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Purpose: To investigate a novel locally adaptive projection space denoising algorithm for low-dose
CT data.
Methods: The denoising algorithm is based on bilateral filtering, which smooths values using a
weighted average in a local neighborhood, with weights determined according to both spatial
proximity and intensity similarity between the center pixel and the neighboring pixels. This filtering
is locally adaptive and can preserve important edge information in the sinogram, thus maintaining
high spatial resolution. A CT noise model that takes into account the bowtie filter and patient-
specific automatic exposure control effects is also incorporated into the denoising process. The
authors evaluated the noise-resolution properties of bilateral filtering incorporating such a CT noise
model in phantom studies and preliminary patient studies with contrast-enhanced abdominal CT
exams.
Results: On a thin wire phantom, the noise-resolution properties were significantly improved with
the denoising algorithm compared to commercial reconstruction kernels. The noise-resolution prop-
erties on low-dose �40 mA s� data after denoising approximated those of conventional reconstruc-
tions at twice the dose level. A separate contrast plate phantom showed improved depiction of
low-contrast plates with the denoising algorithm over conventional reconstructions when noise
levels were matched. Similar improvement in noise-resolution properties was found on CT colonog-
raphy data and on five abdominal low-energy �80 kV� CT exams. In each abdominal case, a
board-certified subspecialized radiologist rated the denoised 80 kV images markedly superior in
image quality compared to the commercially available reconstructions, and denoising improved the
image quality to the point where the 80 kV images alone were considered to be of diagnostic
quality.
Conclusions: The results demonstrate that bilateral filtering incorporating a CT noise model can
achieve a significantly better noise-resolution trade-off than a series of commercial reconstruction
kernels. This improvement in noise-resolution properties can be used for improving image quality
in CT and can be translated into substantial dose reduction. © 2009 American Association of
Physicists in Medicine. �DOI: 10.1118/1.3232004�
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I. INTRODUCTION

Radiation exposure and the associated risk of cancer for pa-
tients receiving CT examinations have been an increasing
concern in recent years.1,2 It is critically important to reduce
the radiation dose level in CT examinations. However, dose
reduction generally leads to an increased level of noise in the
measured projection data and the subsequent reconstructed
images, thus degrading the diagnostic value of the CT exami-

nation.
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Many techniques have been developed for controlling
noise in CT, operating on either the raw projection measure-
ment, the log-transformed sinogram, during image recon-
struction, or on images after reconstruction.3–10 In conven-
tional shift-invariant filtration applied during image
reconstruction, the suppression of the high-frequency com-
ponent in the sinogram is performed with a simple assump-
tion that all the measurements are equally reliable, which
may result in severe degradation of spatial resolution.3–8
More sophisticated methods have been developed to adap-
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tively smooth the data by taking into account the local sta-
tistics in the measurements. Hsieh used an adaptive trimmed
mean filter to smooth the data with the filter strength chang-
ing with the detected signal.4 The method of Kachelriess et
al. was similar except that it was generalized to include both
the 2D detector array and the angular dimension and used a
direct threshold on projection data as opposed to a more
accurate noise model.5 Some of these methods are currently
implemented on clinical scanners mainly to suppress the
streaking artifacts caused by x-ray photon starvation. Many
other approaches have also been proposed to incorporate
more explicit statistical models and to iteratively restore the
log-transformed data by optimizing a penalized weighted
least-squares or likelihood objective function, in some cases
by relating the sinogram value to its variance, thus empiri-
cally characterizing the noise of the sinogram value after
processing �beam-hardening correction, calibration, etc.�.6,7

Other approaches model CT noise in a more complete way,
including compound Poisson, off-focal, cross-talk, and other
effects.8,9 Iterative reconstruction methods can achieve sig-
nificant denoising but at the expense of very long computa-
tion times.10 Techniques based entirely on image space have
also been described, taking advantage of the image structure
to smooth noise while preserving edges but suffering from
the complicated properties of noise in image space in
CT.11–13

