PROJECTIONS AND APPROXIMATE IDENTITIES FOR IDEALS IN GROUP ALGEBRAS

BY

TENG-SUN LIU(1), ARNOUD VAN ROOIJ AND JU-KWEI WANG

ABSTRACT. For a locally compact group G with property (P₁), if there is a continuous projection of $L^{1}(G)$ onto a closed left ideal *I*, then there is a bounded right approximate identity in *I*. If *I* is further 2-sided, then *I* has a 2sided approximate identity. The converse is proved for w^{*} -closed left ideals.

Let G be further abelian and let I be a closed ideal in $L^{1}(G)$. The condition that I has a bounded approximate identity is characterized in a number of ways which include (1) the factorability of I, (2) that the hull of I is in the discrete coset ring of the dual group, and (3) that I is the kernel of a closed element in the discrete coset ring of the dual group.

Introduction. Let G be a locally compact group, I a closed left ideal in $L^{1}(G)$ and P a continuous projection of $L^{1}(G)$ onto I. It is proved by W. Rudin [11, Theorem 1] that, if G is compact, there exists a continuous projection Q of $L^{1}(G)$ onto I such that

(*)
$$f * Qg = Q(f * g)$$
 $(f, g \in L^{1}(G)).$

Further [11, Proof of Theorem 2], if in addition G is abelian, then there exists an idempotent measure μ on G such that

 $Qf = f * \mu \qquad (f \in L^1(G))$

so that Q is actually an algebra homomorphism. It follows that l, considered as a Banach algebra, has a bounded approximate identity.

The purpose of Part I of this paper is to find out what happens if G is not compact or abelian. It turns out that if G has the property (P_1) (which it does if it is compact) then the projection P leads to a net of projections Q for which the formula (*) "almost" holds, and that I still has a bounded (right) approximate identity (Theorem 2).

(¹) Research supported in part by the National Science Foundation. An announcement of the results of this paper has been published in C. R. Acad. Sci. Paris 272 (1971), 473.

Copyright © 1973, American Mathematical Society

Received by the editors December 10, 1971.

AMS (MOS) subject classifications (1970). Primary 22B10, 22D15, 43A20; Secondary 43A45, 46H10.

Key words and phrases. Continuous projections, bounded approximate identities, closed left ideals, closed right ideals, closed 2-sided ideals, group algebras, modular functions, property P_1 , w*-closed, Calderón set, spectral set, discrete coset ring, factorable closed ideals, Bohr compactification.

470 TENG-SUN LIU, ARNOUD VAN ROOIJ AND JU-KWEI WANG [January

The converse problem (If I is a closed left ideal in $L^{1}(G)$ that has a bounded right approximate identity, does there necessarily exist a continuous projection of $L^{1}(G)$ onto I?) seems still to be open. Under an additional condition on I the question can be answered in the affirmative (Theorem 4).

Next we turn to the case where G is abelian. Let Γ be its dual group. Let X be a closed subset of Γ , and J a closed translation invariant linear subspace of $L^{\infty}(G)$ so that $X = \Gamma \cap J$. J. E. Gilbert [4], basing himself upon H. P. Rosenthal's paper [9], proves that there exists a continuous projection of $L^{\infty}(G)$ onto J if and only if X is an element of the coset ring of the discrete group Γ_d that has the same underlying group as Γ . Furthermore, he proves that then X must be what W. Rudin [12] calls a "C-set". Thus he brings about a connection between projections and approximate identities. (See also [11], [3], [10].) His most important tool is a theorem that describes all closed subsets of Γ that lie in the coset ring of Γ_d . (See also [13].)

In Part II we continue Gilbert's investigations, and characterize the closed ideals in $L^{1}(G)$ that have bounded approximate identities. At the same time we prove that these ideals are just the ideals that are factorable. (A commutative Banach algebra A is called *|actorable* if there is a c > 0 such that for every $a \in A$ and $\epsilon > 0$ there exist x, $y \in A$ for which a = xy, ||x|| < c and $||a - y|| < \epsilon$.) This partly solves a problem raised by Hewitt and Ross [6, §39.40].

Preliminaries. For most notations we follow the conventions used by [6] and [12]. We use, however, the multiplicative notation even in the abelian case.

Let G be a locally compact group. By $C_0(G)$ we denote the Banach space of all continuous functions $G \to \mathbb{C}$ that vanish at infinity. The dual space, $C_0(G)^*$, of $C_0(G)$ is identified with the Banach space M(G) of all bounded Radon measures on G. M(G) is a Banach algebra under convolution. The w^* -topology on M(G) is the weak topology determined by $C_0(G)$.

We select a left Haar measure on G. The Haar integral of a function $f: G \to \mathbb{C}$ is written $\int f(x) dx$. The Banach space $L^{1}(G)$ of equivalence classes of integrable functions is identified in the usual way with a subspace of M(G). Thus, $L^{1}(G)$ is a two-sided ideal in M(G).

Deviating from the notation of [6], for $f \in L^{1}(G)$ and $x \in G$ we define

$$f_{x}(y) = f(xy), \quad f^{x}(y) = f(yx)\Delta(x) \quad (y \in G),$$

$$f'(y) = f(y^{-1})\Delta(y^{-1}) \quad (y \in G),$$

where Δ is the modular function of G. Then f_x , f^x , $f' \in L^1(G)$ and $||f_x|| = ||f^x|| = ||f'|| = ||f'|| = ||f'|| = ||f'|| = ||f||$. One easily establishes the relations

 $(f * g)_{x} = f_{x} * g, \quad (f * g)^{x} = f * f^{x}, \quad f * g_{x} = f^{x} * g, \quad (f * g)' = g' * f'.$

Further,

For every $f \in L^{1}(G)$ the formulas

$$x \mapsto f_x$$
 and $x \mapsto f^x$

define bounded continuous maps $G \rightarrow L^{1}(G)$. Using the terminology of vectorvalued integration [1] one obtains

$$f * g = \int f(x) g_{x^{-1}} dx$$
 (f, $g \in L^{1}(G)$).

