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ABSTRACT.   For a locally compact group G with property  (Pj), if there is

a continuous projection of  L  (G)  onto a closed left ideal  /, then there is a
bounded right approximate identity in  /.   If / is further 2-sided, then / has a 2-
sided approximate identity.  The converse is proved for w -closed left ideals.

Let  G be further abelian and let / be a closed ideal in  Ll(G).   The condi-
tion that  / has a bounded approximate identity is characterized in a number of
ways which include (1) the factorability of /, (2) that the hull of / is in the dis-
cfete coset ring of the dual group, and (3) that / is the kernel of a closed ele-
ment in the discrete coset ring of the dual group.

Introduction.   Let G be a locally compact group, / a closed left ideal in

L  (G) and P a continuous projection of L (G) onto /.  It is proved by W. Rudin

[11, Theorem 1] that, if G is compact, there exists a continuous projection Q of

L  (G) onto / such that

(*) f*Qg = Qíf*g)       íf,g£LlÍG)).

Further [11, Proof of Theorem 2], if in addition  G is abelian, then there exists an

idempotent measure  p on  G  such that

Qf=f*p      if£L\G))
so that Q is actually an algebra homomorphism.  It follows that /, considered as

a Banach algebra, has a bounded approximate identity.

The purpose of Part I of this paper is to find out what happens if  G is not

compact or abelian.  It turns out that if G has the property (P  )   (which it does if

it is compact) then the projection   P  leads to a net of projections  Q for which the

formula (*) "almost" holds, and that  /  still has a bounded (right) approximate

identity (Theorem 2).
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The converse problem (If /  is a closed left ideal in  L  (G) that has a bounded

right approximate identity, does there necessarily exist a continuous projection of

L (G)  onto /?) seems still to be open.  Under an additional condition on / the

question can be answered in the affirmative (Theorem 4).

Next we turn to the case where  G   is abe lian.  Let Y  be its dual group.  Let

X   be a closed subset of Y, and /   a closed translation invariant linear subspace

of L°°(G)  so that X = Y n /. J. E. Gilbert [4], basing himself upon H. P.
Rosenthal's paper [9], proves that there exists a continuous projection of L°°iG)

onto /  if and only if X  is an element of the coset ring of the discrete group Y,

that has the same underlying group as Y. Furthermore, he proves that then X

must be what W. Rudin [12] calls a "C-set". Thus he brings about a connection

between projections and approximate identities. (See also [ll], [3]>[ 10].)  His most

important tool is a theorem that describes all closed subsets of Y that lie in the

coset ring of F .. (See also [13].)

In Part  II we continue Gilbert's investigations, and characterize the closed

ideals in L (G)  that have bounded approximate identities. At the same time we

prove that these ideals are just the ideals that are factorable.   (A commutative

Banach algebra  A   is called factorable it there is a  c > 0  such that for every

a £ A  and e > Ö there exist  x, y £ A  fot which a = xy,   ||x|| < c and  \\a - y\\ < e.)

This partly solves a problem raised by Hewitt and Ross [6, §39.40].

Preliminaries.   For most notations we follow the conventions used by [6] and

[12]. We use, however, the multiplicative notation even in the abelian case.

Let G be a locally compact group.  By CAG) we-denote the Banach space of

all continuous functions G —> C  that vanish at infinity    The dual space, CQ(G) ,

of CAG)  is identified with the Banach space MÍG)   of all bounded Radon mea-
sures on G. MÍG)   is a Banach algebra under convolution.   The izz*-topology on

MÍG) is the weak topology determined by CAG).
We select a left Haar measure on G.  The Haar integral of a function /:

G —» C  is written ffix)dx.   The Banach space L (G)  of equivalence classes of

integrable functions is identified in the usual way with a subspace of MÍG).  Thus,

L (G)  is a two-sided ideal in Al(G).
Deviating from the notation of [6], tot f £ L (G)  and x £ G we define

fxiy) = fixy),       fxiy) = fiyx) A (x)       (y £ G),
fíy) =/(y"1)A(y-1)     iy e G),

where A  is the modular function of G.  Then fx, fx, /' £ l\g) and fl/J = ||/x|| =

||/'|| = 11/11. One easily establishes the relations

if*g)x = fx*g.       if*g)X = f*fX,      f*gx = fX*g,       (/*g)'=g'*/'-
Further,
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(/ *g, b) = ig, f *h)       if, g £ L \G); h £ L°°ÍG)).

