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A b s t r a c t  

Contexts have been proposed as a means of performing strictness analysis on non-flat do- 
mains. Roughly speaking, a eontezt describes how much a sub-expression will be evaluated by 
the surrounding program. This paper shows how contexts can be represented using the notion 
of projection from domain theory. This is clearer than the previous explanation of contexts in 
terms of continuations. In addition, this paper describes finite dornaine of contexts over the 
non-flat list domain. This means that recursive context equations can be solved using standard 
fixpoint techniques, instead of the algebraic manipulation previously used. 

Praises of lazy functional languages have been widely sung, and so have some curses. One reason 

for praise is that laziness supports programming styles that are inconvenient or impossible otherwise 

[Joh87,Hug84,Wad85a]. One reason for cursing is that laziness hinders efficient implementation. 

Still, acceptable efficiency for lazy languages is at last being achieved. This is done by means of 

graph reduction [Pey87], as found in the G-machine [Aug84,Joh84] and the Ponder implementation 

[FW86], among others. The essential trick is to evaluate an expression immediately, when this is 

safe, rather than to construct a graph. Strictness analysis can reveal more places where this 

optimisation is safe. In the Ponder implementation, strictness analysis speeds up some programs 

by a factor of two or more. In addition, strictness analysis may enable other optimisations, such 

as destructive updating of arrays [HB85]. 

Accordingly, strictness analysis has received much attention; see [AI'I87] for a collection of some 

recent work. An elegant approach to strictness analysis is abstract interpretation. This approach 

was first applied by Mycroft [MycS1], and later extended to higher-order languages [BHA85,HY85] 

and polymorphism [AbrSS]. For an excellent introduction, see [CP85]. 

A remaining question of great interest was how to perform strictness analysis for data types 

over non-flat domains, such as lazy lists. An early proposal in this direction was made by Hughes, 

based on analysis of the context in which an expression may be evaluated [HugSS,Hug87a]. The 

method could determine useful information about strictness in programs using lazy lists. But it 

had three drawbacks. 

First, i t was not clear exactly what a context was. The first paper was somewhat informal, and 

concluded ~a proper treatment would be welcome". This was provided by the second paper, which 

modeled contexts as abstractions of sets of continuations. The model was less than completely 

intuitive, and the proofs involved were lengthy. 

Second, context analysis Yielded equations that were difficult to solve. The equations had to 

be solved by algebraic marfipulation, and the descriptions of the manipulations required ran to 
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many pages. Further, exact simplifications were not always possible, and heuristics were required 

to decide what approximations to introduce. An example in [Hug85] shows how an apparently 

reasonable heuristic can lead to an unreasonably bad approximation. 

Third, the method applied only to first-order, untyped languages. Extensions to higher-order, 

poiymorphic languages would need to be developed. 

Meanwhile, Wadler, in part inspired by Hughes' work, discovered a different method of analysing 

strictness on non-flat domains, with none of the above drawbacks [Wad87]. First, the method was 

a straightforward extension of abstract interpretation, and so built on existing mathematical foun- 

dations and intuitions. Second, like other work on abstract interpretation, it used finite domains. 

Fixpoints could be found by straightforward techniques [CP85], and methods for finding fixpoints 

efficiently could be directly applied [PC87,YH86]. No algebraic manipulation was required. Third, 

since abstract interpretation had already been extended to include higher-order languages and 

polymorphism, so did this method. 

An open and shut case? Not quite. As it turns out, context analysis reaches the places abstract 

interpretation cannot reach. As we shall see in the next section, there are primarily two kinds of 

strictness of interest for lazy lists, head strictness and tail strictness. Context analysis can find 

both. Abstract interpretation can find tail strictness, and it can find head strictness when it is 

combined with tail strictness. But it cannot find head strictness alone. That ' s  a shame. A major 

paradigm in lazy functional programming involves functions that read a bit of the input list and 

then produce a bit of the output list, acting like a coroutine. Such functions are often head strict, 

but cannot be tail strict. So the additional power of context analysis is important. 

This paper provides a new description of contexts that addresses previous shortcoming.~ 

First, a simple, and we believe intuitive, explanation of contexts is given. The notion of context 

is identified with the notion of projection from domain theory. The proofs involved are simpler 

than those in [Hug87a]. 

Second, finite domains are given for contexts over lists. This means that the standard fixpoint 

methods can be used~ and algebraic manipulation is no longer required. 

Third . . .  well, two out of three isn't bad. The method is still limited to a first-order, monomor- 

phic language. However, there are reasons to believe that context analysis will follow in the 

footsteps of abstract interpretation, and be extended to higher-order functions and polymorphism; 

one way of doing so is outlined in [Hl~g87b]. It is hoped that the new explanation of contexts given 

here will aid in this task. 

The history of this paper is as follows. Wadler discovered how to represent contexts by pro- 

jections (Sections 2-4, 6-8) after studying the work of Hughes [Hug87a]. Hughes discovered how 

to define finite domains for contexts over lists (Sections 5, 6.6) after studying the work of Wadler 

[Wad87]. The paper itself was written by Wadler. 