Similarly, for $j \in L^{\infty}(G)$ and $x \in G$ put $j_x(y) = j(xy)$ $(y \in G)$. For $j \in C_0(G)$, $x \mapsto j_x$ is a continuous map $G \to C_0(G)$, and

$$f * j = \int f(x) j_{x^{-1}} dx$$
 ($f \in L^{1}(G); j \in C_{0}(G)$).

G is said to have the property (P_1) if for all compact sets $C \subseteq G$ and $\epsilon > 0$ there exists an $b \in L^1(G)$, $b \ge 0$, ||b|| = 1, such that $||b_x - b|| \le \epsilon$ for all $x \in C$ (see [7, Chapter 8]). Equivalently, for all compact $C \subseteq G$ and $\epsilon > 0$ there exists an $b \in L^1(G)$, $b \ge 0$, ||b|| = 1, such that $||b^x - b|| \le \epsilon$ for all $x \in C$. If G has the property (P_1) , then there exists a left invariant mean on $L^{\infty}(G)$ (i.e., an $M \in$ $L^{\infty}(G)^*$ such that ||M|| = 1, M1 = 1 and $Mj_x = Mj$ for all $j \in L^{\infty}(G)$ and $x \in G$). For the proof of this statement, see [7, Chapter 8, §6] and [5], where it is also proved that the existence of a left invariant mean implies the property (P_1) . All compact groups and all abelian locally compact groups have the property (P_1) .

Part I. Projections onto ideals of group algebras. Our first lemma is a direct descendant of [11, Theorem 1]. By $\mathcal{L}(L^1(G))$ we denote the space of all continuous linear maps $L^1(G) \to L^1(G)$.

Lemma 1. Let G be a locally compact group. For every $T \in \mathcal{Q}(L^1(G))$ and $b \in L^1(G)$ the formula

(i)
$$T_b f = \int b(x) (T(f_x))_{x-1} dx$$
 $(f \in L^1(G))$

defines a $T_b \in \mathcal{Q}(L^1(G))$ for which $||T_b|| \le ||b|| ||T||$ and

(ii)
$$||f * T_b g - T_b(f * g)|| \le \int |f(x)| ||b_x - b|| dx \cdot ||T|| ||g||$$
 (f, $g \in L^1(G)$).

If G has the property (P_1) , then for all $f_0, f_1, \dots, f_n \in L^1(G)$ and $\epsilon > 0$ there exists an $b \in L^1(G)$, $b \ge 0$, ||b|| = 1, such that for each i,

(iii)
$$||f_i * T_b g - T_b(f_i * g)|| \le \epsilon ||T|| ||g|| \quad (g \in L^1(G); T \in \mathfrak{L}(L^1(G)).$$

Proof. If $f \in L^{1}(G)$ then $x \mapsto (T/_{x})_{x-1}$ is a continuous map $G \to L^{1}(G)$ [6, Theorem 20.4] and $||(T/_{x})_{x-1}|| \leq ||T|| ||/||$ for all x. It follows [1, §1, Proposition 8] that the integral in (i) defines $T_{b} \in \mathcal{Q}(L^{1}(G))$ and that $||T_{b}|| \leq ||b|| ||T||$.

1973]

Take $g \in L^{1}(G)$. For every $a \in G$, $T_{b}(g_{a-1}) = \int b(x) (Tg_{a-1x})_{x-1} dx = \int b(ax) (Tg_{x})_{x-1a-1} dx$ $= \left[\int b_{a}(x) (Tg_{x})_{x-1} dx \right]_{a-1} = (T_{ba}g)_{a-1}.$

Then for all $f \in L^{1}(G)$,

$$f(x) = \int f(x) (T_{b}g)_{x-1} dx - T_{b} \left(\int f(x)g_{x-1} dx \right)$$

=
$$\int f(x) (T_{b}g)_{x-1} dx - \int f(x) T_{b}(g_{x-1}) dx$$

=
$$\int f(x) (T_{b}g - T_{b_{x}}g)_{x-1} dx = \int f(x) (T_{b-b_{x}}(g))_{x-1} dx.$$

(ii) follows, since $||(T_{b-b_x}(g))_{x-1}|| = ||T_{b-b_x}(g)|| \le ||b-b_x|| ||T|| ||g||.$

Now assume that G has the property (P_1) . Let $f_0, \dots, f_n \in L^1(G)$ and $\epsilon > 0$. We may assume $||f_i|| \le 1$ for each *i*. Take a compact set $C \subseteq G$ such that $\int_G \backslash_C |f_i| \le \frac{1}{4}\epsilon$ for each *i*, and an $b \in L^1(G)$, $b \ge 0$, ||b|| = 1 such that $||b-b_x|| \le \frac{1}{4}\epsilon$ for all $x \in C$. For every f_i ,

$$\int_C |f_i(x)| \|b - b_x\| dx \leq \int_G |f_i(x)| dx \cdot \frac{1}{4}\epsilon \leq \frac{1}{4}\epsilon$$

and

$$\int_{G\backslash C} |f_i(x)| \|b - b_x\| dx \leq \int_{G\backslash C} |f_i(x)| dx \cdot 2\|b\| \leq \frac{1}{2}\epsilon;$$

(iii) follows.

Let A be a closed subalgebra of $L^{1}(G)$. A net (u_{i}) in A is a left approximate identity in A if $\lim u_{i} * f = f$ for all $f \in A$. It is called bounded if $\sup ||u_{i}|| < \infty$. A moment's reflection shows that A has a bounded left approximate identity if and only if there is a c > 0 such that for any $f_{1}, \dots, f_{n} \in A$ and $\epsilon > 0$ there is a $u \in A$ such that $||u|| \le c$ and $||u * f_{i} - f_{i}|| \le \epsilon$ $(i = 1, 2, \dots, n)$. Right and two-sided approximate identities are defined analogously. A linear map T: $L^{1}(G) \rightarrow A$ that leaves every element of A fixed is a projection of $L^{1}(G)$ onto A.