For every f £ L (G) the formulas

x (-> /      and    x (-» fx

define bounded continuous maps G —► L  (G).  Using the terminology of vector-

valued integiation [l] one obtains

f*g=ffíx)gx-idx      if,g£LlÍG)).
Similarly, for j £ L°°iG) and x £ G put / (y) = ;(xy) (y e G). For / £ CQÍG),
x (-» /    is a continuous map G —> CAG), and

f*j = ffix)jx_ldx       if £LxiG);j £C0iG)).

G  is said to have the property (P,)  if for all compact sets C C G and e > 0

thete exists an h £ L1ÍG),  h > 0, ||è|| = 1, such that  \\h   - h\\ < e tot all x £ C
(see [7, Chapter 8l).  Equivalently, for all compact C C G  and e > 0 there exists

an   AL '(G),  h > 0,  \\h\\ = 1, such that \\hx - h\\ < e for all x £ C.   If G has the
property (P.), then there exists a left invariant mean on L^ÍG) (i.e., an M £

L°°ÍG)* such that  ||M|| = 1, Ml = 1  and Mj% = Mj for all / £ L°°iG) and x e G).
For the proof of this statement, see [7, Chapter 8, §6] and [5], where it is also

proved that the existence of a left invariant mean implies the property (Pj).  All

compact groups and all abelian locally compact groups have the property (Pj).

Part [. Projections onto ideals of group algebras. Our first lemma is a direct

descendant of [11, Theorem 1J. By L(L (G)) we denote the space of all continu-

ous linear maps   L  (G) —> L  (G).

Lemma 1.    Let G  be a locally compact group.   For every T £ ZÍL (G)) and

h £ L (G) the formula

(i) Thf=fhíx)iTifx))x_ldx      if£LlÍG))

defines a Th £ líLlÍC)) for which  || T J < \\h\\ \\T\\  and

(ii)      ||/ * Thg - Thif*g)\\ <f\fix)\ \\hx - h\\ dx . \\T\\ \\g\\       if, g £L1ÍG)).

If G  has the property (Pj), then for all fQ, f ,.. ., f    £ L1iG)  and e> 0 there
exists an h £ L (G),  h > 0, \\h\\ = I, such that for each  i,

(iii) H/i»TAg-Tt(/.*g)|<e||r|||g||       ig £ LliC); T ££íLlÍG)).

Proof.   // / £ L (G)  then x h+ (E/x)   _ i   is a continuous map G —> LlÍG)

[6, Theorem 20.4] and ||(E/X)X_ i|| < ||E|| ||/||   for all x.  It follows [l, §1, Proposi-
tion 8l that the integral in (i) defines Th £§.ÍLlÍG))  and that ||7"J < ||i|| ||T||.
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Take g £ L1(G).   For every a e G,

-[/*>)(Tg*)«-iÄ].-i-(T»A-i-
Then for all / £ L!(G),

/*T¿g-T¿(/*g)=J/(x)(Tfcg)x_Ici?x-T¿(j/(x)g;c_1a'x)

= J/U)(^g)x_1^-//W^(gx_1)^

-J/W (T4g - Thxg)x_ l dx =ffix) ÍTh_h(g))x_ , *.
(ii) follows, since  K^.^íg)^. J = l|T¿_¿x(g)|| < ||¿ - *J ||T|| |g|.

Now assume that G has the property (P.).  Let fQ, • • •, /   £ L ÍG)  and e > 0.

We may assume   ||/:|| < 1   for each  i.  Take a compact set C C G  such that

Jg\cIAI ^ ^e for each '• and an h € l1(G),  A > 0, ||i|| = 1  such that ||/>-/>J < %(
tot all x £ C.   For every /.,

/c|/f(x)| \\h -bjdx < JG|/f(x)| dx . %e < lAe

and

fC\c\fW Wh - hxWdx< Sc\c\fMdx • 2PH <!¿<>
(iii) follows.

Let A  be a closed subalgebra of L (G).  A net (u)  in A  is a /e/z approxi-

mate identity in A  if lim «.*/=/ for all / £ A.   It is called bounded if
sup||zz.|| < oo.  A moment's reflection shows that A   has a bounded left approximate

identity if and only if there is a c > 0 such that for any /}, • • •, /   £ A  and e > 0

there is a  zz £ A  such that ||zz|| < c  and  ||zz * /. - /.|| < e   (i = 1, 2, • • ■, n). Right

and two-sided approximate identities are defined analogously.  A linear map T:

L (G)—>A  that leaves every element of A  fixed is a projection of L (G)  onto A.

