
Projections for Strictness Analysis

Philip Wadler
Programming Research Group, Oxford University

and Programming Methodology Group, Chalmers University, GSteborg

R.J.M. Hughes
Department of Computer Science, University of Glasgow

A b s t r a c t

Contexts have been proposed as a means of performing strictness analysis on non-flat do-
mains. Roughly speaking, a eontezt describes how much a sub-expression will be evaluated by
the surrounding program. This paper shows how contexts can be represented using the notion
of projection from domain theory. This is clearer than the previous explanation of contexts in
terms of continuations. In addition, this paper describes finite dornaine of contexts over the
non-flat list domain. This means that recursive context equations can be solved using standard
fixpoint techniques, instead of the algebraic manipulation previously used.

Praises of lazy functional languages have been widely sung, and so have some curses. One reason

for praise is that laziness supports programming styles that are inconvenient or impossible otherwise

[Joh87,Hug84,Wad85a]. One reason for cursing is that laziness hinders efficient implementation.

Still, acceptable efficiency for lazy languages is at last being achieved. This is done by means of

graph reduction [Pey87], as found in the G-machine [Aug84,Joh84] and the Ponder implementation

[FW86], among others. The essential trick is to evaluate an expression immediately, when this is

safe, rather than to construct a graph. Strictness analysis can reveal more places where this

optimisation is safe. In the Ponder implementation, strictness analysis speeds up some programs

by a factor of two or more. In addition, strictness analysis may enable other optimisations, such

as destructive updating of arrays [HB85].

Accordingly, strictness analysis has received much attention; see [AI'I87] for a collection of some

recent work. An elegant approach to strictness analysis is abstract interpretation. This approach

was first applied by Mycroft [MycS1], and later extended to higher-order languages [BHA85,HY85]

and polymorphism [AbrSS]. For an excellent introduction, see [CP85].

A remaining question of great interest was how to perform strictness analysis for data types

over non-flat domains, such as lazy lists. An early proposal in this direction was made by Hughes,

based on analysis of the context in which an expression may be evaluated [HugSS,Hug87a]. The

method could determine useful information about strictness in programs using lazy lists. But it

had three drawbacks.

First, i t was not clear exactly what a context was. The first paper was somewhat informal, and

concluded ~a proper treatment would be welcome". This was provided by the second paper, which

modeled contexts as abstractions of sets of continuations. The model was less than completely

intuitive, and the proofs involved were lengthy.

Second, context analysis Yielded equations that were difficult to solve. The equations had to

be solved by algebraic marfipulation, and the descriptions of the manipulations required ran to

386

many pages. Further, exact simplifications were not always possible, and heuristics were required

to decide what approximations to introduce. An example in [Hug85] shows how an apparently

reasonable heuristic can lead to an unreasonably bad approximation.

Third, the method applied only to first-order, untyped languages. Extensions to higher-order,

poiymorphic languages would need to be developed.

Meanwhile, Wadler, in part inspired by Hughes' work, discovered a different method of analysing

strictness on non-flat domains, with none of the above drawbacks [Wad87]. First, the method was

a straightforward extension of abstract interpretation, and so built on existing mathematical foun-

dations and intuitions. Second, like other work on abstract interpretation, it used finite domains.

Fixpoints could be found by straightforward techniques [CP85], and methods for finding fixpoints

efficiently could be directly applied [PC87,YH86]. No algebraic manipulation was required. Third,

since abstract interpretation had already been extended to include higher-order languages and

polymorphism, so did this method.

An open and shut case? Not quite. As it turns out, context analysis reaches the places abstract

interpretation cannot reach. As we shall see in the next section, there are primarily two kinds of

strictness of interest for lazy lists, head strictness and tail strictness. Context analysis can find

both. Abstract interpretation can find tail strictness, and it can find head strictness when it is

combined with tail strictness. But it cannot find head strictness alone. That ' s a shame. A major

paradigm in lazy functional programming involves functions that read a bit of the input list and

then produce a bit of the output list, acting like a coroutine. Such functions are often head strict,

but cannot be tail strict. So the additional power of context analysis is important.

This paper provides a new description of contexts that addresses previous shortcoming.~

First, a simple, and we believe intuitive, explanation of contexts is given. The notion of context

is identified with the notion of projection from domain theory. The proofs involved are simpler

than those in [Hug87a].

Second, finite domains are given for contexts over lists. This means that the standard fixpoint

methods can be used~ and algebraic manipulation is no longer required.

Third . . . well, two out of three isn't bad. The method is still limited to a first-order, monomor-

phic language. However, there are reasons to believe that context analysis will follow in the

footsteps of abstract interpretation, and be extended to higher-order functions and polymorphism;

one way of doing so is outlined in [Hl~g87b]. It is hoped that the new explanation of contexts given

here will aid in this task.

The history of this paper is as follows. Wadler discovered how to represent contexts by pro-

jections (Sections 2-4, 6-8) after studying the work of Hughes [Hug87a]. Hughes discovered how

to define finite domains for contexts over lists (Sections 5, 6.6) after studying the work of Wadler

[Wad87]. The paper itself was written by Wadler.

Contexts have close relations to other work on strictness analysis, including that of Burn

[Bur87], Dyb]er [Dyb87], Hall [HW87], and Wray [Wra86,FW86]. Contexts may also be applied

to B]erner's work on analysing time and space complexity [B]e87], and to analysing pre-order

traversal [Wad85b]. These issues are discussed in Section 8.

This paper assumes the reader knows some domain theory; for an introduction, see one of

[Sco82,Sto77~Sch86]. The domains used are consistently complete, algebraic cpos. Familiarity

with abstract interpretation or the authors' previous work is helpful but not required.

This paper is organized as follows. Section 1 introduces head strictness and tail strictness.

Section 2 formalizes these with projections. Section 3 extends the method to deal with ordinary

strictness. Section 4 discusses finite domains of contexts over flat domains. Section 5 discusses

387

before x8

length zs

doubles zs =

c a s e xs o f

y : ys =:.

[]
i f y = 0

t h e n []

e l s e y : before ys

c a s e x$ o f

[] . ~ o
y : ys ~ l + length ys

case xs of

y : ys =:~ (2":~y) : doubles ys

Figure 1: Example programs

finite domains of contexts over lists. Section 6 develops the fundamentals of context analysis.

Section 7 presents examples. Section 8 compares related work. Section 9 concludes.

1 H e a d s t r i c t n e s s a n d t a i l s t r i c t n e s s

As usual, let : be the list construction operator, cons, so that 1 : 2 : [] denotes the list [1,2]. Let

:H be a function identical to :, but strict in the head field, and let H be the computable function

on lists that replaces each : by :g. For example,

H (1 : 2 : ± : 3 : []) = l : n 2 : H - l - : H S : n [] = 1 : 2 : ±

Similarly, let : r be a function identical to : but strict in the tail field, and let T be the computable

function that replaces each : by :r .