Theorem 2. Let G be a locally compact group that has the property (P_1) . Let I be a closed left [right; two-sided] ideal in $L^1(G)$, such that there exists a continuous projection P of $L^1(G)$ onto I. Then I has a right [left; two-sided] approximate identity of bound $\leq ||P||$.

Proof. Assume that I is a closed left ideal. For every $f \in L^{1}(G)$ we have $(Pf_{x})_{x-1} \in I \ (x \in G)$; thus, every P_{b} maps $L^{1}(G)$ into I. Further, if $f \in I$, then for every x we have $f_{x} \in I$, so $(Pf_{x})_{x-1} = f_{xx-1} = f$. Hence, if $\int b = 1$, then P_{b} is a projection of $L^{1}(G)$ onto I.

Now take $f_1, \dots, f_n \in I$, $\epsilon > 0$. By Lemma 1(iii), and the above there exists a projection Q of $L^1(G)$ onto I such that $||Q|| \leq ||P||$ while for each i,

472

1973]

PROJECTIONS AND APPROXIMATE IDENTITIES

 $||f_i * Qg - Q(f_i * g)|| \le \epsilon ||P||^{-1} ||Q|| ||g|| \le \epsilon ||g||$ $(g \in L^1(G)).$

Choose $g \in L^{1}(G)$ so that ||g|| = 1 while $||f_{i} * g - f_{i}|| \le \epsilon ||Q||^{-1}$ for each *i*. Then $Qg \in I$, ||Qg|| < ||P||, and

$$\|f_i * Qg - f_i\| \le \|f_i * Qg - Q(f_i * g)\| + \|Q(f_i * g) - Qf_i\| \le 2\epsilon \quad (i = 1, \dots, n).$$

In a similar way one can attack the right ideal. For two-sided ideals we prove, somewhat more generally

Theorem 3. Let G be a locally compact group with the property (P_1) . Let I be a closed two-sided ideal in $L^1(G)$ that has a left approximate identity of bound c. Then I has a two-sided approximate identity of bound c.

Proof. Take $f_1, \dots, f_n \in I$, $\epsilon > 0$. We construct a $w \in I$, $||w|| \le c$, such that for each *i*, $||f_i * w - f_i|| \le 3c \epsilon + 2\epsilon$ and $||w * f_i - f_i|| \le 2c \epsilon + 2\epsilon$.

Take $f_0 \in L^1(G)$, $||f_0|| \leq 1$ so that $||f_i * f_0 - f_i|| \leq \epsilon$ and $||f_0 * f_i - f_i|| \leq \epsilon$ (*i* = 1, ..., *n*). Let *b* be as in Lemma 1(iii). Take a compact $C \subseteq G$ such that $\int_G \backslash_C |b| \leq \epsilon$. There exist $x_1, \dots, x_m \in C$ such that for each *i* and every $x \in C$ there is an x_j with $||(f_i)_{x_j} - (f_i)_x|| \leq \frac{1}{2}(1 + c)^{-1}\epsilon$. By our assumption on *I* we can find a $u \in I$, $||u|| \leq c$, such that

$$\|u*(f_i)_{x_j}-(f_i)_{x_j}\|\leq \frac{1}{2}\epsilon \quad \text{for all } i, j.$$

Then

$$\|u*(f_i)_x-(f_i)_x\|\leq\epsilon \quad (x\in C;\ i=1,\cdots,\ n).$$

Now put Tf = u * f $(f \in L^{1}(G))$. From Lemma 1 we obtain

(i)
$$||f_i * T_b g - T_b(f_i * g)|| \le \epsilon c ||g||$$
 $(g \in L^1(G); i = 0, \cdots, d)$

Further, for every $f \in L^{1}(G)$,

$$T_{b}f - f = \int b(x) [(u * f_{x})_{x-1} - f] dx = \int b(x) [u * f_{x} - f_{x}]_{x-1} dx$$
$$= \int_{C} b(x) [u * f_{x} - f_{x}]_{x-1} dx + \int_{G \setminus C} b(x) [u * f_{x} - f_{x}]_{x-1} dx$$

n).

so that

(ii)
$$||T_bf_i - f_i|| \le \epsilon (c+2)$$
 $(i=0,...,n).$

Finally, observe that $x \mapsto u_{x-1}^{x}$ is a bounded continuous map of G into I, so that $\int b(x) u_{x-1}^{x} dx$ is an element of I. For all $f \in L^{1}(G)$,

$$T_{b}f = \int b(x)(u * f_{x})_{x-1} dx = \int b(x)(u_{x-1} * f_{x}) dx$$
$$= \int b(x)(u_{x-1}^{x} * f) dx = \left(\int b(x)u_{x-1}^{x} dx\right) * f.$$

Consequently, T_b maps $L^1(G)$ into l, and

(iii)
$$(T_b f) * g = T_b (f * g) \quad (f, g \in L^1(G)).$$

Now put $w = T_b f_0$. Then $w \in I$, $||w|| \le ||T|| ||b|| ||f_0|| \le ||u|| \le c$; and by applying (i), (ii) and (iii) above, we see that for $i = 1, \dots, n$,

$$\begin{aligned} \|f_i * w - f_i\| &\leq \|f_i * T_b f_0 - T_b (f_i * f_0)\| + \|T_b (f_i * f_0 - f_i)\| + \|T_b f_i - f_i\| \\ &\leq \epsilon c \|f_0\| + \|T\| \epsilon + \epsilon (c+2) \leq \epsilon (3c+2) \end{aligned}$$

and

$$\begin{aligned} \|w * f_i - f_i\| &= \|T_b(f_0 * f_i) - f_i\| \le \|T_b(f_0 * f_i - f_i)\| + \|T_bf_i - f_i\| \\ &\le \|T\| \epsilon + \epsilon(c+2) \le \epsilon(2c+2). \end{aligned}$$