Theorem 2.   Let G be a locally compact group that has the property (P.).

Let I be a closed left [ right; two-sided] ideal in L (G), such that there exists a

continuous projection P of L (G)  otzZo /.   Then I has a right [left; two-sided]

approximate identity of bound < \\P\\.

Proof.   Assume that / is a closed left ideal. For every / £ L (G)  we have

ÍPf ) £ I ix e G); thus, every P,   maps  LX(G)  into /. Further, if / £ I, then
x x— l ft

for every x we have /    £ I, so (Pf )      , = /       , = /.  Hence, if  [h = 1, then P,
X x  x- i xx- 1 ft

is a projection of L (G)  onto /.

Now take /,,•••,/   £ I,  e > 0. By Lemma  l(iii), and the above there exists

a projection Q  of L (G)  onto / such that ||Q|| < ||P||  while for each i,
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\lf{*Qg - Q(f{*g)ll << \\P\rl\\Q\\llgl<tM        (g e L\G)).
Choose g £ LliG)  so that  ||g|| = 1   while  \\f. *g - f.\\ < e ||Q|| ^ 1  fot each  i.  Then

Qg el.   \\Qg\\ <\\P\\, and

\\fi*Qg - fi\\'< \\fi*Qg - Q(fi *g)\\ + \\QUi*g) - QfiW < 2e     ii = 1, • •• , «)•
In a similar way one can attack the right ideal. For two-sided ideals we prove,

somewhat more generally

Theorem 3.    Let  G be a locally compact group with the property (P.).  Let  I

be a closed two-sided ideal in L ÍG) that has a left approximate identity of bound

c.   Then  I has a two-sided approximate identity of bound c.

Proof.   Take /,,••-,/   e /,  e > 0. We construct a w £ I,   \\w\\ < c, such that

for each i,   \\f. * w - f ]\ < 3ce + 2e and ||mz * /. - /.|| < 2ce + 2e.

Take /0 e LlÍG),  \\f01| < 1  so that  ¡/. •/„'- /.|| < e and  ||/Q * /. - /.|| < e
(z = I, • • •, n). Let h be as in Lemma l(iii).   Take a compact C C G  such that

L v Ah\ < t. There exist x    • • •, x     £ C such that for each i and every x £ C

there is an x. with ||(/¿)* • - (/,-)x|| < z^(l + c)~  e- By our assumption on / we can

find a a £ I,   \\u\\ < c, such that

ll"*(/¿)x;-(/¿)x7ll <Me    for all z, ;.
Then

ll"*(/z-)x-(/z)xll<e       (xeC;z-=l,...,77).

Now put Tf = u * f if £ L (G)). From Lemma 1 we obtain

(i) |/i*V-Tfc(/i**)H'<«||g|       (g eL1(G);z=0,...,77).

Further, for every / £ L (G),

Pfe/ - / = /* W U« * fx)x_ : - ß dx = fh (x) [a * fx - fjx_ j dx

= fcHx) [u*fx- fx]x_ j dx + JgXc¿ (x) [a * /x - /Jx_ j a-x

so that

(ii) \\Thfi~fi\\<(ic  +  2) (7=  0, -..,   72).

Finally, observe that x (-> ux_ x  is a bounded continuous map of G  into /, so

that fhix)ux_xdx is an element of /.   For all / e lKg),

Thf = fhíx)íu*fx)x_xdX=jhíx)íux_x *fx)dx

= fhíx)íuxx_x *f)dx=ijhix)uxx_xdx\*f.

Consequently, T,   maps  L (G)  into /, and

(iü) ÍThf)*g = Thif*g)       if,g£L\G)).
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Now put w = Thf0.  Then w £ I,   \\w\\ < ||T|| ||¿>|| ||/0|| < ||zz|| < c; and by apply-
ing (i), (ii) and (iii) above, we see that for i = 1, • • •, zz,

||/. *«z - f.\\ < ||/. * Thf0 - Thif. * /0)|| + \\TA\f. *f0 - /.)|| + \\Thfi - f.\
<ec||/0|| +||T||i + £(c+ 2)<f(3c+ 2)

and

Ik */,- - fiW = lirA(/0 */,.) - /£|| < ||ta(/0 * /,. - Q\ + || vf - /.||
<||r||e + f(c + 2)<e(2c + 2).