We say a function f is head strict if it is safe to replace each : by :H in the argument to f . In

other words, f is head strict if f = f o H. Similarly, we say f is tail strict if f = f o T.

An example of a head strict function is before, which returns the segment of a list before the

first zero (see Figure 1). Any cons cell examined by before will have its head examined to see if it

is zero, hence before is head strict. If a bot tom occurs before the first zero, we have, say,

before (I : - L : 0 : []) : before (1 : 2 .) = 1:_£

which is as required, since H (1 : _L : 0 : []) --= 1 : ± . If a bot tom occurs after the first zero, we

have, say

b e f o r e (l : 2 : O : J _ : 3 : []) = b e f o r e (l : 2 : 0 : ±) = 1 : 2 : [1

which is again as required, since H (1 : 2 : 0 : 3_ : 3 : []) = I : 2 : 0 : _/_.

An example of a tail strict function is length, which finds the length of a list. Any cons cell

examined by length will also have its tail examined, hence length is tail strict. If any tail field

contains bottom, then length is undefined; for instance

length (l : 2 : 3 : _L) = length_l_ = 3_

388

which is as required, since T (1 : 2 : 3 : _L) = 3_. H no tail field contains bottom, the length is

defined even if some head is bot tom; for instance

l e ,~# 0 : 3_: 3: []) = 3

which is again as required, since T (1 : _L : 3 : []) --- 1 : _L : 3 : [].

This characterizat ion of strictness is useful because it can enable important optimizations. Say

we have a program containing a fragment of the form f o g, and we know that f is head strict.

Then the fragment is equivalent to f o H o g. So we may replace this call of g by a call to a new

version gH of g, in which every : operation that produces part of the result is replaced by :H- The

head arguments of these cons operations may be evaluated immediately, instead of constructing a

graph to be evaluated later. This can lead to significant improvements in efficiency.

Thus, our goal is to label every sub-expression of the program with a context function like H or

T that indicates what components of a structure can be evaluated immediately. We will see later

t~aat contexts can also be used to indicate simple strictness information, such as what arguments

in a function call need to be evaluated.

Contexts themselves provide useful information for propagating contexts further. Consider the

function doubles, which doubles every element in a list. Clearly, doubles is not head strict. For

instance

doubles (1 : 3 _ : 3 : [1) = 2 : _ L : 6 : [] # 2:_L = doubles (I :_L)

even though H (1 : 3- : 3 : []) = 1 : 3-. So doubles # doubles o H . However, it is not hard to see

that H o doubles = H o doubles o H , that is, doubles is head strict in a head strict context. Since

before is head strict we have

before o doubles = before o H o doubles = before o H o doubles o H

showing that it is safe to replace : by :H in the argument to doubles when the result is examined

by a head strict function like before.

One reason that head strictness is of part icular importance is that printing may induce a head

strict context. Say that e is an expression that returns a list of characters to be printed on a

terminal. Then e and H e will both print exactly the same results, but the same cannot be said

of e and T e. Thus, a character printer is head strict but not tail strict.

Traditionally, a function f is said to be strict if f 3_ = 1 . Tail strictness can be characterized

similarly: a strict function f is tail strict iff f u = _L whenever any tail of u is 2_. This holds

because if any tail of u is _1_ then T u =_L, s o f u = f (T u) = f . l_ =_L. Similarly, a s t r i c t

function f is both head strict and tail strict iff f u = ± whenever any head or tail of u is 1 . This

"f u = _L" approach was used in [Wad87].

However, it is not true that f is head strict only if f u = _L whenever some head of u is 3-.

Two counter-examples appear above, where before u # £ although some head of u is 1 . A main

advantage of the context approach is that it can describe head strictness, whereas the ~f u -- -!- ~

approach cannot.

2 P r o j e c t i o n s

A continuous function ~ is a projeetio~ [Sco81] if for every object u,

o~u I- tt

389

The first line says that projections only remove information from an object. The second line says

that all the information is removed at once, so applying the projection a second time has no effect.

These two properties can also be written

a r i D

where I D is the identity function, defined by I D u = u for all u. In this paper, c~, fl, 7, etc., will

always denote projections.

As we have seen~ projections such as H and T characterize the context in which a value is

needed, and so are useful for this style of strictness analysis. We wilt use the words ~projection ~

and ~context" interchangably.

Projections form a complete lattice under the E ordering, with I D at the top and B O T at the

bottom, where B O T i s the function defined by B O T u = _L for all u. For example, the projections

we have seen so far form the following lattice,

7o;T
The projection H n T corresponds to being both head and tail strict.

We say that a function f is f l - s t r ie t in context a if ~ o] = a o f o fl, and write f : a =~ ft. For

example, we have seen that before : 11) =~ H and doubles : H =:~ H .

An alternate characterization of f : a ~ fl is given by the following result.

Propos i t ion: f : a ~ f l iff a o f E f o ft.

Proof: In the forward direction, since a o f = a o f o/~ and a E 1D, we may conclude a o f E f o/~.

In the reverse direction, composing a with each side gives c~ o a o f E a o f o/~, and since a o a = a,

we have a o f _E a o f o/% Since fl E ID , we also have a o f ___ a o f o fl, which gives the desired

equality. []

The strictness relation satisfies a useful composition result.

Propos i t ion: If f : a =~ fl and g : fl :,. 7 then f o g : a =~ 7.

Proof: Immediate, since a o f o g E f o/? o g E f o g o 7. []

For example, from before : 1D ~ H and doubles : H ~ H we may conclude, as noted in the

previous section, that before o doubles : I D ~ H .

A similar argmnent shows that if c~ E fl and f : fl =~ 7 and 7 E ~ then f : a =~ 6. In particular,

f : a ~ 1D for every f and a.

We now verify the assertion made above, that projections form a complete lattice. We first

take care of the least upper bound.

Propos i t ion: If A is a set of projections, then U A exists and is a projection.

390

Proof: For every a E A we have a E_ ID, so clearly LIA exists and U A U ID. Further, from this it

follows that L] A o LJ A E _ LJ A, so it remains to show that LJ A o U A = -q U A. Then for every object

u we have
UA (UA ~)

= U A (l l { a u i a @ A })

U{u A (~ .) t~ e A}
_~ U{~ (~, .) l ~ ~ A}
= U{a u l a~A}
= U A u

as required. []

Now, a difficulty arises. H we let a

f E_ a and / ~ fl, then/ may not be

{a, b, c} with a E b C c . Let ~ = { a ~ - ~

[] ,.~ denote the largest continuous function / such that

a projection. (Counter-example: Consider the domain

a,b~-~ a, c H C} a n d f l = { a ~ a , b ~ - * b,c~-~ b}. Then

/ = {a ~ a, b ~-* a, c ~ b}, which is not a projection since / c = b but / (/ c) = a.)