Remarks. A closed left ideal I in $L^{1}(G)$ for which there exists a continuous projection of $L^{1}(G)$ onto I may fail to possess a left approximate identity-even an unbounded one. A sufficiently weird example seems to be the following. Let G be the group generated by two elements, a and b, with the relations $a^{2} = b^{3} = 1$, a = bab (G is isomorphic to S_{3}). Consider the functions

$$f = \frac{1}{2}\chi_{\{1\}} + \frac{1}{2}\chi_{\{a\}} - \frac{1}{6},$$

$$g = \frac{1}{2}\chi_{\{b2\}} + \frac{1}{2}\chi_{\{ab\}} - \frac{1}{2}\chi_{\{b\}} - \frac{1}{2}\chi_{\{ba\}},$$

where χ denotes characteristic function. The two-dimensional subspace *I* of $L^{1}(G)$ generated by *f* and *g* is a left ideal; obviously there is a continuous projection of $L^{1}(G)$ onto *I*. For *f* and *g* we have the relations

$$f * f = f$$
, $f * g = 0$, $g * f = f$, $g * g = 0$.

It follow that f is a right unit, but I does not have a left approximate identity.

If G does not have the property (P_1) , then $I^1(G) = \{f \in L^1(G): ff = 0\}$ is a two-sided ideal such that there is a continuous projection of $L^1(G)$ onto $I^1(G)$, while $I^1(G)$ does not have a (bounded or unbounded) right approximate identity. (See [8, Proof of Theorem II]. Note that Reiter's definition of a bounded right approximate identity is different from ours.)

Now we view $L^{1}(G)$ as a subspace of M(G). The weak topology of $L^{1}(G)$, induced by $C_{0}(G)$, will be called the w^{*} -topology. It is now not hard to prove a converse to Theorem 2 for w^{*} -closed ideals.

Theorem 4. Let G be a locally compact group with the property (P_1) . Let I be a w^* -closed left ideal in $L^1(G)$ and $I^{\perp} = \{b \in L^{\infty}(G): (f, b) = 0 \text{ for all } f \in I\}$. The following conditions are equivalent:

- (a) I has a bounded right approximate identity.
- (B) There exists an idempotent $\mu \in M(G)$ such that $I = L^{1}(G) * \mu$.
- (y) There exists a continuous projection P of $L^{1}(G)$ onto I.
- (b) There exists a continuous projection Q of $L^{\infty}(G)$ onto I^{\perp} .

Proof. We prove the implications $(\alpha) \Rightarrow (\delta) \Rightarrow (\beta) \Rightarrow (\gamma)$; the implication $(\gamma) \Rightarrow (\alpha)$ is contained in Theorem 2.

1973] PROJECTIONS AND APPROXIMATE IDENTITIES

 $(\alpha) \Rightarrow (\delta)$. Let Ω denote the natural map $L^{1}(G) \rightarrow L^{\infty}(G)^{*}$. Let (u_{i}) be a bounded right approximate identity in *I*. By the Alaoglu theorem the net (Ωu_{i}) has a *w**-convergent cofinal subnet; we may assume that it is itself *w**-convergent in $L^{\infty}(G)^{*}$. Then for every $b \in L^{\infty}(G)$, $\lim (u_{i}, b)$ exists. The formula

$$(f, Qb) = (f, b) - \lim (u_i, f' * b) \quad (f \in L^1(G); b \in L^{\infty}(G))$$

defines a continuous linear map $Q: L^{\infty}(G) \to L^{\infty}(G)$. If $f \in I$, then for all b, $(f, Qb) = (f, b) - \lim (f * u_i, b) = 0$; so Q maps $L^{\infty}(G)$ into I^{\perp} . Conversely, for any $b \in I^{\perp}$ and $f \in L^{1}(G)$, $(f, Qb - b) = \lim (u_i, f' * b) = \lim (f * u_i, b) = 0$; so Qb = b. Hence Q is a projection of $L^{\infty}(G)$ onto I^{\perp} .

 $(\delta) \Rightarrow (\beta)$. As G has the property (P_1) there exists a translation invariant mean M on the space of all bounded continuous functions on G. Instead of Mb we shall write $M_x h(x)$. Define a continuous linear $R: C_0(G) \to L^{\infty}(G)$ by

$$(f, R_j) = M_x(f_x, Q(j_x)) \quad (f \in L^1(G); j \in C_0(G)).$$

For all $a \in G$, $(f, (R_j)_a) = (f_{a-1}, R_j) = M_x(f_{a-1_x}, Q_j) = M_x(f_x, Q_j) = (f, R(j_a))$. Hence, $(R_j)_a = R(j_a)$ for all $j \in C_0(G)$ and $a \in G$. It follows that, for all $g \in L^1(G)$ and $j \in C_0(G)$,

$$g * Rj = \int g(x)(Rj)_{x-1} dx = \int g(x)R(j_{x-1}) dx = R\left(\int g(x)j_{x-1} dx\right) = R(g * j).$$

Define $\mu \in M(G)$ by

$$(\mu, j) = j(1) - Rj(1) \quad (j \in C_0(G)).$$

If $f \in L^{1}(G)$ and $j \in C_{0}(G)$, then $(f * \mu, j) = (\mu, f' * j) = (f' * j)(1) - (f' * Rj)(1) = (f, j - Rj)$. Therefore, $(f * \mu, j) = 0$ for all $f \in L^{1}(G)$ and $j \in C_{0}(G) \cap I^{\perp}$. By the w^{*} -closedness of I we may conclude that $f * \mu \in I$. On the other hand, if $g \in I$, then $(g_{x}, Qj_{x}) = 0$ for all $j \in C_{0}(G)$ and $x \in G$; so (g, Rj) = 0 and $(g * \mu, j) = (g, j)$ for all j. Therefore, $g = g * \mu$ for $g \in I$. Hence, $I = L^{1}(G) * \mu$. We also see that for all $f \in L^{1}(G)$ (take $g = f * \mu$), $f * \mu = f * \mu * \mu$. Consequently, μ is idempotent.