Remarks.    A closed left ideal /  in  L (G)  for which there exists a continuous

projection of  L  (G)   onto /  may fail to possess a left approximate identity—even an

unbounded one.  A sufficiently weird example seems to be the following.  Let G  be

the group generated by two elements, a and b, with the relations a   = ¿>   = 1,

a = bab (G  is isomorphic to 5,).  Consider the functions

/=^X{ij + ^XM-l/6,

g = lAx\b2\ + lAx\ab\ - lAx\b\ - l¿x\ba\,

where  \  denotes characteristic function. The two-dimensional subspace  /  of

L  (G)  generated by / and g  is a left ideal; obviously there is a continuous pro-

jection of L (G)  onto /.  For / and g  we have the relations

/*/ = /.  /*g= 0, g */ = /,  g *g = 0.
t

It follow that / is a right unit, but / does not have a left approximate identity.

If G does not have the property (Pj), then ll(G) = {/ £ L\G): // = 0|  is a
two-sided ideal such that there is a continuous projection of L  (G)   onto / (G),

while  I (G)  does not have a (bounded or unbounded) right approximate identity.

(See [8, Proof of Theorem II].  Note that Reiter's definition of a bounded right

approximate identity is different from ours.)

Now we view L (G) as a subspace of MÍG). The weak topology of L (G),

induced by CAG), will be called the zzz*-topology. It is now not hard to prove a

converse to Theorem 2 for 7¿>*-closed ideals.

Theorem 4.   Let  G be a locally compact group with the property (P.). Let I

be a w*-closed left ideal in EKG) and IL = \h e L°°(G): (f, h) = 0 for all f e l\.
The following conditions are equivalent:

(a)   I has a bounded right approximate identity.

(ß)   There exists an idempotent p e M(G) such that I = L  (G) * p.

(y)   There exists a continuous projection  P of L  (G)  onto  I.

(8)   There exists a continuous projection Q  of L   (G)  onto  I   .

Proof.   We prove the implications (a) =» (8) =» (/3)=>(y); the implication

(y) => (a)  is contained in Theorem 2.
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(a) => (S).   Let Q  denote the natural map L (G) —» L°° (G) .  Let (a.) be a

bounded right approximate identity in /.  By the Alaoglu theorem the net (Qa) has

a izz*-convergent cofinal subnet; we may assume that it is itself w*-q on verge nt in

L/^ÍG) . Then for every h £ L°°ÍG),   lim (a., h) exists. The formula

(/, Qh) = (/, h) - lim (a., f *h)       if £LliG); h £ L°°ÍG))

defines a continuous linear map Q: L°°ÍG) —► L°°ÍG). It j £ I, then for all h,

if, Qh) = if, h) - lim (/ * u., h) = 0; so Q maps L°°iG)  into /  . Convetsely, for any
h £ll and / £ EKG),   if, Qh - h) = lim(a., /'*<&)= lim (/* a., tí) = 0; so  Qh = h.
Hence   Q is a projection of  L00 ÍG)  onto  /  .

(§) => (/3).   As G has the property (Pj)  there exists a translation invariant

mean M  on the space of all bounded continuous functions on G.  Instead of Mh we

shall write M  h ix). Define a continuous linear R: CQiG)—> L°°iG)  by

(/, Rj) = Mxifx, QiJx))       if £ L KG); ; £ C0iG)).

For all a e G,   (/, (R/)a) = ifa_ ,, Rj) = Mx(/fl_ ljc, ßy) = **</,, Q/J = (/, P (/)).
Hence, ÍRj)a = P (; )   for all /' £ CQ(G)  and nA.  It follows that, for all g e L HO
and  / 6 CQ(G),

g*R/'=JgW(«/)3e_1A=|g(x)R(;je_1)¿x= p/jgW/^ja'xj = R(g *;).

Define ft £ MÍG)  by

(it, /) = /(l)-R/(l)       (7eC0(G)).

If / £ L \G)  and / € CQ(G), then (/ * p, j) = (¿C, /'*/) = (/' * /) (1) - (/' * R;) (1) =
(/, ; - P/).  Therefore, (/ */x, /) = 0 for all / £ LliG)  and / £ CQÍG) n Z1.  By the
nA-closedness of  / we may conclude that f * p £ I.   On the other hand, if g £ I,

then igx, Qjx) = 0 for all ; £ CQiG)  and x e G; so (g, P/) = 0 and (g * p, j) =
(g, /)   for all /'.  Therefore, g = g *p for g e /.  Hence, I = L  (G) * p. We also see

that for all / £ L  (G)  (take  g = f * p), f * p = f * p* p. Consequently, p is idempotent.