Therefore, we adopt the convention that a [7 fl denotes the largest projection '7 such that ~/E a

and "/C ft. (In the counter-example above, we would have " /= {a ~ a, b ~ a, c ~-* a}.) With this

convention, the greatest lower bound of a set of projections is given by

~A = LJ{fl I f°r all a 6 A, fl E_ c~}

where/3 ranges over projections. It follows from the above proposition that VIA exists and is a

projection.

3 S t r i c t n e s s a n d a b s e n c e

We have used projections to characterize such exotic concepts as head strictness and tail strict-

ness, bu t we have not yet tackled ordinary strictness, defined by / _L = _L. Using projections to

characterize strictness is possible, but requires some extensions to the framework described so far.

Roughly speaking, the problem is that projections, as described so far, let us specify what

information is sufficient but not what information is necessary. For example, say that f is head

strict, that is, / = f o H. Then we know that if the argument of / is, say, 1 : 3- : [] then it is

sufficient to use the value H (1 : 1 : []) =- 1 : _L instead. But to characterize strictness, we must

say something about what information is necessary. In particular, we must use projections to say

that it is necessary that a value be more defined than _L.

In order to specify informatlon about necessity with projections, we extend our domains with

a new element ~, pronounced "abort" (the symbol is intended to resemble a lightning bolt). The

interpretat ion of c~ u = ~ will be that a requires a value more defined than u. In order for this

interpretat ion to work, we require that all functions be strict in %, that is, / ~ - ~ for all functions

/ . Intuitively, if a value is not acceptable it is mapped into h., which causes all computat ion to

abort immediately. To define strictness, we will use a projection S T R that does not accept 3_, so

we must have S T R _L = h, Since any projection must satisfy a u E_ u, we must have ~* beneath 3_

in the domain ordering.

Therefore we extend each domain D to a new domain Dh,, derived by lifting D and adding a

new bot tom element, b, beneath the existing bottom, _L. So h~ U _L E_ u, for every u E D. Every

function f : D1 --~ D~ is extended to a function f : /)1N --* D~h~ by making f strict in ~.. All

functions are strict in %, but may or may not be strict in 3_. In particular, cons is strict in ~, so

(u : ~) = ~ = ~ : v) for a l l u a n d v.

391

(A technical point: since everythino, even the conditional, is strict in b, the least fixpoint of any

recursive function definition is the constant ~) function. This is not what we want. For recursive

functions definitions in our language, we take the least fixpoint above the function B O T defined

by B O T u = 1 i f~ E u, and B O T ~ = ~.)

The extended domains allow contexts to specify information about necessity. A value u is

unacceptable to a context c~ if cz u = ~.

Proposition: If f : a =~/3 and u is unacceptable to/3, then f u is unacceptable to a.

Proof: Assuming a o / = a o f o fl and f~ u = ~ gives

c~(f u) -- ~ (f (/3 u)) = c~(f%) =

as required. E]

The projection S T R is defined by setting

S T R ~ =

S T R I =

S T R u = u i f . 4 E u

We can now capture the notion of strictness precisely.

Proposition: f : S T R ~ S T R iff / is strict.

Proof: In the forward direction, the only value unacceptable to S T R is 4 , so it follows from

the preceding result that u = _L implies / u = ± , so f is strict. In the backward direction, we

must show that if / is strict then S T R U u) E / (S T R u) for all u. If u # .l. this follows since

S T R u = u. If U = _L this follows since both sides of the inequality reduce to ~: on the left

S T R (/ ±) = S T R 4 = ~ and on the right f (S T R 4) = f ~ = ~. []

Although ID is still the top element of the domain of projections, B O T is no longer the

bottom. The new bot tom element is the projection FAIL, defined by FAIL u = ~ for all u. Say

that a function / : /)1 --* D2 is divergent if] u = I for every u E D1. The following two results

are of interest.

Proposition:] : S T R :=~ F A I L iff] is divergent.

Proposition: g : F A I L =v FAIL for every function g.

Both proofs are simple exercises. As a corollary, the composition rule implies that if f is divergent,

hen so is / o g for any g.

The old projection B O T is rechristened A B S , for ~absent ' , and defined by

A B S ~ =

A B S ± = 4

A B S u = J_ if 4 r - u

Say that a function f : 91 ~ 192 ignores its argument if f u = f 4 for every u E/91. Again, there

are two results of interest.

Proposition: f : S T R ~ A B S iff f ignores its argument.

392

Proposition: g : A B S => A B S for every function g.

And again, both proofs are simple exercises. As a corollary, the composition rule implies that if f

ignores its argument, then so does f o g for any g.

The four projections we have been discussing have the following domain ordering:

ABS STR

FAIL

This is just a subdornain of the domain of projections over D. This is discussed more fully ~n the

next section.

Context analysis can yield useful information for a compiler. If analysis succeeds in labelling a

sub-expression e with one of these contexts, then the following interpretations apply:

• FAIL. No value that could be returned by e is acceptable. The compiler may safely implement

e by code that aborts the program immediately.

o A B S . The value of e is ignored. The compiler may safely implement s by code that returns

a dummy value.

® S T R . The value of e is required. The compiler may safely implement e by code that evaluates

s immediately; no graph for e need be constructed.

® ID. The value of e may be required or may be ignored. The compiler can safely implement

e only by constructing a graph.

Strictness annotations having exactly these four meanings are used in Wray's strictness analyzer

[Wra86,FW86]. Most strictness analysers only distinguish between strict and non-strict arguments,

corresponding to the distinction between S T R and 119 above. The compilation possibilities afforded

by FAIL and A B S ~re extra optimisations, not available to most compilers.

We will call a : D~ --+ D~ a projection over D. Strictly speaking, we should write IDD, S T R n ,

ABSD, and FAILn to indicate the domain D that these projections are over. Usually we will omit

the domain subscript since it can be derived, as the phrase goes, from context.

The str/ct part of a projection a is ~' = a [q S T R . For example, 11) ~ = S T R and A B S ' = FAIL.

A context a is strict if it is equal to its strict part, or equivalently, if a U_ S T R . Ironically, this

implies that a is called strict iff a i = ~, and non-strict iff ~ ± = ± .

The problem of analysing strictness in context a can be reduced to analysing strictness in

context o/:

Proposition: If a is non-strict and f : a ' =¢, fl then f : a =*, A B S u ft.

Proof: Since ct is non-strict, a = A B S u a' and we have

(ABS U a') o / = (ABS o f) U (a' o f) C (f o ABS) u (l o fl) E l o (ABS U fl)

as required. []

For instance, say / is a strict function, so / : S T R => S T R . That is, if the result of] is needed,

then the argument of f will be needed. Then since ID' = S T R and A B S U S T R = ID, from the

above we have f : 1t) =:~ 119. That is, if the result of / may or may not be needed, then the

argument of / may or may not be needed.