 $(\beta) \Rightarrow (\gamma)$. Put $Pf = f * \mu \ (f \in L^1(G))$.

Remarks. Observe that the w^* -closedness was not used in proving the implication $(\alpha) \Rightarrow (\delta)$. In fact, by [4] and Part II below, (α) and (δ) are equivalent for all closed ideals in $L^1(G)$, in case G is abelian.

If one applies the proof of $(\delta) \Rightarrow (\beta)$ to an *I* that is not w^* -closed, one finds an idempotent measure μ such that $L^1(G) * \mu$ lies in the w^* -closure of *I*, while *I* is contained in the w^* -closed set $\{g \in L^1(G) : g = g * \mu\}$. Thus, $L^1(G) * \mu = w^* - Cl(I)$, the w^* -closure of *I*. Consequently, if *I* is any closed left ideal in $L^1(G)$ such that (δ) holds, then w^* -Cl(*I*) has a right approximate identity.

From the proof of the implication $(\beta) \Rightarrow (\gamma)$ it follows that actually P can be chosen so that

$$P(f * g) = f * Pg$$
 (f, $g \in L^{1}(G)$).

One can derive (δ) from (γ) by defining Q by

$$(f, Qb) = (f - Pf, b)$$
 $(f \in L^{1}(G); b \in L^{\infty}(G)).$

Thus, we can choose Q so that

$$Q(f * b) = f * Qb \qquad (f \in L^{1}(G); b \in L^{\infty}(G)).$$

Part II. Bounded approximate identities in ideals of commutative group algebras. In this part, G is a locally compact abelian group, Γ its dual group. Since G has the property (P₁) it follows from Theorem 2 that if I is a closed ideal in $L^{1}(G)$ and if there exists a continuous projection of $L^{1}(G)$ onto I, then I has a bounded approximate identity. It is as yet unknown whether the converse holds. The first few theorems of this part serve, partly as a preparation for our Main Theorem, partly as an illustration for the close parallel between continuous projections and bounded approximate identities.

Theorem 5. Let X, $Y \in \Gamma$ be closed.

(i) If kX and kY have bounded approximate identities, then so does $k(X \cup Y)$.

(ii) If there exist continuous projections P_X of $L^1(G)$ onto kX and P_Y of $L^1(G)$ onto kY, then there exists a continuous projection P of $L^1(G)$ onto $k(X \cup Y)$ provided that there exist continuous linear maps $S: kX \to k(X \cup Y)$ and $T: kY \to k(X \cup Y)$ such that S + T = I on $k(X \cup Y)$. This condition is satisfied if there is a $\mu \in M(G)$ such that $\hat{\mu} = 1$ on $X \setminus Y$, $\hat{\mu} = 0$ on $Y \setminus X$.

Proof. (i) Let (u_i) , (v_j) be bounded approximate identities in kX and kY respectively. If $f_1, \dots, f_n \in k(X \cup Y)$ and $\epsilon > 0$, there is a u_i such that $\|f_k * u_i - f_k\| \leq \frac{1}{2}\epsilon$ for each k, and there is a v_j such that $\|(f_k * u_i) * v_j - (f_k * u_i)\| \leq \frac{1}{2}\epsilon$ for each k. Then $u_i * v_j \in k(X \cup Y)$ while $\|f_k * (u_i * v_j) - f_k\| \leq \epsilon$ for each k.

(ii) Put $P = SP_X + TP_Y$; then $P: L^1(G) \to k(X \cup Y)$ and P = I on $k(X \cup Y)$. If $\mu \in M(G)$, $\hat{\mu} = 1$ on $X \setminus Y$ and $\hat{\mu} = 0$ on $Y \setminus X$, then we can define S, T by

$$Sf = \mu * f \qquad (f \in kX),$$

$$Tf = f - \mu * f \qquad (f \in kY).$$

Corollary 6. If there exists a continuous projection of $L^{1}(G)$ onto kX, and if $Y \in \Gamma$ is finite, there exists a continuous projection of $L^{1}(G)$ onto $k(X \cup Y)$. (Trivially, there is a continuous projection of $L^{1}(G)$ onto kY, as kY has finite codimension.)

Corollary 7. Let X, Y be disjoint, closed subsets of Γ and assume that there exists a $\mu \in M(G)$ such that $\hat{\mu} = 1$ on X, $\hat{\mu} = 0$ on Y. (By [12, §2.6.2] this is true if either X or Y is compact.)

(i) There is a bounded approximate identity in $k(X \cup Y)$ if and only if there exist bounded approximate identities in kX and in kY.

(ii) There exists a continuous projection of $L^{1}(G)$ onto $k(X \cup Y)$ if and only if there exist continuous projections of $L^{1}(G)$ onto kX and kY.

Proof. In both cases the sufficiency has been proved above.

(i) Let (u_i) be a bounded approximate identity in $k(X \cup Y)$ and (v_j) a bounded approximate identity in $L^1(G)$. Then $(u_i * \mu + v_j - \mu * v_j)$ and $(u_i - u_i * \mu + \mu * v_j)$ are bounded approximate identities in kX and kY, respectively. (Note that $\mu * f \in k(X \cup Y)$ if $f \in kX$, and $f - \mu * f \in k(X \cup Y)$ if $f \in kY$.)

(ii) Let P be a continuous projection onto $k(X \cup Y)$. Define $Q: L^{1}(G) \rightarrow L^{1}(G)$ by

$$Qf = P(\mu * f) + f - \mu * f$$
 $(f \in L^{1}(G)).$

Then $Q: L^{1}(G) \to kX$ and Q = I on kX, so Q is a projection onto kX. Similarly, $f \mapsto P(f - \mu * f) + \mu * f$ is a projection onto kY.

At this stage the obvious question is whether Theorem 5 (ii) remains true if one drops the condition that the maps S and T exist. From Theorem 10 (i) it will become apparent that the existence of a bounded approximate identity in a closed ideal I of $L^{1}(G)$ would imply the existence of a continuous projection from $L^{1}(G)$ onto I if (and only if) the above question should be answered affirmatively.