In this work, we investigated a locally adaptive method
for noise control in CT. This method is based on bilateral
filtering,14 which smooths the sinogram by using a weighted
average in a local neighborhood, with the weights deter-
mined according to both the spatial proximity and intensity
similarity between the center pixel and the neighboring pix-
els. This filtering is locally adaptive and can preserve impor-
tant edge information in the sinogram, thus maintaining high
spatial resolution. It is closely related to anisotropic
diffusion15 but is much faster. Furthermore, since it origi-
nated from the statistical framework of maximum a poste-
riori �MAP� estimation,16 a CT noise model can be incorpo-
rated, which is critical for effective noise reduction in low-
dose CT. Note that Demirkaya17 proposed anisotropic
diffusion filtering in projection space, but with a crude noise
model and only showing results on a synthetically corrupted
Shepp–Logan phantom.

While some denoising or sinogram restoration methods
have been developed to smooth the projection data by taking
explicit statistical models into account,6–9 the proposed ap-
proach is noniterative and is easier to implement in practice.
Compared to adaptive filters developed to suppress the
streaking artifacts caused by the photon starvation along
some directions,4,5 the proposed approach aims to perform
noise reduction in the full projection dataset while preserving
structural detail.

This paper is organized as follows. In Sec. II, we intro-
duce bilateral filtering and its application to CT data denois-
ing, describe the effects of the bowtie filter and automatic

exposure control and their inclusion in the CT noise model,

Medical Physics, Vol. 36, No. 11, November 2009
and present the evaluation methodology. In Sec. III, the
evaluation results are presented and discussed. Finally, we
present conclusions in Sec. IV.

II. METHODS

II.A. Bilateral filtering

Bilateral filtering was originally proposed by Tomasi and
Manduchi as a noniterative and locally adaptive method for
removing additive noise from images while preserving edge
information.14 In addition to its intuitive appeal, the bilateral
filter also has strong origins in MAP estimation.16

Suppose Q is a stationary Gaussian process with a mean
of Q

Q = Q + x , �1�

where x is a white Gaussian noise added to the original im-
age Q. We use a bold letter and the corresponding normal
letter to denote a stochastic process and its mean, respec-
tively. To restore the original image Q from the noise con-
taminated image Q, we consider minimizing the energy func-
tional

E�Q� = �
i�I

�
j��i

P1�i, j�P2�i, j� , �2�

where P1 calculates a weight according to the spatial dis-
tance between the center pixel and a neighboring pixel and
the second penalty factor P2 calculates a weight according to
the pixel value difference between the center pixel and a
neighboring pixel. Additionally, j is the index of a neighbor-
hood pixel inside a region of �i centered on pixel i, and the
outer sum is taken over all pixels i in image I. Minimizing
this functional encourages local groups of pixels to be of
similar intensity, resulting in an image with overall piecewise
homogeneity. Moreover, in the restricted case where only
immediate neighbors are investigated and the spatial penalty
function P1 is taken as the identity operator, Eq. �1� is the
same functional that is minimized by the classical aniso-
tropic diffusion process for image denoising.15

While there are many possibilities for choosing the pen-
alty functions P1 and P2, the most common assignments are
the Gaussian penalties given by

P1�i, j� = exp�−
�i − j�2

2d2 � , �3�

P2�i, j� = 1 − exp�−
�Qi − Q j�2

2�2 � , �4�

where parameters d and � can be used for controlling the
spatial and intensity range of the weighting. Following
Elad,16 the bilateral filter arises as the first iteration of a
Jacobi process minimizing Eq. �2� and is formally defined by

the weighted averaging of a given image pixel Qi, namely,
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Q̂i =
� j��i

W1�i, j�W2�i, j�Q j

� j��i
W1�i, j�W2�i, j�

, �5�

where W1 and W2 are the differentials of P1 and P2 and, after
certain factors cancel,

