals added) vs. corresponding solution linear 

combinations. 
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Y = x1 x2 + E 

Y vs. cx,.X with smooth S, 
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Y = x, x2 + E 

Y - S, vs. cy2.~ with smooth Siy 
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