393

4 F in i te d o m a i n s

Let INT be the flat domain of integers. Clearly, there are an infinite number of projections a over

INT. Using these we can specify quite precise information about functions. For example, for any

integer m let EQUALm be the projection defined by

EQUAL,~ m = m

EQUAL m u = ~ if u ~ m

Then i f / : EQUAL,,, =~ EQUAL,, it follows that / n = m.

For some applications this expressiveness may be useful, but it is more precise than required

for strictness analysis in a compiler. Fortunately, we need not maintain such precise information.

The purpose of context analysis is to label each sub-expression e in a program with a context a

such that a e and e return the same result (within the larger context in which the sub-expression

appears). Clearly, if it is safe to label e with a then it is also safe to label e with any fl such that

a E ft. For example, we can safely approximate EQUAL m by STR, for any m.

This gives a notion of "approximation" inverted from the usual one. The inequality a E_ fl is

traditionally read %~ approximates f l ' , meaning a u is less defined than f lu for every u. However,

we may also read it as "a is approximated by f l ' , meaning a conveys more precise information

than fl about the values acceptable in some context.

Thus for purposes of strictness analysis in a compiler, we may choose to use any subset of

projections, so long as it is closed under the operations of interest (e.g., U and n) and so long as it

contains the largest projection, ID. For analyzing flat domains, such as the integers, a good choice

is the four point subdomain of projections, (ID, STR, ABS, FAIL}, discussed in the preceding

section.

The subset of projections that we choose need not even include FAIL. For example, the two

point domain {ID, STR} can provide quite useful analyses. When using this two point domain,

ABS is approximated by ID, and FAIL is approximated by STR. This is indeed safe: ID safely

approximates everything, since it is always safe to construct a graph; and STR safely approximates

FAIL, since if the function is going to diverge anyway (as for FAIL) it is safe to evaluate the

argument in advance (as for STR).

5 F in i te d o m a i n s for l ists

Let LIST D be the non-flat domain of lists whose elements are in domain D. For example,

LIST INT is the domain of lists of integers, and LIST (LIST INT) is the domain of lists of lists of

integers. We have already discussed two projections over LIST D, namely H and T. This section

presents finite domains of projections over LIST D, analogous to the finite domains of projections

over INT presented in the previous section.

It is convenient to define the projection NIL and the projection generator CONS. The projection

NIL over LIST D is defined by

NIL '-* =

NIL 2. =

NIL[] = []
N I L (u : v) = L,

394

If ~ is a projection over D, and ~ is a projection over L I S T D, the projection C O N S ot ~ on L I S T D

is defined by

CONS ~ ,8 % =

C O N S c~ ~ J_ =

CONS a fl [] :

CONS~(~:~) = ~u:~

These projections can be used %o describe lists precisely. For example,

CONS ID (CONS EQUAL o NIL)

specifies the context that oniy accepts lists of length two whose second element is zero.

Of special interest are projections which treat all elements of a list in the same way. If o~ is a

projection over D, then the projections FIN a and INF ~ over LIST D are defined by

F I N c~ = NIL U C O N S a (F I N c~)

I N F a = NIL LJ C O N S c~(ABS U I N F c~)

Roughly speaking, F I N c~ accepts only finite list% each element of which is accepted by ~, and

I N F a accepts finite or infinite lists, each element of which is accepted by c~. Neither accepts ± ,

so F I N c~ and I N F c~ are strict for every c~, even if c, is non-strict.

These projections are related to the ones discussed previously by the following equations:

S T R = I N F ID ID = A B S U l N F ID

H' = I N F S T R H = A B S U I N F S T R

T' = F I N ID T = A B S U F I N 1 1) (*)

H' rq T' = F I N S T R H [T T = A B S u F I N S T R

The projections H and T were defined before ~ was introduced, so H _L = _!_ and T J_ = .L, and

therefore H and T are non-strict. The corresponding strict versions are, of course, H' and T'.

As another example, we have length : S T R ~ F I N A B S . That is, length is defined only for

finite lists, but the elements of the list are ignored.

Let Dc be a finite domain of projections over D. For example, if D is I N T then Dc might be

{STR~ 119}. The finite domain L I S T c Dc of projections over L I S T D consists of the projections

I N F c~ A B S U I N F a

F I N c~ A B S U F I N c~

for each c~ E Dc~ plus FAIL and A B S . Note that S T R and ID are implicitly included in L I S T e De,

since from above we have S T R = I N F ID and ID = A B S U I N F ID, and ID must be in De.

For example, if Dc is the two point domain {ID, S T R } , then L I S T c De is the ten point domain

consisting of the eight projections in (*) plus A B S and FAIL. A diagram of this domain appears

in Figure 2.

As a second exampl% if De is the four point domain {ID, S T R , A B S , FAIL} , then L I S T v Dc

is a domain with sixteen points. One would expect eighteen points (4 × 4 + 2), but

F I N FAIL = ! N F FAIL

A B S U F I N FAIL = A B S t~ INF FAIL

and so four of the points collapse to two. The identifications arise because C O N S FAIL a = FAIL

for any projection a, and so F I N FAIL = I N F FAIL = NIL.

395

STR
~ T

Hr ~ ~ . , , , , g FAIL ABS

Figure 2: A finite domain of projections for lists

6 Context analysis

The problem of context analysis is this: given a program defining f and a projection a, we wish

to find a projection fl such that f : a =~ ft. Of course, we could just always take fl to be ID, but

if possible we would like to find a smaller projection.

Ideally, given f and a we would like to find the smallest fl such that f : a ~ / ? . There are

~wo difficulties with this. First~ it is not clear that a smallest fl always exists. Second, even if it

did exist, it would not be computable. As we have already observed, f : STR ~ FAIL holds iff

f diverges for every argument; so if we could always find the smallest fl then we could solve the

halting problem. Therefore we will have to settle for finding some fl, not necessarily the smallest

one.

6 . 1 L a n g u a g e

To analyse a function f we will need to examine the program that defines it. We will use a small

first-order language, with the following grammar:

e : := z variables

t k constants

[f el . . . e~ function applications

[i f e0 t h e n el else e2 conditionals

I case e0 o f [] =~ el t Y : ys ~ e2 case expressions

Each function f has a fixed arity n. Function definitions have the form

f z l . . . ~ = e

Infixes are allowed as usual; e~ + e~ is equivalent to (+) el e~, where (+) is a function name. Some

programs in this language are shown in Figure 1 of Section 1 and Figure 5 of Section 7.

396

6 . 2 P r o j e c t i o n t r a n s f o r m e r s

For each function f of n arguments, and each i from 1 to n, we will define f~ to be a transformer

that takes a projection applied to the result of f into a projection that may safely be applied to

the i ' th argument. Tha t is, f i must satisfy the following safety requirement: if fli = f l a then

(f u i . . .u / . . . t~) _ f ux...(fli u/)...u=

for all ui, . . .7 u~. In particular, if f is a function of one argument, and fl = f l a, then the safety

requirement ensures that f : cz ::~ ft.