W1�i, j� = P1�i, j� = exp�−
�i − j�2

2d2 � ,

W2�i, j� = exp�−
�Qi − Q j�2

2�2 � , �6�

which are again Gaussian. Under the specification in Eqs. �3�
and �4� with Gaussian weighting functions, the bilateral filter
is identical to the Nadaraya–Watson estimator commonly
employed in nonparametric kernel regression. While re-
peated iterations are possible to further minimize the energy
functional �2�, in practice, only a single pass of the bilateral
filter is generally needed to obtain substantial denoising re-
sults. Furthermore, a separable approximation of the bilateral
filter, as proposed by Pham and van Vliet,18 is available and
allows for a dramatic increase in computational performance
with little to no degradation in efficacy. This approximation
consists simply of running a one-dimensional filter in one
direction first, then applying the filter to the results of this
step in the other direction, analogous to the way FFTs are
usually calculated. For all applications in this work, the sepa-
rable approximation is employed.

II.B. CT noise model

Denoising with bilateral filtering can be directly applied
in image space after reconstruction, and indeed the sharper
edges there are well suited to techniques like bilateral filter-
ing, but the noise model in image space is very complex due
to the data preprocessing and image reconstruction. In con-
trast, noise in projection space is relatively easier to model
under certain simplified assumptions. In this study, we will
focus only on the application of bilateral filtering to projec-
tion space denoising.

Noise in CT images originates from data noise in the pro-
jection measurement, which has two principal sources:
Quantum noise and electronic noise. The electronic noise is
the result of electronic fluctuation in the detector photodiode
and other electronic components. The quantum noise is due
to the limited number of photons collected by the detector.
Although a current CT detector is not a photon-counting el-
ement but an energy integrator that generates a signal pro-
portional to the total energy deposited in the detector, a
photon-counting model is still a good approximation and is
widely used for characterizing noise properties of the CT
data.10,19,20 More accurate noise models have been investi-
gated, such as the compound Poisson model that takes into
account the polychromatic x-ray beam and energy
integration.21 As explained therein, the actual residual error
introduced by a photon-counting model is only a few percent
for typical photon flux level in clinical CT protocols. As also

indicated in that work, the impact from the bowtie filter and
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tube current modulation on noise characteristics of CT data
is even more significant. Therefore, for simplicity, we use a
photon-counting model and will consider the effect of the
bowtie filter and tube current modulation in this work.

For a given attenuating path in the imaged subject, denote
the incident and the penetrated photon numbers as
N0�� ,� ,�� and N�� ,� ,��, respectively, where � and v de-
note the index of detector bins along the radial and longitu-
dinal directions, and � the index of projection angle. In the
presence of noise, the measured data should be considered as
a stochastic process. Ideally, the line integral along the at-
tenuating path is given by P=−ln�N /N0�. Herein, we neglect
the detector index ��, �, �� in all the variables unless explic-
itly indicated.

We assume that N0 is a deterministic constant and N is
Poisson distributed with mean N. We also neglect the elec-
tronic noise and assume that the data collected on each de-
tector bin are uncorrelated. The number of input photons
N0�� ,� ,�� must now be estimated as a function of �, �, and
�.

II.C. Incorporation of the effect of x-ray beam bowtie
filter

The incident number of photons varies for each projection
angle due to the use of the automatic exposure control �AEC�
technique22 and is also nonuniform across the radiation field
of the x-ray beam mainly due to the use of the beam-shaping
bowtie filter.23 To accurately quantify the noise properties in
the projection data and preserve the noise pattern in the de-
noised image, these effects must be taken into consideration.
This task can simply be accomplished by expressing the in-
cident number of photons N0 as a function of detector bin
index � and v based on the estimation of the nonuniformity
across the x-ray radiation field and a function of projection
angle � based on the estimation of the tube current modula-
tion.