The problem was raised first by H. P. Rosenthal who mentioned the following particular case. If $G = \mathbf{R}$, and α is an irrational real number, then there exist continuous projections of $L^{1}(G)$ onto $k\mathbf{Z}$ and onto $k(\alpha \mathbf{Z})$. (See [9] or Lemma 11 of this paper.) Does there exist a continuous projection onto $k(\mathbf{Z} \cup \alpha \mathbf{Z})$? The authors have not been able to answer this question.

Theorem 8. Let A be a closed subalgebra of $L^{1}(G)$. If $A \cap k(\{1\})$ has a bounded approximate identity, so does A.

Proof. We may assume $A \not\subset k(\{1\})$. Take $b \in A$; $\int b = 1$. If (u_i) is a bounded approximate identity for $A \cap k(\{1\})$, then $u_i - b * u_i + b$ is a bounded approximate identity for A (observe that $f - f * b \in A \cap k(\{1\})$ for all $f \in A$).

Theorem 9. Let A be a closed subalgebra of $L^{1}(G)$. If there is a continuous projection of $L^{1}(G)$ onto $A \cap k(\{1\})$, then there is a continuous projection of $L^{1}(G)$ onto A.

Proof. Let $P: L^{1}(G) \to A \cap k(\{1\})$ be a continuous projection. We may assume $A \not\subset k(\{1\})$. Choose $b \in A$ so that Pb = 0 and $\int b = 1$. Then $f \mapsto Pf + (\int f)b$ is a continuous projection from $L^{1}(G)$ onto A.

For the sake of easy citation, we recapitulate a number of results concerning the structure of closed sets in the coset ring of G_d , i.e., G with the discrete topology. From [6] we borrow the terms Calderón set and spectral set in preference to Rudin's C-set and S-set and to the terms Wiener-Ditkin set and Ditkin set, used

1973]

by Reiter in [7]. Our Calderón sets are called *Ditkin sets* by Gilbert [4]. These results are essentially due to I. E. Gilbert (see [3] and also [13]).

Theorem 10. Let G be an abelian topological group.

(i) If a_1H_1, \dots, a_nH_n are cosets of G, then there exists an open subgroup H of G such that int $\bigcup_i (a_iH_i)$ is a union of finitely many cosets of H.

(ii) Let A be an element of the coset ring of $G_{d'}$. Then \overline{A} can be written as

$$\overline{A} = \bigcup_{i=1}^{n} x_i (H_i \backslash F_i K_i),$$

where, for each i, x_i is an element of G, H_i is a closed subgroup of G, K_i is a relatively open subgroup of H_i and F_i is a finite subset of H_i . In particular, \overline{A} lies in the coset ring of G_d .

(iii) Let G, A, x_i , H_i , F_i and K_i be as above and let $I = \{i: H_i \text{ is open}\}$. Then int $\overline{A} = \bigcup_{i \in I} x_i (H_i \setminus F_i K_i)$.

In particular, int A belongs to the coset ring of G.

(iv) If every infinite closed subgroup of G is open, then a subset X of G is a closed element of the coset ring of G_d if and only if it is the union of a finite set and an element of the coset ring of G.

(v) If G is locally compact with dual group Γ , then every closed element of the coset ring of Γ_d is a Calderón set, hence a spectral set.

Now we turn to our main problem: describe the closed ideals in $L^{1}(G)$ that have bounded approximate identities. Our main tools are Theorem 2 and Theorem 10. The connection between them is the following lemma.

Lemma 11. Let G be a locally compact abelian group, Γ its dual group. Let Λ be a closed subgroup of Γ and X an element of the coset ring of Λ . Then there exists a continuous projection of $L^{1}(G)$ onto kX.

Proof. Let $\Lambda_{\perp} = \{x \in G : (x, \gamma) = 1 \text{ for every } \gamma \in \Lambda\}$. Let $G_1 = G/\Lambda_{\perp}$, let Γ_1 be the dual group of G_1 , and π the natural map $G \to G_1$. π determines $\pi^* \colon \Gamma_1 \to \Gamma$ by the formula $\pi^*(\gamma_1) = \gamma_1 \circ \pi \ (\gamma_1 \in \Gamma_1)$; this π^* is a topological isomorphism of Γ_1 onto Λ . By [7, §3.4.4] there is a natural homomorphism T of $L^1(G)$ onto $L^1(G_1)$ given by

$$Tf(\pi(x)) = \int f(xy) \, dm(y)$$

where *m* denotes a Haar measure on Λ_{\perp} .

T and π^* are related by

$$(\pi^*\gamma_1, f) = (\gamma_1, Tf) \qquad (\gamma_1 \in \Gamma_1; f \in L^1(G)).$$

There exists a linear isometry $S: L^{1}(G_{1}) \rightarrow L^{1}(G)$ such that TS is the identity map I_{1} of $L^{1}(G_{1})$. (See [7, Chapter 8, §2.7].)

The set $X_1 = \pi^{*-1}X$ is an element of the coset ring of Γ_1 . By Cohen's Idempotent Measure Theorem [12, Chapter 3] there exists a $\mu_1 \in M(G_1)$ such that $\hat{\mu}_1 = \chi_{X_1}$. Then $P_1: f_1 \mapsto \mu_1 * f_1$ is a continuous projection of $L^1(G_1)$ onto kX_1 . Now $S(I_1 - P_1)T$ is a continuous linear map of $L^1(G)$ into $L^1(G)$; it is idempotent because $TS = I_1$. Hence, $P = I - S(I_1 - P_1)T$ (where I is the identity map $L^1(G) \to L^1(G)$) is a continuous projection of $L^1(G)$ into $L^1(G)$; its range is Ker $S(I_1 - P_1)T =$ Ker $(I_1 - P_1)T = T^{-1}(\operatorname{Im} P_1) = T^{-1}(kX_1) = kX$.