It is easy to show that the safety requirements for f i , - - . , f~ are satisfied iff

cz (f ux . . . u~) E f (fix ux) . . . (ft, u~)

for all ul~ * * . ~ ~Jq~, where fl~ = f i a for each i from 1 to n.

Similar to f i , for each expression e and each variable z, we will define e ~ to be a transformer

that takes a projection applied to e into a projection that may safely be applied to each instance

of z in e. Tha t is, e ~ must satisfy the safety requirement: if/3 = e • a then

e _E ~[(~ =)/=]

for all values of the variables in e (including z). Here, as usual, eo[e~/z] denotes the result of

subst i tut ing ex for each instance of z in e0.
(To make this definition more formal, we should give a semantics of the language, defining

E~e]p for each expression e and environment p. The safety requirement becomes that if fl = e ~ a

then

for each environment p. To be more formal still, for e" c~ we should write something like M~e]~x]a.)

Having specified the safety conditions, we must now give definitions of f~ and e ~ satisfying

these conditions. Definitions of f i for primitive f appear in Section 6.7. Otherwise, if the program

defining f is

f z x . . . ~ = e

then f~ is defined by

for each i from 1 to n. The definition of e ~ may in turn refer to the f ; , so the definitions are

mutual ly recursive. The full definition of e ~ is given in Figure 3. If it looks forbidding, don ' t

worry: all wilt be explained as we go along.

It is clear that the rule defining f~ is safe (that is, satisfies the safety condition) if the rules

defining e ~ are safe. In what follows, we will show that the rules defining e: are safe if the f i are

safe; and that the f i are safe for primitive f . It follows by recursion induction that the definitions

of f i and e: are indeed safe.

Three rules in the definition of e ~ are obvious:

y* oz = ABS if z # y

k* a = ABS i f k i s a c o n s t a n t

More generally, it is safe to set e ~ a = A B S whenever z does not appear in e.

397

e z o~ = Oc ~> e s Cl I

If a is s t r ict and a 7 F A I L then:

Z ~ Of ~ OZ

y" a = A B S if x # y

k ~ a = A B S i f k i s a c o n s t a n t

(S e , . . . e,,): a

= el (fz a) & - . - & e: (f " a)

(i f e0 then el else e2)~a

= e f S T R & (e I O f U e ~ O f)

= (eft N I L & e I a) U (el (C O N S (el Of) (e l ' a)) & e~ a)

Figure 3: Definition of e ~ a

As an example, say t ha t the cons tan t funct ion K is defined by

K z V = x

T h e n we have K 1 a = x * a = a and K 2 a = x" a = A B S . In o ther words, evaluat ing K in context

a causes its first a rgument to be evaluated in context a and its second a rgument to be ignored.

6.3 The I> operat ion

Results f rom Section 3 guaran tee t ha t it

t ha t if a is non-s t r ic t we may set e z a =

our a t t en t ion to the case t ha t a is s t r ict

To aid in doing so, we in t roduce the

F A I L I> fl =

A B S I> fl =

a l>• =

(A B S u a) I> fl =

It follows I rom the above t h a t we may safely set

is safe to set e ~ F A I L = F A I L and e z A B S --. A B S , and

A B S U e z a'. Therefore, in defining e z a , we can res t r ic t

and not FAIL.

I> operator , p ronounced "guard" , and defined by

F A I L

A B S

fl if a is s t r ict and a # F A I L

A B S U B if a is s t r ict and a # F A I L

e z o~ = of ~> e z ofl

This rule holds for all a , bu t has no effect unless a is non-s t r ic t or FAIL. We assume in all o the r

rules t ha t a is s t r ic t and not FAIL .

6.4 Appl icat ion and the & operat ion

Say we wish to de te rmine (f el e2) ~ a . T h e n we need to find a 6 such t ha t

(f e, e2) E (f e, e2)[<5 :':/~:]

We go abou t doing so in three stages.

398

& is commutat ive and associative

or&or = O~

A B S & a = a

FAIL & a = FAIL

a (8 u "r) = (~ & 8) u (,~ e ,~)

CONS a S & NIL = FAIL

CONS a S & CONS 5 6 = CONS (a & ~) (S & 6)

Figure 4: Laws of &

First, we know from the definition of p that

ff e, e2) E_ / (81 el) (82 e2)

where 8~ = f ' a, for i = 1,2. Second, we know from the aefinition of e I that

Y (8, ,,) (82 ~2) _E / (~,[,r, =/~1) (,2[-r2 =/~]~

where 7i = e~ 81, for i = 1, 2. Third, we need to find a 6 such that

f (ex['h z/x])(e213'2 xlx]) _ (f el e2)l 6 x/x]

Clearly, we could take 6 = '71 u 3'2- But we can do a little bet ter than this. Since all functions are

strict in %, assuming z appears in both el and e2 then if either "/1 = = ~* or 3'~. x = % the left hand

side evaluates to %, so we may safely set 6 x = ~. Therefore we define

% if 71 u = ~ o r ' 1 2 u =%
('rl & 72) u =

7, u U "/2 u otherwise

Taking 8 = 7~ & 72, we have shown that the rule

(/e , e2) ~ = eT (g a) & e~ (/z a)

is safe. For a function of n arguments, we get the rule show in Figure 3.

What if z does not appear in e~ or e2? No problem. If z does not appear in e~, then 7i =

e~ 8i = A B S , so we won' t have 7i z = % anyhow (unless z is N, of course).

As an example, we have

(K z y) ' STR = z , (K ~ S T R) & y, (K 2 S T R)

= x ~ S T R & y * A B S = A B S & A B S = A B S

so ~ne expression K x y ignores the value of y, as we would expect.

The & operation satisfies many laws, some of which are shown in Figure 4: it is commutat ive,

associative, idempotent , has A B S as a unit, FAIL as a zero, distributes over U, and satisfies various

properties with NIL and CONS.

Many people at first expect the role of & to be played by Iq. It is worth noting, therefore, that

& is certainly different from Iq; for instance, A B S & S T R = S T R whereas A B S 17 S T R = FAIL. As

we shall see in Section 8, Dybjer 's inverse image analysis [Dyb87] might be considered a restriction

to the class of projections for which & and rq are identical.

399

6.5 Conditional expressions

To derive the rule for condit ional expressions, we need to find a $ such tha t

a (i f eo t h e n el e l se e2) E (i f e0 t h e n el e lse e~)[~ z/x]

Again, the derivation proceeds by a sequence of steps.

We begin by pointing out an incorrect derivation. An obvious first s tep would be

(i f eo t h e n el e l se e2) = (if S T R e o t h e n ~ e l e l se c~e2)

where ~ is str ict and S T R is over booleans. But in a domain containing ~ this law is invalid.