As shown in Fig. 1 �left�, a bowtie filter is usually used in
the x-ray beam. Because the cross section of most patients is
ovally or circularly shaped, the attenuation in the peripheral

FIG. 1. Effect of x-ray beam bowtie filter. Left: Illustration of the bowtie
filter in the x-ray beam to reduce the incident x-ray intensity in the periph-
eral region of the x-ray fan-beam. Right: An example of noise-equivalent
number of x-ray quanta curves for 140, 120, 100, and 80 kV that can be used
for characterizing the effect of the nonuniform photon intensity caused by
the bowtie filter.
region is much less than that in central region. The purpose
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of the bowtie filter is to reduce the incident x-ray intensity in
the peripheral region so that the radiation dose to the patient,
especially the skin dose, can be minimized. As a conse-
quence, the x-ray intensity incident to the patient is highly
nonuniform across the fan beam, which affects the noise
properties in the measured CT data. We empirically deter-
mine the effect of the bowtie filter by measuring the variance
of the transmission from an air scan. The inverse of the vari-
ance is a number that can be used to estimate the incident
x-ray intensity across the x-ray beam.21 Figure 1 �right� dis-
plays an example of the noise-equivalent incident quanta
number on a single detector row across the x-ray beam ob-
tained for different tube potentials �kV�. By fitting the vari-
ance with a third- or fourth-order Gaussian equation, four
calibration curves of the incident x-ray intensity for the kVs
at 80, 100, 120, and 140 are obtained. Such calibration
curves may be different, depending on the configuration of
the detector collimation.

II.D. Incorporation of AEC

AEC is widely used for dose reduction in abdominal CT.
Figure 2 shows one example of tube current modulation from
a CT scanner. The curve represents the reference signals of
the tube as a function of the table position, which corre-
sponds to a certain tube angle. The reference signal is pro-
portional to the tube current used for that table position and
projection angle. As can be seen, the tube current oscillates
during the gantry rotation in order to adapt to the attenuation
level of the patient along different orientations. This auto-
matic tube current modulation leads to a continuous change
in the incident x-ray intensity, which will also affect the
noise characteristics of the CT data. We incorporate this ef-

FIG. 2. Effect of AEC. Displayed is an example of tube current modulation
from an abdominal CT exam. The curve represents the reference signals �I0�
on the detector as a function of table position. The reference signal is pro-
portional to the tube current used for that table position and projection angle.
The tube current oscillates as the table translates to adapt to the different
attenuation levels of the patient along different projection angles.
fect by extracting the reference signal from each projection
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frame and then estimating the corresponding reference x-ray
intensity. The calibration curves determined from the bowtie
filter are used for this estimation.

II.E. Sinogram smoothing with bilateral filtering

To incorporate the noise model in bilateral filtering, we
first convert the measured sinogram P to a dataset represent-
ing a map of detected number of photons, which is simply
expressed as

N = N0 exp�− P� . �7�

Practically, the x-ray photons emitting from the tube are
polychromatic. The total number of incident photons before
the attenuation N0 can be estimated as the noise-equivalent
photon number, as detailed above. The Anscombe
transform24 is a standard statistical tool to convert Poisson
distributed data to data with an approximately normal distri-
bution with a constant variance,

Q = 2��N + 3/8� . �8�

This transformation is considered valid when the mean
value of the Poisson data is greater than 20. The minimum
flux levels in CT data are at least several hundreds in all the
datasets we have tested thus far. Here we also ignore the
small constant additive factor of 3 /8 �negligible at these
count numbers, but easily included if desired� and the mul-
tiplicative factor of 2, and simply take the square root of the
photon number to generate the dataset which is subsequently
used for denoising, with a constant standard deviation of
1 /2. The square-root-transformed data are given by

Q = �N = �N0 exp�− P� . �9�

Equation �5� can be applied on Q to obtain the denoised

dataset Q̂. The steps are then reversed to convert Q̂ back to
the log-transformed sinogram, which can be used for regular
image reconstruction.

II.F. Evaluation of noise and resolution properties

We performed phantom studies to evaluate the noise-
resolution properties of bilateral filtering with CT noise mod-
eling. These studies were performed on a dual-source CT
scanner �Somatom Definition, Siemens Medical Solutions,
Forchheim, Germany�. A phantom with a small acrylic cyl-
inder and a thin wire that is typically used for quality control
on Siemens scanners was scanned with the following param-
eters: 120 kVp, 0.5 s rotation time, 32�0.6 mm2 detector
collimation, 672 � 32 detector matrix size, helical pitch of
1.0, and mA s values of 40 and 80. The images were recon-
structed using a series of kernels available on the scanner
with a slice thickness of 1 mm and an FOV size of 50 mm.
The raw data were downloaded from the scanner and de-
noised with bilateral filtering. The Gaussian filter with a
given spatial standard deviation d in Eq. �3� was approxi-
mated to a given filter length w, and we found it useful
empirically to lock the ratio of d to w as 1 /6. The denoising