(/3)=*(y).  Put Pf=f*H if £L\g)).
Remarks.    Observe that the zA-closedness was not used in proving the implica-

tion (a)=>(S).  In fact, by [4] and Part II below, (a)  and (S)   are equivalent for all

closed ideals in  L  (G), in case  G  is abelian.

If one applies the proof of (5) ==» iß)  to an /  that is nor. izz*-closed, one finds

an idempotent measure p such that L (G) * p  lies in the tzA-closure of /, while /

is contained in the uz*-closed set ig £ L (G): g = g * p\. Thus, L (G) *p = w* - Cl(/),

the tA-closure of /. Consequently, if / is any closed left ideal in L (G)  such that

Í8)  holds, then tzz*-Cl(/)  has a right approximate identity.

From the proof of the implication (/3)=»(y)  it follows that actually P  can be

chosen so that

P(f*g) = f*Pg      if,geLliG)).
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One can derive (8) from (y)  by defining Q by

(/, Qh)=if-Pf, h)       if eLliG);h £L°°(G)).
Thus, we can choose 0  so that

Q(f*h) = f*Qb       if eLlÍG);h £L°°(G)).

Part II.   Bounded approximate identities in ideals of commutative group

algebras.   In this part, G  is a locally compact abelian group, Y its dual group.

Since G has the property (P.)  it follows from Theorem 2 that if / is a closed

ideal in L  (G)  and if there exists a continuous projection of L  (G)   onto  /, then

/  has a bounded approximate identity.  It is as yet unknown whether the converse

holds. The first few theorems of this part serve, partly as a preparation for our

Main Theorem, partly as an illustration for the close parallel between continuous

projections and bounded approximate identities.

Theorem 5.    Let X,  Y C Y be closed.
(i)   // kX and kY have bounded approximate identities, then so does ze(XU Y).

(ii)   // there exist continuous projections  P„ of L (G)  onto kX and P„   of

L  (G)  onto kY, then there exists a continuous projection P  of L (G)  onto

k(X U Y) provided that there exist continuous linear maps S : kX—* k(X U Y) and

T: kY —> k(X U  V) such that S + T = I on k(XU Y).   This condition is satisfied
if there is a p £ MÍG)  such that p = 1  ozz x\y,   ß = 0 on  y\x.

Proof,   (i)   Let (zz.),  (v.) be bounded approximate identities in kX and kY

respectively. If /.,..., /   £ k(X u Y) and e > 0, there is a zz.  such that

||/,  *zz. - /,|| < xAe for each k, and there is a  v. suchthat \\(f.*u) *v.-if, *zz.)|| <

Vie for each k.   Then u{ * v. £ zé(Xu Y) while  ||/fe *(zz¿ * v.) - /J| < e tot each k.
(ii)   Put  P = SPX f TPY; then  P: Ll(G) — k(X U Y)  and P = /  on  Ze(XuY).

If p £ MÍG), p = 1  on X\y and p = 0 on  Y\X, then we can define S, T by

Sf=p*f if£kX),
Tf=f-p*f       if£kY).

Corollary 6.   // there exists a continuous projection of L ÍG)  onto kX, and if

Y C Y is finite, there exists a continuous projection of L (G)  onto kiX U Y).

ÍTrivially, there is a continuous projection of L (G) onto kY, as  kY has finite

codimension.)

Corollary 7.    LeZ  X,  y  be disjoint, closed subsets of Y and assume that there

exists a p £ MÍG)  such that fi = I on X,  fi = 0 on  Y.  ÍBy [12, §2.6.2] this is
true if either X or  Y is compact.)

(i)   There is a bounded approximate identity in k(X U  Y)   if and only if there

exist bounded approximate identities in kX  and in kY.
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(ii)  There exists a continuous projection of L (G)  onto k(X O  Y)  if and only

if there exist continuous projections of L  (G) onto kX and kY.

Proof.    In both cases the sufficiency has been proved above.

(i)   Let (zz.) be a bounded approximate identity in k(X u Y)  and (v )   a

bounded approximate identity in  L  (G).  Then (u.*p + v.-p*v)  and

(zz.-zz.*p + p*zz.)   are bounded approximate identities in  kX  and kY, respec-

tively. (Note that p */ £ k(X U Y)  if / £ kX, and / - p * / £ k(X U Y)  if / £ ¿Y.)
(ii)   Let P  be a continuous projection onto ze(X (J Y). Define 0: L (G) —>

L\G) by

ö/=P(p*/)+/-p*/       (/eLHG)).
Then Q: L (G) —> ¿X and Q = / on &X, so 0  is a projection onto zeX.   Similarly,

/ r-> P (/ - p * /) + p * / is a projection onto &Y.