In H. Reiter's book [7], a commutative Banach algebra A is said to have a bounded approximate identity if there exists a number c > 0 such that for every $a \in A$ and $\epsilon > 0$ there is a $u \in A$, $||u|| \le c$, for which $||a - ua|| \le \epsilon$. We shall see that for closed ideals in $L^{1}(G)$ the presence of a bounded approximate identity in Reiter's sense is equivalent to that of a bounded approximate identity as we defined it before Theorem 2 of this paper.

Lemma 12. Let A be a commutative Banach algebra. Assume that for every $a \in A$ there exists a bounded sequence (u_n) such that $\lim u_n a = a$. Then A has a bounded approximate identity in the sense of Reiter [7], i.e., there exists a c > 0 such that $a \in Cl\{xa: ||x|| \leq c\}$ for all $a \in A$. (The converse is trivial.)

Proof. For $m \in \mathbb{N}$ let

 $A_{m} = \{ a \in A : a \in C \mid \{ xa : \|x\| \le m \} \}.$

It is easy to see that A_m is a closed subset of A. By the given condition on A, $\bigcup A_m = A$. By the Baire Category Theorem one of the A_m , say A_{m0} , contains a nonempty open ball B. Then $\mathbb{C}B - \mathbb{C}B$ is a linear subspace of A with nonempty interior, so $\mathbb{C}B - \mathbb{C}B = A$. Any $a \in A$ can be written as $a = a_1 - a_2$ where a_1 , $a_2 \in \mathbb{C}B \subset A_{m0}$. For any $\epsilon > 0$ there exist x_1 , x_2 such that $||x_i|| \le m_0$ and $||a_i - x_i a_i|| \le \frac{1}{2}(1 + m_0)^{-1}\epsilon$ for i = 1, 2. Putting $x = x_1 + x_2 - x_1 x_2$ we obtain $||x|| \le 2m_0 + m_0^2$ and $||a - xa|| \le \epsilon$. Thus, we may take $c = 2m_0 + m_0^2$.

Now we turn to our main theorem.

Theorem 13. Let G be a locally compact abelian group with dual group Γ , I a closed ideal in $L^{1}(G)$. The following conditions are equivalent.

(a) I has a bounded approximate identity.

(β) I is factorable, i.e., there exists a c > 0 such that for every $f \in I$ and $\epsilon > 0$ we can write $f = g_1 * g_2$ where $g_1, g_2 \in I$, $||g_1|| \le c$, and $||f - g_2|| \le \epsilon$.

(y) For every $f \in I$ there is a bounded sequence (u_n) in I such that lim $u_n * f = f$.

(b) bl lies in the coset ring of Γ_d .

(c) I = kX for some Γ -closed element X of the coset ring of Γ_d .

(ζ) There exists a continuous projection of $L^{\infty}(G)$ onto $\{b \in L^{\infty}(G): (f, b) = 0 \text{ for all } f \in I\}$.

Proof. $(\alpha) \Rightarrow (\beta)$ is a special case of P. Cohen's Factorization Theorem [2]. $(\beta) \Rightarrow (\gamma)$. If c, f, ϵ , g_1 , g_2 are as in (β), then $||g_1 * f - f|| = ||g_1 * (f - g_2)|| \le c\epsilon$. $(\gamma) \Rightarrow (\delta)$. By Lemma 12 there exists a c > 0 such that for every $\epsilon > 0$ and $f \in I$ we can find $u \in I$ for which $||u|| \le c$ and $||u * f - f|| \le \epsilon$.

Let $I_0 = \{f \in L^1(G): \operatorname{Supp} \widehat{f} \text{ is compact}; bI \cap \operatorname{Supp} \widehat{f} = \emptyset\}$. By [12, §7.2.5] $I_0 \subseteq I$. Let $f_1, \dots, f_n \in I_0$ and $\epsilon > 0$. There exists an $f \in I_0$ such that $\widehat{f} = 1$ on $\operatorname{Supp} \widehat{f}_i$ $(i = 1, \dots, n)$ [12, §2.6.2]. Then for each i we have $\widehat{ff}_i = \widehat{f}_i$, so $f * f_i = f_i$. As we have seen, there is a $u \in I$, $||u|| \le c$, for which $||u * f - f|| \le \epsilon (\max ||f_i||)^{-1}$. Then for each i we have $||u * f_i - f_i|| = ||(u * f - f) * f_i|| \le \epsilon$.

It follows from these considerations that I contains a bounded net (u_j) such that $\lim u_j * f = f$ for every $f \in I_0$. Let \overline{G} be the Bohr compactification of G, and $\overline{\Gamma}$ its dual group. Every continuous almost periodic function f on \overline{G} induces a continuous function \overline{f} on \overline{G} . In particular, every $\gamma \in \Gamma$ induces $\overline{\gamma} \in \overline{\Gamma}$, and the map $\gamma \mapsto \overline{\gamma}$ is a surjective group isomorphism. The map $f \mapsto \overline{f}$ induces a continuous linear map $\Omega: L^1(G) \to M(\overline{G})$. For every $f \in L^1(G)$ and $\gamma \in \Gamma$, $(\gamma, f) = (\overline{\gamma}, \Omega f)$. The net (Ωu_j) is norm-bounded, hence has a w^* -limit point $\mu \in M(\overline{G})$. We may assume w^* -lim $\Omega u_j = \mu$. In particular, for every $\gamma \in \Gamma$ we have $\lim(\gamma, u_j) = (\overline{\gamma}, \mu)$. As $u_j \in I$ it follows that $(\overline{\gamma}, \mu) = 0$ for $\gamma \in bI$. But if $\gamma \in \Gamma$ and $\gamma \notin bI$, we can choose $f \in I_0, (\gamma, f) = 1$; then $(\overline{\gamma}, \mu) = \lim(\gamma, u_j)(\gamma, f) = \lim(\gamma, u_j * f) = (\gamma, f) = 1$. Thus, $\hat{\mu}$ is the characteristic function of $\{\overline{\gamma}: \gamma \in \Gamma \setminus bI\}$. By Cohen's Theorem on Idempotent Measures we conclude that $\{\overline{\gamma}: \gamma \in bI\}$ lies in the coset ring of $\overline{\Gamma}$, so that bI lies in the coset ring of Γ_d .