parameters were filter length w=5 �corresponding to d
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=5 /6 and evaluated from �2 to 2� and � � 0.7, 1, 1.4, 1.8,
2.2, and 2.8. We also explored different values of w and
found, as expected, that larger filters gave lower noise but
lower resolution. For space reasons, we only discuss results
with w fixed at 5, again determined empirically. The de-
noised data were uploaded to the scanner and reconstructed
with both the B70f and B40f kernels �the B70f kernel is an
extremely sharp but noisy kernel, while the B40f is slightly
sharper and noisier than is used at some institutions, but it is
employed in our clinical practice for routine body CT�. The
modulation transfer function �MTF� on each image, either
directly reconstructed on the scanner or after bilateral filter
denoising, was calculated using a method similar to that in
Ref. 25. The noise level at a small region of interest �ROI� 15
mm away from the wire was also measured.

A second phantom consisted of a stadium-shaped water
tank �lateral width of 30 cm, height of 22.5 cm�. Eight thin
plates with different contrast levels �120 HU: 2; 70 HU: 3;
40 HU: 3� were placed in the central region of the water tank
to allow visualization of these lower contrast materials. The
scanning parameters were detector collimation 64 � 0.6 with
a z-flying focal spot, 120 quality reference mA s, rotation
time of 0.5 s �the term “quality reference mA s” is used in
the automatic exposure control software in Siemens scanners
to prescribe mA s. Its value equals the effective mA s used
for a standard patient size�. The images were reconstructed
with commercial kernels at B45, B40, B30, B20, and B10
with a slice thickness of 0.6 mm. The raw data were de-
noised with w=5 and � � 1 and reconstructed with various
kernels.

II.G. Evaluation in CT colonography

We performed a preliminary study to evaluate the noise-
resolution properties of bilateral filtering. The tested CT raw
data were obtained from a patient study undergoing a nonca-
thartic CT colonography. The patient was scanned on the
dual-source CT system with the following scanning param-
eters: 120 kVp, 100 quality reference mA s, 0.5 s rotation
time, 32�0.6 mm2 detector collimation, and a helical pitch
of 1.4. The volume CT dose index �CTDIvol� is 7 mGy. The
images were reconstructed on the scanner with a slice thick-
ness of 1 mm and several reconstruction kernels �B10f, B20f,
B30f, and B40f� that represent a trade-off between noise and
resolution. The raw data were downloaded from the CT scan-
ner and processed with bilateral filtering with different pa-
rameter settings. The smoothed data were subsequently re-
loaded on the scanner and reconstructed with a B40f kernel,
and the noise and resolution properties were analyzed.

II.H. Evaluation in CT enterography

We applied bilateral filtering to five abdominal CT exams
performed on the dual-source scanner. Each exam was
scanned in a dual-energy mode with one tube operated at 140
kV and the other at 80 kV, with one-half or less of the power
distributed to the 80 kV tube. The 80 kV data is acquired at
425 quality reference mA s. Two sets of images �low and

high energy� were generated from each dual-energy scan.
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Besides the dual-energy processing that is used to provide
material-specific information,26–28 the dual-energy images
are mixed together in a linear fashion to form a single set of
images, which serves a similar purpose as the images from a
conventional single-energy scan at 120 kV.

The 80 kV images obtained from a dual-energy scan have
enhanced iodine signal compared to 140 kV �the iodine sig-
nal is approximately doubled�. However, they are often sub-
ject to increased noise contamination due to the higher at-
tenuation of the low-energy x rays. Low-energy images alone
are often insufficient for diagnostic purposes despite the im-
proved contrast enhancement. We applied bilateral filtering
�w=5, � � 1�, followed by B40f reconstruction to the 80 kV
images and compared these images to B40f and B20f recon-
struction alone.