At this stage the obvious question is whether Theorem 5 (ii) remains true if

one drops the condition that the maps  S  and  T exist.  From Theorem 10 (i) it will

become apparent that the existence of a bounded approximate identity in a closed

ideal I  of L  (G)  would imply the existence of a continuous projection from L  (G)

onto  /  if (and only if) the above question should be answered affirmatively.

The problem was raised first by H. P. Rosenthal who mentioned the following

particular case.  If G = R, and a,  is an irrational real number, then there exist con-

tinuous projections of L (G) onto KL  and onto k(aX). (See [9l or Lemma 11 of

this paper.) Does there exist a continuous projection onto k(X U aZ)? The authors

have not been able to answer this question.

Theorem 8.   LeZ  A   be a closed subalgebra of L (G).   If A O zé(jlî)  has a
bounded approximate identity, so does A.

Proof. We may assume A </. k(\ l\). Take h £ A; f h = I. If(zz.) is a bounded
approximate identity for A O ¿(j If), then u. - h * u. + h is a bounded approximate

identity for A   (observe that /-/* h £ A  C\ k(\l\)  for all /£ A).

Theorem 9.    Let A  be a closed subalgebra of L (G).   If there is a continuous

projection of L (G)  onto A n z«(jl(), then there is a continuous projection of

Ll(G)  onto A.

Proof.    Let P: L (G) —» A n &({li) be a continuous projection. We may

assume A fck(\l\). Choose h £ A  so that Ph = 0 and fb = 1. Then / H» Pf +
(]f)h is a continuous projection from L (G)  onto A.

For the sake of easy citation, we recapitulate a number of results concerning

the structure of closed sets in the coset ring of G ,, i.e., G with the discrete

topology.  From [6] we borrow the terms Calderón set and spectral set in preference

to Rudin 's C-set and S-set and to the terms Wiener-Ditkin set and Ditkin set, used
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by Reitet in [7l.  Our Calderón sets are called Ditkin sets by Gilbert [4].  These

results are essentially due to I. E. Gilbert (see [3] and also [13]).

Theorem 10.   Let G be an abelian topological group.

(i)   // a ./A, • • •, a H    are cosets of G, then there exists an open subgroup

H of G such that  int (J (a.//.)  is a union of finitely many cosets of H.

(ii)   Let A  be an element of the coset ring of G ,.   Then A  can be written as
n

A= (J x.(//.\E./C),
z'=l

where, for each  i, x.  is an element of G, H.  is a closed subgroup of G, K.  is a

relatively open subgroup of H. and F.  is a finite subset of H..   In particular, A

lies in the coset ring of G ,.

(iii)   Let G, A, x., H., F . and K. be as above and let  I = \i: H. is open]. Then

int A = U x.(//.\e.K.).
iel

In particular, int A   belongs to the coset ring of G.

(iv)   // every infinite closed subgroup of G  is open, then a subset  X  of G  is

a closed element of the coset ring of G , if and only if it is the union of a finite

set and an element of the coset ring of G.

(v)   // G   is locally compact with dual group V, then every closed element of

the coset ring of V, is a Calderón set, hence a spectral set.

Now we turn to our main problem: describe the closed ideals in L  (G)  that

have bounded approximate identities.  Our main tools are Theorem 2 and Theorem

10. The connection between them is the following lemma.

Lemma 11.    Let G be a locally compact abelian group, V its dual group. Let

A  be a closed subgroup of T and X  an element of the coset ring of A.   Then there

exists a continuous projection of L (G) 072/0 kX.

Proof.   Let A± = <x e G: (x, y) = 1  for every y £ Ai.  Let Gj = G/A_l, let Fx
be the dual group of  G. , and 77  the natural map G —> G j,   77  determines 77*: V, —»T

by the formula 77*(yj) = yx ° 77 (yj £ V.); this 77* is a topological isomorphism of

ÍA   onto A.  By [7, §3.4.4] there is a natural homomorphism T  of L (G)  onto

L (G j)  given by

Tfinix))=ffixy)dmiy)
where 772 denotes a Haar measure on \±.