For example, if a is S T R over integers, eo is true, el is 1, and e~ is _L, then the left-hand side of

the ~bove equation yields 1, while the r ight-hand side yields % (because i f true t h e n 1 e lse

evaluates to % and not 1).

Instead, as a first s tep we use the rule

a (i f eo t h e n el e l se e2)

= (i f STR eo t h e n a el e l se ±) u (i f ST R eo t h e n ± e l se ~ e2)

where, again, a is strict and S T R is over booleans. It is easy to verify that this rule is valid by

considering the four possibilities h~, 1 , true, and false for the value of eo.

We then have

a (if eo t h e n el e lse e~)

= (i f S T R eo t h e n a el e lse _L)U

(i f S T R eo t h e n ± e lse a e2)

E (i f e0LS0 x/x] t h e n &lift, x /z] e lse _L)U

(ie ~o[Zo x/~] then ± else ~[Z~ ~/~])
_ (if eo then e, else l) [((Zo & Z ,)~) /~] U

(i f ~ then _L else e~)[((Z~ & Z~)~)/~]
((i f eo t h e n el e l se .L)U (i f eo t h e n _L e lse e2))

= (if eo t h e n e, e lse e2) [(((fl0 & Z,) u (/?0 e / ~)) x)/x]

= (if eo then e, else e~)[((/~0 & (~ u Z~))~)/~]

where flo = e~ STR, fll = e~ a, and fir = e~ a . The last step uses the distr ibutive law from Figure

4.

This establishes the rule

(if eo t h e n el e lse e2) ~ a = e ~ S T R & (e [a u e ~ a)

when c~ is strict . An intuitive reading of this rule is as follows. If the conditional expression is

evaluated under strict a then x will be evaluated in eo under S T R and either x will be evaluated

in el under a or x will be evaluated in e2 under c~.

Re~ders familiar with str ictness analysis by abst ract interpretat ion will note a resemblance

between the rule given above and the rule

(if ~o the, , e, else e2)~ = e~ n (e? u e~)

used in abs t rac t interpretat ion.

400

6 . 6 C a s e e x p r e s s i o n s

The rule for case expressions is

(c~se eo o f i] =~ el l ~ : ys ~ e2?
= (e~ NIL ~ e(~) U (e~ (CONS (d ~) (d" ~)) a e~ ~)

when c~ is strict. An intuitive reading of this rule is as follows. If the case expression is evaluated

under strict c~, then e0 must evaluate to nil or to a cons cell. If e0 evaluates to nil, then z will

be evaluated in e0 under NIL, and in el under c~. If t0 evaluates to a cons cell~ then the head of

this cons cell will be evaluated as much as y is evaluated in e2 under c~, that is, the head will be

evaluated under e~ c~. Similarly, the tail will be evaluated under e~ ° a. So x will be evaluated in

~o under (CONS (e! ,) (d ' ~)), and in e2 under ~.

Using the concepts developed in the preceding sections, the proof of safety of this rule is

.traightforward~ Mthough lengthy. We outline only some key points here. To start, translate the

case expression

case eo of [] = ~ e l l y : y s = ~ e ~

to the equivalent form

if r~uU eo t hen e~ else e2[head zs/y , tail zs/ys][eo/z8]

where zs is a new variable and null, head, and tail are defined in the usual way. The proof uses

the facts
a (head e) = head ((CONS a ABS) e)

a (tail e) = tail (iCONS ABS a) e)

and the last two taws in Figure 4.

As pointed out in (Wad87], including case expressions in the language is essential when the

analysis uses finite domains for lists. If the case expressions were rewritten in terms of head and

tail, as above, then context analysis would yield less precise results. Case expressions are essential

because they gather in one place information about how both the head and tail of the list are

evaluated.

6 . 7 P r i m i t i v e f u n c t i o n s

Finally, we need to define f~ where] is a primitive function.

If f is strict in all its arguments, then we may set

f~ c~ = ~ ~> STR

This definition is suitable for all primitives functions on flat domains, such as (+) and (=) over

integers.

Most functions on non-fiat domains, such as (=) over lists, need not be given as primitives,

since they can be defined in the language. The exception is the constructor function, (:). Writing

HEAD for (01 and TAIL for (:)2 (do not confuse these with H and T), we must have

c~ (u : v) ~ ((HEAD a) u) : ((TAILc~) v)

for all u, v, and c~. It is not hard to verify that the following definitions fit the bill:

(HEAD ~) u = U~eLisr D head (c~ (u : v))

(TAILc~)v = L].~D ta i l (c~(u:v))

401

where a is over L I S T D, and, as usual, head (u : v) = u and tail (u : v) = v. It follows that

H E A D (C O N S ct fl) = c~ if f~ # FAIL

TAIL (C O N S ct fl) = fl if a # FAIL

and so H E A D and TAIL take after their smaller brethren.

7 Examples

Applying the analysis method of the previous section to the definitions in Figures 1 and 5 gives

the following results:

length ~ ct = NIL u CONS A B S (length Ict)

beforel ct = NIL u CONS (S T R & H E A D ct) (A B S U beforei (TAIL ct) }

doubles 1 ct = NIL u CONS (HEAD a) (doubles 1 (TAIL a))

appendi a = NIL U CONS (HEAD a) (append 1 (TAIL a))

append 2 c~ = c~ u append 2 (TAIL ct)

reverse 1 cr = NIL u CONS (HEAD (append 2 ct)) (rev 1 (append I a))

As usual, this assumes a is strict and not FAIL; otherwise, we use the rule f ; a = a b f~ a ' . For

the interested reader, details of the derivation for append are shown in Figure 6. The results have

been simplified to improve readability, by reducing terms of the form A B S & fl to ft.

Not surprisingly, recursive function definitions yield recursive definitions of projection trans-

formers. Using the finite domains of Sections 4 and 5, we can solve these in the usual way by

taking the limits of ascending Kleene chains [CP85]. For instance, for length we define:

length i(°) a = FAIL

length l(~+i} a = NIL U CONS A B S (length l(O ct)

We then have
length i(°) S T R = FAIL

length 1(1) S T R =

length q21 S T R =

length i{~) S T R =

NIL u CONS A B S FAIL

F I N FAIL

NIL U CONS A B S (F IN FAIL)

F I N A B S

NIL U CONS A B S (F IN A B S)

F I N A B S

and so length 1 S T R = F I N A B S , just as we expected: length must be given a finite list, but ignores

the lists elements.

Because the domains are finite, the ascending chains are guaranteed to reach a fixpoint after a

finite number of iterations. Further, no algebraic simplification methods are required. For any given

list domain, we may construct finite tables for calculating the relevant functions (u, &, CONS,

HEAD, TAIL) and then compute the limits as above in a completely mechanical fashion.