III. RESULTS

III.A. Noise-resolution properties

Figure 3 compares the noise-resolution properties of bilat-
eral filtering with the body kernels available on the scanner
on the thin wire phantom. The noise was represented by the
standard deviation �HU� in a small ROI 15 mm away from
the thin wire in the phantom. The spatial resolution was rep-
resented by the spatial frequency at 10% of the maximum

FIG. 3. Noise-resolution properties of bilateral filtering and body kernels.
Noise is expressed as the standard deviation �HU� in a small ROI close to
the thin wire. The spatial resolution was quantified as the spatial frequency
at 10% of the maximum value on the MTF curve. The solid curve linking
the solid triangles ��� was obtained from the image scanned with 40 mA s
and reconstructed with kernels of B10f, B20f, B30f, B40f, and B50f �from
left to right�. The solid diamond symbol ��� was from the same scan and
represents a special body kernel B25f. The dashed curve linking the open
triangles ��� represents the noise-resolution results obtained from images
after applying bilateral filtering to the 40 mA s scan data with ten different
smoothing parameters. From left to right, the first five points were recon-
structed with the B40f kernel, with w fixed at 5, and � � 2.2, 1.8, 1.4, 1.0,
0.7, respectively; the second five points were reconstructed with a sharper
B70f kernel, with w fixed at 5, and � � 2.8, 2.2, 1.8, 1.4, and 1.0, respec-
tively. The solid curve linking the solid circles ��� was obtained from the
image scanned with 80 mA s and reconstructed with kernels of B10f, B20f,
B30f, B40f, and B50f �from left to right�. The dashed curve linking the open
circles ��� represents the noise-resolution results obtained from images after
applying bilateral filtering to the 80 mA s scan data with the same ten
smoothing parameters as above. The noise-resolution results on the 40 mA s
data after bilateral filtering approach or exceed the noise-resolution proper-
ties of the 80 mA s data, and filtering is effective on the 80 mA s data as
well as on the 40 mA s data.
value on the MTF curve. The solid curve linking the solid
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triangles ��� was obtained from the image scanned with 40
mA s and reconstructed with kernels of B10f, B20f, B30f,
B40f, and B50f �from left to right�. As can be seen, these
body kernels represent a trade-off between noise level and
spatial resolution. With a smoother kernel, the noise level on
the image is lower, while the spatial resolution is also lower.
The solid diamond symbol ��� was from the same scan and
represents a special body kernel B25f, which involves a two-
dimensional adaptive filter implemented in the image do-
main. It has a slightly better noise-resolution trade-off than
B30 kernel. The dashed curve linking the open triangles ���
represents the noise-resolution results obtained from images
after applying bilateral filtering to the 40 mA s scan data
with ten different smoothing parameters. From left to right,
the first five points were reconstructed with the B40f kernel,
with w fixed at 5, and � � 2.2, 1.8, 1.4, 1.0, 0.7, respec-
tively; the second five points were reconstructed with a
sharper B70f kernel, with w fixed at 5, � � 2.8, 2.2, 1.8, 1.4,
and 1.0, respectively. The solid curve linking the solid circles
��� was obtained from the image scanned with 80 mA s and
reconstructed with kernels of B10f, B20f, B30f, B40f, and
B50f �from left to right�. The dashed curve linking the open
circles ��� represents the noise-resolution results obtained
from images after applying bilateral filtering to the 80 mA s
scan data with the same ten smoothing parameters as above.

One can see that a much better noise-resolution trade-off
is achieved by bilateral filtering than by the body kernels
alone on the 40 mA s, with noise-resolution properties ap-
proaching or exceeding the conventionally reconstructed 80
mA s data �with twice the radiation dose�. For example, for a
given noise level of 16 HU on the 40 mA s data, bilateral
filtering �w=5, � � 1.4, B70f recon� yields a spatial reso-
lution of 7.7 lp/cm at 10% MTF, much higher than does the
B40f kernel without filtering �6.6 lp/cm�. This is also higher
resolution than the 80 mA s data reconstructed at this noise
level. Conversely, at a given resolution, bilateral filtering of-
fers much lower noise levels—e.g., the B30f kernel alone
yields a noise level of 13 HU at a resolution of 5.9 lp/cm,
while bilateral filtering �w=5, � � 0.7, B40f recon� would
give a noise level of 8 HU at this resolution, very close to
what is achieved with twice the radiation dose. The noise-
resolution results on the 40 mA s data after bilateral filtering
approach or exceed the noise-resolution properties of the un-
filtered 80 mA s data. A similar improvement in the noise-
resolution trade-off is obtained by filtering the 80 mA s data.