T and 77* are related by

(77*yj,/) = (yj, Tf)       (y, £Tx;f £L\G)).
There exists a linear isometry S : L ÍG A —> L (G)  such that   TS is the

identity map ¡x  of L (G,). (See [7, Chapter 8, §2.7].)
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The set X. = rz*~   X   is an element of the coset ring of T..  By Cohen's

Idempotent Measure Theorem [12, Chapter 3l there exists a  pl  eMiGA  suchthat

p. = Xx   •  Then  P.: f. h» p. */.   is a continuous projection of  L  (G A  onto kX..

Now S(l   - PAT is a continuous linear map of L (G) into L (G); it is idempotent because

TS = ly.  Hence, P = / - S(lr - P AT (where / is the identity map Ll(G) -» Ll(G))
is a continuous projection of L  (G)   into  L  (G); its range is   Ker S (I   - P AT =

Ker (/j - Pj)T = T~ Him P A = T-H/feXj) = ¿X.
In H. Reiter's book [7], a commutative Banach algebra A  is said to have a

bounded approximate identity if there exists a number c > 0 such that for every

a £ A  and e > 0 there is a zz £ A,   ||zz|| < c, for which ||a - zza|| < e. We shall see

that for closed ideals in L (G)  the presence of a bounded approximate identity in

Reiter's sense is equivalent to that of a bounded approximate identity as we de-

fined it before Theorem 2 of this paper.

Lemma 12.    Let  A   be a commutative Banach algebra.   Assume that for every

a £ A  there exists a bounded sequence (u )  such that  lim zz a = a.   Then A  has' n n
a bounded approximate identity in the sense of Reiter [l], i.e., there exists a

c > 0 such that a £ Cljxa: ||x|| < c\ for all a £ A.  (The converse is trivial.)

Proof.    For zzz £ N   let

A     = \a £ A: a £ Cl.xa : ||x|| < m\\.
It is easy to see that A      is a closed subset of A.   By the given condition on A,

\JA     = A.   By the Baire Category Theorem one of the  A   , say A      , contains a

nonempty open ball B. Then Co - Cß   is a linear subspace of A   with nonempty

interior, so CB-CB = A.  Any a £ A  can be written as  a = a . — a     where a     a

£ CB C AmQ.   For any e > 0 there exist x., x.   such that  ||x .|| < zzz«   and

|| a. - x.a .|| < A (1 + 772Q)~   e  tot  i = 1, 2.   Putting x = x . + x2 - x x    we obtain

||x|| < 2zzz0 +■ zzz?   and  ||a - xa|| < £.  Thus, we may take c = 2zzz0 + mQ.

Now we turn to our main theorem.

Theorem 13.    LeZ  G  be a locally compact abelian group with dual group Y,

I a closed ideal in L (G).   The following conditions are equivalent.

(a)   I has a bounded approximate identity.

(ß)   I  is factorable, i.e., there exists a c > 0 such that for every f £ I and

e > 0 we can write f = gl * g2  where g y g, £ I,   \\g y\\ < c, and \\f - gA\ < e.

(y)   For every f £ I there is a bounded sequence (u )  in I such that

lim zz   * f = f.n     '       '

(<5)   hi lies in the coset ring of Y ,.
(e)   I = kX ¡or some Y-closed element X of the coset ring of Y ,.

(£)   There exists a continuous projection of  LA°(G)  onto \h £ L°°iG): if, h)

0 for all f e l\.
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Proof,   (a) "* iß)  is a special case of P. Cohen's Factorization Theorem [2].

(/3)=>(y).  If c, f, c, gx, g2  ate as miß), then ||gl */-/|| = |g, *(/ - g2)|| < ce.
(y) => (S). By Lemma 12 theie exists a c > 0 such that for every e > 0 and

/ £ I we can find u £ I lot which ||a|| < c and ||a * / - /|| < c

Let /0 = 1/ £ EKG): Supp/ is compact; hi n Supp/ = 0\.  By [12, §7.2.51
/Q C /. Let /.,•••,/    £ I.  and c > 0. There exists an / £ I.  such that / = 1  on

Supp /. (z = 1, • • •, 72) [12, §2.6.2].  Then for each i we have //. = /., so / */. = /..
As we have seen, there is a a £ I,   \\u\\ < c, tot which  ||a * / - /|| < f(max ||/-||)~   .

Then for each i we have  ||a */. - /.| = ||(a */ - /) */.|| < e.