 $(\delta) \Rightarrow (\epsilon)$. By Theorem 10(v), *bl* is a spectral set, so l = kbl.

 $(\epsilon) \Rightarrow (\alpha)$. Applying Lemma 11 and Theorem 10 (ii), we see that X can be written as a finite union $X = \gamma_1 X_1 \cup \cdots \cup \gamma_n X_n$ where $\gamma_i \in \Gamma$ and X_i is such that there exists a continuous projection of $L^{1}(G)$ onto kX_i . The map $f \mapsto \gamma_i^{-1} f$ is a linear isometry of $L^{1}(G)$ onto $L^{1}(G)$ that maps kX_i onto $k(\gamma_i X_i)$; so there exist continuous projections of $L^{1}(G)$ onto the $k(\gamma_i X_i)$. Consequently, by Theorem 2 each $k(\gamma_i X_i)$ has a bounded approximate identity. Now use Theorem 5 (i).

 $(\epsilon) \Leftrightarrow (\zeta)$. See [4].

Remark. The equivalence of (α) and (δ) was studied in [13, 2.8].

The following consequence of the above theorem is curious.

Corollary 14. If Γ is a locally compact abelian group, if X is a closed element of the coset ring of Γ_d , and if Z is a compact, relatively open subset of X, then Z lies in the coset ring of Γ_d .

One could apply the technique of the proof of the implication $(\gamma) \rightarrow (\delta)$ in a slightly different way. View $L^{1}(G)$ as a subspace of M(G). The net (u_{i}) has a w^{*} -limit point $\mu \in M(G)$. It is not difficult to prove that μ is an idempotent

measure whose Fourier-Stieltjes transform is just the characteristic function of Γ \int *bl*. (See Theorem 10(iii).)

The conditions $(\alpha)-(\zeta)$ are not implied by the existence of a (possibly unbounded) approximate identity in *I*. As an example, let Γ be discrete. Then every $X \subset \Gamma$ is Calderón [6, 39.39 (b)], so every kX has an approximate identity.

Suppose that every infinite closed subgroup of Γ is open. Every closed element X of the coset ring of Γ_d then is the union of a finite set Φ and a set Y that can be written as

$$Y = \bigcup_{i=1}^{n} \gamma_{i}(\Lambda_{i} \setminus \Phi_{i} \Delta_{i})$$

where $\gamma_i \in \Gamma$, Λ_i is an open subgroup of Γ , Δ_i is an open subgroup of Λ_i , and $\Phi_i \subset \Gamma$ is finite. Then Y lies in the coset ring of Γ , and by the Idempotent Measure Theorem there is an idempotent $\mu \in M(G)$ whose Fourier-Stieltjes transform is the characteristic function of $\Gamma \setminus Y$. Then $f \mapsto f * \mu$ is a continuous projection of $L^1(G)$ onto kY.

Applying Corollary 6, Theorem 10(iv) and Lemma 11 we obtain

Corollary 15. Let G, Γ , I be as in Theorem 13. Assume that every infinite closed subgroup of Γ is open. Then the conditions $(\alpha)-(\zeta)$ are equivalent to

- (n) hI is the union of a finite set and an element of the coset ring of Γ .
- (3) There exists a continuous projection of $L^{1}(G)$ onto 1.

Added in proof. Most of Theorem 13 was proved independently by H. Reiter who published it as Theorem 2 in Chapter 17 of his book L^1 -algebras and Segal algebras, Lecture Notes in Math., vol. 231, Springer-Verlag, Berlin and New York, 1971.

It was proved by M. Altman (*Contracteurs dans les algèbres de Banach*, C. R. Acad. Sci. Paris Sér. A 274 (1972), A399-A400) that for any Banach algebra the existence of a bounded left approximate identity in Reiter's sense is equivalent to the existence of a bounded left approximate identity as the term is used in this paper.

REFERENCES

1. N. Bourbaki, Eléments de mathématique. XXV. Part. I. Livre VI: Intégration. Chap. 6: Intégration vectorielle, Actualités Sci. Indust., no. 1281, Hermann, Paris, 1959. MR 23 #A2033.

2. P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-205. MR 21 #3729.

3. J. E. Gilbert, On a strong form of spectral synthesis, Ark. Mat. 7 (1969), 571-575. MR 43 #3740.

4. ____, On projections of $L^{\infty}(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. (3) 19 (1969), 69-88. MR 39 #6019.

5. F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Reinhold, New York, 1969. MR 40 #4776.

6. E. Hewitt and K. A. Ross, *Abstract harmonic analysis*. Vols. 1, 2, Die Grundlehren der math. Wissenschaften, Bände 115, 152, Springer-Verlag, Berlin and New York, 1963, 1970. MR 28 #158; MR 41 #7378.

7. H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Univ. Press, Oxford, 1968.

8. — , Sur certains idéaux dans L¹(G), C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A882-A885. MR 39 #6025.

9. H. P. Rosenthal, Projections onto translation-invariant subspaces of $L^{p}(G)$, Mem. Amer. Math. Soc. No. 63 (1966), 84 pp. MR 35 #2080.

10. ——, On the existence of approximate identities in ideals of group algebras, Ark. Mat. 7 (1967), 185–191. MR 39 #719.

11. W. Rudin, Projections on invariant subspaces, Proc. Amer. Math. Soc. 13 (1962), 429-432. MR 25 #1460.

12. ——, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808.

13. B. M. Schreiber, On the coset ring and strong Ditkin sets, Pacific J. Math. 32 (1970), 805-812. MR 41 #4140.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MASSACHUSETTS 01002 (Current address of Teng-sun Liu and Ju-kwei Wang)

DEPARTMENT OF MATHEMATICS, CATHOLIC UNIVERSITY, NIJMEGEN, THE NETHER-LANDS (Current address of Arnoud van Rooij)