To visually demonstrate the improvement of spatial reso-
lution, the point spread functions �PSFs� for the wire images
obtained with bilateral filtering �w=5, � � 1.4, B70f recon�
and the unfiltered B40f reconstruction are shown in Fig. 4.
Both images have a similar noise level of 16 HU, but the
bilateral filtered image has a sharper appearance indicated by
a sharper wire shape as well as a sharper noise texture.

Figure 5 shows the images for the stadium-shaped phan-
tom and blowups of the central region containing the contrast
plates after B45 reconstruction �left column�, bilateral filter-
ing followed by B45 reconstruction �center�, and B20 recon-
struction �right�. The standard deviations inside the ROI are

49.1, 31.9, and 32.9 HU, respectively. Despite the approxi-
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mately matched noise levels, the lower contrast plates are, in
our opinion, better visualized in the denoised image than in
the B20f image.

III.B. Evaluation of noise-resolution properties in CT
colonography

Figure 6�a� shows a slice of the noncathartic CT colonog-
raphy data containing barium-tagged stool reconstructed
with a standard B40f reconstruction kernel �a�, with the same
kernel after bilateral filtering �b� with w=5, � � 1.1, �c� and
with the unfiltered B10f kernel. Images �b� and �c� have
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FIG. 4. PSF of the wire images obtained with bilateral filtering �w=5,
� � 1.4� with the B70f kernel �left� and the B40f kernel without filtering
�right� displayed in an large FOV of 50 mm �top row� and a small FOV of
5 mm �bottom row�. The images have the same noise level at 16 HU, while
the image with bilateral filtering has a much sharper appearance indicated by
a sharper wire shape as well as a sharper noise texture.

FIG. 5. The images for the stadium-shaped phantom after B45 reconstruc-
tion �top left�, bilateral filtering followed by B45 reconstruction �top center�,
and B20 reconstruction �top right�. The bottom row shows zoomed versions
of the central region of the images. The standard deviations inside the ROI
are 49.1, 31.9, and 32.9 HU, respectively. The lower contrast plates are, in
our opinion, better visualized with the denoised image than with the B20f

image.
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similar noise levels in an ROI in the lumen �14.5 and 14.7,
respectively�. Profiles along the stool-air boundary �d� show
that the denoised B40f image has a sharper stool-air transi-
tion than the B10f, while difference images �e� and �f� show
that the denoised B40f is sharper and has smaller differences
from the original.

To quantitatively evaluate the resolution property of each
reconstruction, we used the profile across the boundary be-
tween the labeled stool and air shown in Fig. 6�a�. The gra-
dient of the profile was calculated and the maximum nega-
tive gradient value was used for comparing the spatial
resolution since it represents the sharpness of the boundary.
The noise in a nearby air region �inside the lumen� was also
measured for each reconstruction. Figure 7 displays the plot
of noise level versus spatial resolution �represented by the
maximum negative gradient value� for various reconstruction
kernels and for bilateral filtering with w=5 and different �
settings, followed by a B40f reconstruction. It can be seen
that bilateral filtering can reduce noise with much less effect
on spatial resolution than the commercial kernels. When fol-
lowed with a B40f reconstruction, for example, bilateral fil-
tering with � of 0.5 can achieve a lower noise level than an
unfiltered B30f reconstruction, but with better resolution,
while filtering with � of 0.7 reduces noise to the level of the
unfiltered B20f reconstruction with resolution still slightly
better than an unfiltered B30f reconstruction. Bilateral filter-

FIG. 6. Images of the colon containing labeled stool �a� with standard B40f
reconstruction after projection space bilateral filtering with w=5, � � 1.1, a
indicated in �a�, showing the values �units of HU 	 1024� for the B40f ���,
B40f with denoising reconstructions. �f� Difference image between B40f an
settings.
ing with � of 1.1 gives slightly lower noise than the unfil-
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tered B10f reconstruction but with significantly better reso-
lution �these are the images shown in Fig. 6�.