It follows from these considerations that / contains a bounded net (a.)  such

that   lim a. * f = f for every / £ /Q.  Let G   be the Bohr compactification of  G, and

T its dual group.  Every continuous almost periodic function f on G  induces a

continuous function/   on G. In particular, every y £ V induces y £ T, and the

map y \-* y  is a surjective group isomorphism. The map /l—* /   induces a continu-

ous linear map 0: L  ÍG) —> MÍG).   For every / £ LliG)  and y e T,  (y, /) =
íy,  Í2/).   The net (Í2 a.)   is norm-bounded, hence has a izz*-limit point p £ MÍG). We

may assume iA-lim Qa. = p.  In particular, for every y £ V we have   lim(y, a.) =

iy, p.). As a. e /  it follows that (y, /x) = 0 for y £ hi.  But if y e Y and y £//>/,
we can choose / £ IQ, iy, /) = 1; then (y, /x) =  lim(y, a .)(y, /) =   lim(y, a. */) =

(y, /) = 1. Thus, p is the characteristic function of \y: y £ rV>/j.  By Cohen's

Theorem on Idempotent Measures we conclude that jy: y £ hl\  lies in the coset

ring of T, so that  hi  lies in the coset ring of Y ,.

(5) =* it).  By Theorem   10(v), hi is a spectral set, so / = khl.

ic) =*(a).   Applying Lemma 11 and Theorem 10 (ii), we see that X  can be

written as a finite union X = y.A', U • •. U V X     where y. £ Y and X .  is such that'11 ' n   n ' 1 i
there exists a continuous projection of L  (G)  onto kX..  The map / h» y~  f is a

linear isometry of L (G)  onto L (G)  that maps kX. onto z«(y.X.); so there exist

continuous projections of L  (G)  onto the&(y.X.). Consequently, by Theotem 2

each &(y.X.)   has a bounded approximate identity.  Now use Theorem 5 (i).

(e)«(b-   See [4].
Remark.   The equivalence of (a) and (S) was studied in [13, 2.8].

The following consequence of the above theorem is curious.

Corollary 14. // Y is a locally compact abelian group, if X is a closed ele-

ment of the coset ring of Y ,, and if Z is a compact, relatively open subset of X,

then Z  lies in the coset ring of Y ,.

One could apply the technique of the proof of the implication (y) => (S)   in a

slightly different way. View L ÍG) as a subspace of MÍG). The net (a.)  has a

w*-limit point p £ MÍG).  It is not difficult to prove that p is an idempotent
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measure whose Fourier-Stieltjes transform is just the characteristic function of

r\int hi.   (See Theorem 10(iii).)
The conditions (a)—(¿f) ate not implied by the existence of a (possibly

unbounded) approximate identity in  /.  As an example, let Y be discrete.  Then

every X C Y is Calderón [6, 39.39 (b)], so every kX  has an approximate identity.

Suppose that every infinite closed subgroup of Y is open.  Every closed ele-

ment  X  of the coset ring of Y, then is the union of a finite set $ and a set   Y

that can be written as

77

Y= U yf(Af\ifAf)
z=l

where y.eY,  A. is an open subgroup of Y, A . is an open subgroup of A., and

$. CT  is finite.  Then   Y  lies in the coset ring of Y, and by the Idempotent Mea-

sure Theorem there is an idempotent p e M(G) whose Fourier-Stieltjes transform

is the characteristic function of r\Y.   Then / (—► / * p  is a continuous projection

of Ll(G)  onto kY.
Applying Corollary 6, Theorem  10(iv) and Lemma 11 we obtain

Corollary 15.    Let  G, Y, I be as in Theorem 13. Assume that every infinite

closed subgroup of Y is open.   Then the conditions  (<x) — (£)  are equivalent to

(rf)   hi is the union of a finite set and an element of the coset ring of Y.

(d)   There exists a continuous projection of L  (G)  onto  I.

Added in proof.   Most of Theorem 13 was proved independently by H. Reiter

who published it as Theorem 2 in Chapter 17 of his book   L   -algebras and Segal

algebras,  Lecture Notes in Math., vol. 231, Springer-Verlag, Berlin and New

York, 1971.
It was proved by M. Altman (Contracteurs dans les algebres de Banach, C. R.

Acad. Sei. Paris Se'r. A 274 (1972), A399-A400) that for any Banach algebra the
existence of a bounded left approximate identity in Reiter's sense is equivalent

to the existence of a bounded left approximate identity as the term is used in

this paper.
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