402

append zs zs

reverse x8

= c a s e z 8 o f

y : ys :=~ y : append ys zs

: c a s e x s o f

[] ~ []

y: ys ==~ append (revese ys) [y]

append ~ O~

append 2

Figure 5: More example programs

= (zs ~ NIL&zs ~ ~)

U(xs ~ (CONS ((y: append ys zs)" ~)

((y : append y~ zs)" ~))

&(y" append ys zs) ~' a))

= (NIL & ABS)

u((CONS (y' (HEAD a) & (append ys zs)~ (TAILs))

(y" (HEAD ~) & (append ys zs)" (TAILcO))

&ABS)

- NIL a (CONS (HEAD a) (append 1 (TAIL a)))

= (zs TM NIL & zs ~' ~)

U(xs" (CONS ((y: append ys zs)' a)

((y: append ys zs) y° o~))

a(y: append Vs zs)" ~))
= (ABS ~ ~)

u(ABS

&(y~ (HEAD a) & (append ys zs) ~' (TAILs)))

= ~ ~ append 2 (TAIL a)

Figure 6: Context analysis of append

403

Applying the above techniques we can derive, among other results, the following:

(1) before ~ ID = ABS U INF STR

(2) before 1 STR = 1NF STR

(3) doubles 1STR = STR

(4) double~X (INF STR) = INF STR

(5) append ~ (FIN STR) = FIN STR

(6) append 2 (FIN STR) = FIN STR

(7) append ~ (INF STR) = INF STR

(8) append ~ (INF STR) = ABS tJ INF STR

(9) reverse 1 STR = FIN ID

(10) reverse ~ (FIN STR) = FIN STR

Line (1) shows that before is head strict (recalling that H = ABS u INF STR), and line (2) shows

in addition that it is strict. (In fact, line (1) follows immediately from line (2), by an application

of the guard rule.) Line (3) shows that doubles is strict, but says nothing else, while line (4) shows

that doubles is head strict in a head strict context. Lines (5-6) show that in a context requiring a

completely evaluated list, append must completely evaluate both its arguments. Lines (7-8) show

that in a head strict context append is head strict in both arguments, but it is only strict in the

first argument. Line (9) shows that the argument to reverse must be a finite list, and line (10)

shows that if reverse is ewIuated in a head and tail strict context, then so is its argument.

The results for reverse are particularly significant, since in the original work on contexts [Hug85]

the analysis of reverse was more problematic. The analysis method has also been applied to a few

other functions (the other common definition of reverse, insertion sort) with equally good results.

What are the method's limitations? The major one is that conditional and case expressions

have a special role. For instance, if we define a function eond by

e o n d x y z = if z then y else z

and then replace an arbitrary conditional by an equivalent call on cond, then analysis of the

transformed function may give a much worse result. This is worrying, although more research is

needed to discover whether this will be a significant problem in practice.

8 Re la t ion to o ther work

Burn's evaluation transformers. Geoffrey Burn has suggested evaluation transformers as a way

of controlling parallelism in a functional language implementation [Bur87]. There are some close

relationships between his work and ours, but also some important differences.

Burn introduces four evaluators, C0, C~, C2, Ca, which correspond to the four projections ID,

STR, T', H' R TL His main result can be re-phrased in our terms as follows: it is safe to use an

evaluator ei(in the sense that this will waste no work) whenever it is safe to apply the corresponding

projection (in the sense that this will not change the result).

For example, writing f (~'2 e) means that the spine of e can be evaluated in parallel with the

application of] . This is rather different than writing f (T' e), which insists that the entire spine

of e is evaluated before it is passed to f . However, f (C~ e) wastes no work (evaluates no unneeded

portion of the spine) only when / (T' e) = / e (that is, only when f is tail-strict). The key to Burn's

404

work is this link between an operational notion of safety ("wastes no work") and a denotational

one (Udoesn't change the result").

Burn's analysis is based on Wadler's previous work [Wad87]. Whether evaluation transformers

can take advantage of the extra information revealed by projection analysis (such as absence or

head strictness) is one of many remaining open questions.

Dybjer's inverse image analysis. Inspired by earlier work on context analysis, Peter Dybjer

has devised a method of analysis based on inverse images of open sets [Dyb87]. The method has

a simple and elegant mathematicM foundation. Like earlier work on contexts, it uses algebraic

manipulation to solve equations.

Interestingly, the open sets used by Dybjer correspond exactly to a restricted class of projections.

Namely, open sets correspond to projections a with the additional restriction that for each u, either

a u = ~ or a u = u. It is easy to see that with this restriction, the & operation defined in Section

6.4 is exactly equivalent to Flo The projections STR and T ~ satisfy this restriction, while ABS

and H' do not. Thus open sets can describe strictness and tail strictness, but appear ill-suited for

describing absence and head strictness.

Hall's strictness pattern~. Cordelia Hall's strictness analyser is based on strictness patterns

[HW871. There are striking similarities between strictness patterns and projections; compare the

strictness pattern laws, $$Ir = $~ and $ r _ r , to the projection laws, a(c~ u)= a u, and a u E_ u

(note that strictness patterns reverse the ordering). However, there appear to be no strictness

pattern corresponding to ABS.

Unlike us~ Hall can extract useful strictness from a list in which, say, every other element is

strict. Also unlike us, Hall has examined the question of how to generate different versions of a

procedure depending on the context in which it is called. Overall, the two works appear to be

complementary. Whereas our work has stressed simple foundations, Hall's has stressed practical

issues in building a prototype.

Wray's strictness analyser. The relation between the four point domain { ID, STR, ABS, FAIL}

and the work of Stuart Wray [Wra86,FW86] has already been mentioned. Wray's analyser also

handles higher-order functions and a flexible type system; this inspired the similar extensions for

backwards analysis outlined in [Hug87b].

Finally, here are two applications of projections outside of strictness analysis.

Bjerner's complexity analysis. An important open problem is analysis of the time and space

complexity of lazy functional programs. Bror Bjerner has devised an elegant solution to this

problem for the programming language of Martin-LSf's type theory [Bje87]. The solution makes

use of evaluation notes to describe how much of the result of a program is required. It appears

straightforward to adapt projections for use as evaluation notes, and to adapt Bjerner's method to

lazy functional languages.

Pre-order traversal. In connection with Wadler's work on the listless transformer, it was nec-

essary to describe the notion of pre-order traversal of a data structure [Wad85b]. This was done

by introducing a function PRE, satisfying P R E E ID and PRE o PRE = PRE. A function f was

pre-order if PRE o f = PRE o / o PRE. In other words, pre-order traversal was characterized

by a projection. (Thus, this paper can be applied directly to solving the problem, posed by that

paper, of how to analyse pre-order traveral.)

It was exactly at this time that the two authors were pursuing the work on strictness analysis

described in the introduction. But it was not until a year later that Wadler realized that this

approach could describe the work of Hughes!