III.C. Evaluation of noise-resolution properties in CT
enterography

Figure 8 displays contrast-enhanced images obtained from
an 80 kV CT enterography exam. The top left image was
reconstructed with kernel B40f. The top right image was
reconstructed with the same kernel after bilateral filtering
�w=5, � � 1�. The bottom left image represents the B20f
reconstruction. The noise levels in the ROI denoted by the
circle are 39.1, 25.6, and 25.9, respectively. The profile at the
bottom right shows that the denoised B40f is slightly sharper
than the B20f despite the similar and slightly lower noise
level. The visualization of the mural stratification and deli-
nation of the inner and outer boundaries of the neoterminal
ileum �arrow� has been improved by bilateral filtering, and
the denoised B40f was preferred by a radiologist for diagno-
sis. Similar results were obtained in CT datasets visualizing
the bowel �n=2�, pancreas �n=2�, and liver �n=1�. In each
case, a board-certified subspecialized radiologist rated the
denoised 80 kV images markedly superior in image quality
compared to the 80 kV images reconstructed with a commer-
cially available kernel. In 5 /5 cases, denoising improved im-

nstruction kernel and a line profile across stool-air interface, �b� with B40f
� reconstructed with the unfiltered B10f kernel. �d� A profile along the line
with denoising ���, and B10f ���. �e� Difference image between B40f and
f reconstructions. The difference images are at the same window and level
reco
nd �c
B40f

d B10
age quality to the point where the 80 kV images alone were
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considered to be of diagnostic quality �currently the mixed
images, with twice the radiation dose, are used for this pur-
pose�.

IV. CONCLUSIONS

We investigated a noniterative approach to reducing noise
in CT using locally adaptive bilateral sinogram filtering with
a CT noise model that included the effects of the bowtie filter
and automatic exposure control. This filtering can be imple-
mented very simply and more efficiently than many existing
sinogram denoising methods. We evaluated the resolution-
noise properties of bilateral filtering with CT noise modeling
with phantom studies and preliminary patient studies. The
results demonstrate that it can achieve a better noise-
resolution trade-off than the commonly used commercial re-
construction kernels. Such noise reduction should be trans-
latable to improvements in image quality and/or substantial
dose reduction in CT.

We expect this method to have difficulty with small, low-
contrast objects and with subtle texture with intensity near
the noise level, but this is true for most other denoising al-
gorithms. The method might also be expected to cause a
slight loss of resolution in the slice direction, although it
could be argued that the edge-preserving nature of the filter-
ing might yield a better noise-resolution trade-off in z than
the filters currently used to achieve a given z resolution. This
is currently under investigation. Thorough evaluations
against other existing sinogram denoising methods are re-
quired, but the simplicity and effectiveness of this method
make it an attractive technique for further investigation.
Evaluations are also required on specific diagnostic tasks to

FIG. 7. Standard deviation of noise in air ROI vs largest negative gradient in
profile in Fig. 6�a� calculated for different reconstruction kernels and for
different levels of bilateral filtering followed by standard B40f reconstruc-
tion. The solid curve linking the solid triangles ��� was calculated from
images reconstructed with kernels of B40f, B30f, B20f, and B10f �from left
to right; note that sharper edges are to the left�. The dashed curve linking the
circles ��� was calculated from images reconstructed with the B40f kernel
after denoising with w=5 and � � 0.3, 0.5, 0.7, 0.9, 1.1, and 1.5,
respectively.
establish the possible benefits of this denoising approach and
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to ensure that changes in the textural appearance of the im-
ages �which will occur with any denoising algorithm� do not
impede diagnostic performance.
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