405

9 C o n c l u s i o n

This work has provided a simpler explanation of contexts than available previously. The finite do-

mains for lists presented here make it possible to solve recursive equations in a straightforward way,

using standard fixpoint techniques, which has advantages over the previous method of algebraic

manipulation.
An important next step is to extend backwards analysis to languages with higher-order func-

tions and p01ymorphic typing; a way of doing this is outlined in [Hug87b]. Some applications of

projections outside strictness analysis were suggested in the last section. We hope the approach

presented here will provide fertile soil for future developments.
Our projection for strictness analysis is a rosy future.

Acknowledgements. This work owes a debt to the Programming Methodology Group at

Chalmers University of Technology, GSteborg. The first paper on context analysis was written

while Hughes was a visitor at Chalmers, and this paper was written while Wadler was a visitor

there. We are grateful to the members and staff of the PMG for the enjoyable, stimulating, and

supportive environment they provided.

We thank Richard Bird, Geoffrey Burn, Peter Dybjer, Cordelia Hall, Thomas Johnsson, Kent

Karlsson, Jon Fairbairn, Simon Peyton-Jones, Staffan TruvA, and Stuart Wray for fruitful discus-

sions and for comments on an earlier draft of this paper. Wadler is particularly grateful to Peter

Dybjer for conunents on the mathematical rigour (or lack of it) in an earlier version of this work.

Part of this work was performed while Wadler was on a research fellowship supported by ICL.

References

[Abr85]

[AH87]

[Aug84]

[BHA85]

[SjeST]

[Bur87]

[CP85]

S. Abramsky. Strictness analysis and polymorphic invariance. In N. Jones and H.
Ganzinger, editors, Workshop on Programs as Data Objects, Springer-Verlag, Copen-
hagen, October 1985. LNCS 217.

S. Abramsky and C. Hankin. Abstract Interpretation of Declarative Languages. Ellis
Horwood, 1987.

L. Augustsson. A compiler for lazy ML. In A CM Symposium on Lisp and Functional

Programming, pages 218-227, Austin, 1984.

G. L. Burn, C. L. Hankin, and S. Abramsky. The theory of strictness analysis for higher-
order functions. In N. Jones and H. Ganzinger, editors, Workshop on Programs as Data

Objects, Springer-Verlag, Copenhagen, October 1985. LNCS 217.

B. Bjerner. Complexity analysis of programs in type theory. Programming Methodology
Group, Chalmers University of Technology, G~teborg, Sweden, 1987.

G. L. Burn. Evaluation transformers--a model for the parallel evaluation of functional
languages. In Conference on Functional Programming Languages and Computer ArcM-

teeture, Portland, Oregon, September 1987.

C. Clack and S. L. Peyton-Jones. Strictness analysis--a practical approach. In Confer-

ence on Functional Programming Languages and Computer Architecture, Nancy, France,
1985.

406

[Dyb87]

IrW86]

[HB85]

[HugS4]

[Hug85]

[Hug87a]

[Hug87b]

[HW87]

[HY85]

[Joh84]

[Joh87]

[Myc81]

[PC87]

[Pey87]

[SchS6l

P. Dybjer. Computing inverse images. In International Conference on Automata, Lan-

guages, and Programming, 1987.

J. Fairbairn and S. C. Wray. Code generation techniques for functional languages. In
ACM Symposium on Lisp and Functional Programming, pages 94-104, Boston, 1986.

P. Hudak and A. Bloss. The aggregate update problem in functional programming

systems. In lZ'th A CM Symposium on Principles of Programming Languages, pages 300-

314, January 1985.

R. J. M. Hughes. Why functional programming matters. Technical Report, Program-

ming Methodology Group, Chalmers University of Technology, GSteborg, Sweden, 1984.

R. J. M. Hughes. Strictness detection in non-flat domains. In N. Jones and H. Ganzinger,

editors, Workshop on Programs as Data Objects, Springer-Verlag, Copenhagen, October

1985. LNCS 217.

R. J. M. Hughes. Analysing strictness by abstract interpretation of continuations. In

S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative Languages,

Ellis Horwood, 1987, to appear.

R. J. M. Hughes. Backwards analysis of functional programs. University of Glasgow

research report CSC/87/R3, March 1987.

C. V. Hail and Do S. Wise. Compiling strictness into streams. In 14 ~th ACM Symposium

on Principles of Programming Languages, pages 132-143, Munich, January 1987.

P. Hudak and J. Young. Higher order strictness analysis in untyped lambda calculus. In

12'th A CM Symposium on Principles of Programming Languages, pages 97-109, January

1985.

T. Johnsson. Efficient compilation of lazy evaluation. In ACM Symposium on Compiler

Construction, 1984.

T. Johnsson. Attribute grammars as a paradigm for functional programming. Pro-

gramming Methodology Group, Chalmers University of Technology, GSteborg, Sweden,

1987o

A. Mycroft. Abstract interpretation and optimising transformations for applicative pro-

grams. PhD thesis, University of Edinburgh, 1981.

S. L. Peyton-Jones and C. Clack. Finding fixpoints in abstract interpretation. In S.

Abramsky and C. Hankln~ editors, Abstract Interpretation of Declarative Languages,

Ellis Horwood, 1987.

S. L. Peyton-Jones. Implementing Functional Languages using Graph Reduction.

Prentice-Hall, 1987.

D. A. Schmidt. Denotational Semantics: A Methodology for Language Development.

Allya and Bacon, Newton, Massachusetts, 1986.

407

[ScoSl]

[Sco82]

[Sto77]

[WadSSa]

[WadS5b]

[Wad87]

[Wra86]

[YH86]

D. S. Scott. Lectures on a mathematical theory of computation. Technical Report PRG-

19, Oxford University Programming Reseach Group, May 1981.

D. S. Scott. Domains for denotational semantics. In Conference on Automata, Lan-

guages and Programming, pages 577-613, Springer-Verlag, July 1982. LNCS 140.

J. E. Stoy. Denotational Semantics: The Seott-Strachey Approach to Programming Lan-

guage Theory. MIT Press, Cambridge, Massachusetts, 1977.

P. L. Wadler. How to replace failure by a list of successes. In Conference on Functional

Programming Languages and Computer Architecture, Nancy, France, 1985.

P. L. Wadler. Listlessness is better than laziness II: composing listless functions. In
N. Jones and H. Ganzinger, editors, Workshop on Programs as Data Objects, Springer-
Verlag, Copenhagen, October 1985. LNCS 217.

P. L. Wadler. Strictness analysis on non-fiat domains (by abstract interpretation over
finite domains). In S. Abramsky and C. Hankin, editors, Abstract Interpretation of

Declarative Languages, Ellis Horwood, 1987, to appear.

S. C. Wray. Implementation and Programming Techniques for Functional Languages.

PhD thesis, University of Cambridge, January 1986.

J, Young and P. Hudak. Finding fizpoints on function spaces. Technical Re-
port YALEU/DCS/RR-505, Yale University Dept. of Computer Science, December 1986.