Contexts have close relations to other work on strictness analysis, including that of Burn 

[Bur87], Dyb]er [Dyb87], Hall [HW87], and Wray [Wra86,FW86]. Contexts may also be applied 

to B]erner's work on analysing time and space complexity [B]e87], and to analysing pre-order 

traversal [Wad85b]. These issues are discussed in Section 8. 

This paper assumes the reader knows some domain theory; for an introduction, see one of 

[Sco82,Sto77~Sch86]. The domains used are consistently complete, algebraic cpos. Familiarity 

with abstract interpretation or the authors'  previous work is helpful but not required. 

This paper is organized as follows. Section 1 introduces head strictness and tail strictness. 

Section 2 formalizes these with projections. Section 3 extends the method to deal with ordinary 

strictness. Section 4 discusses finite domains of contexts over flat domains. Section 5 discusses 
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before x8 

length zs 

doubles zs = 

c a s e  xs o f  

y : ys =:. 

[] 
i f  y = 0  

t h e n  [] 

e l s e  y : before ys 

c a s e  x$ o f  

[ ] .  ~ o 
y : ys ~ l + length ys 

case xs of 

y : ys =:~ (2":~y) : doubles ys 

Figure 1: Example programs 

finite domains of contexts over lists. Section 6 develops the fundamentals  of context analysis. 

Section 7 presents examples. Section 8 compares related work. Section 9 concludes. 

1 H e a d  s t r i c t n e s s  a n d  t a i l  s t r i c t n e s s  

As usual, let : be the list construction operator, cons, so that 1 : 2 : [] denotes the list [1,2]. Let 

:H be a function identical to :, but  strict in the head field, and let H be the computable function 

on lists that  replaces each : by :g. For example, 

H ( 1 : 2 : ± : 3 : [ ] )  = l : n 2 : H - l - : H S : n [ ]  = 1 : 2 : ±  

Similarly, let : r  be a function identical to : but  strict in the tail field, and let T be the computable 

function that replaces each : by :r .  

We say a function f is head strict if it is safe to replace each : by :H in the argument to f .  In 

other words, f is head strict if f = f o H.  Similarly, we say f is tail strict if f = f o T. 

An example of a head strict function is before, which returns the segment of a list before the 

first zero (see Figure 1). Any cons cell examined by before will have its head examined to see if it 

is zero, hence before is head strict. If a bot tom occurs before the first zero, we have, say, 

before ( I : - L : 0 : [ ] )  : before ( 1 : 2 . )  = 1:_£ 

which is as required, since H (1 : _L : 0 : []) --= 1 : ± .  If a bot tom occurs after the first zero, we 

have, say 

b e f o r e ( l : 2 : O : J _ : 3 : [ ] )  = b e f o r e ( l : 2 : 0 : ± )  = 1 : 2 : [ 1  

which is again as required, since H (1 : 2 : 0 : 3_ : 3 : []) = I : 2 : 0 : _/_. 

An example of a tail strict function is length, which finds the length of a list. Any cons cell 

examined by length will also have its tail examined, hence length is tail strict. If any tail field 

contains bottom, then length is undefined; for instance 

length ( l  : 2 : 3 : _L) = length_l_ = 3_ 
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which is as required, since T (1 : 2 : 3 : _L) = 3_. H no tail field contains bottom, the length is 

defined even if some head is bot tom; for instance 

l e ,~#  0 :  3_: 3: []) = 3 

which is again as required, since T (1 : _L : 3 : []) --- 1 : _L : 3 : []. 

This characterizat ion of strictness is useful because it can enable important  optimizations. Say 

we have a program containing a fragment of the form f o g, and we know that  f is head strict. 

Then the fragment is equivalent to f o H o g. So we may replace this call of g by a call to a new 

version gH of g, in which every : operation that  produces part of the result is replaced by :H- The  

head arguments  of these cons operations may be evaluated immediately, instead of constructing a 

graph to be evaluated later. This can lead to significant improvements in efficiency. 

Thus,  our goal is to label every sub-expression of the program with a context function like H or 

T that  indicates what components  of a structure can be evaluated immediately. We will see later 

t~aat contexts can also be used to indicate simple strictness information, such as what arguments 

in a function call need to be evaluated. 

Contexts  themselves provide useful information for propagating contexts further. Consider the 

function doubles,  which doubles every element in a list. Clearly, doubles is not head strict.  For 

instance 

doubles ( 1 : 3 _ : 3 : [ 1 )  = 2 : _ L : 6 : [ ]  # 2:_L = doubles ( I :_L)  

even though H (1 : 3- : 3 : []) = 1 : 3-. So doubles # doubles o H .  However, it is not hard to see 

that  H o doubles = H o doubles o H ,  that  is, doubles is head strict in a head strict context. Since 

before is head strict we have 

before o doubles = before o H o doubles = before o H o doubles o H 

showing that  it is safe to replace : by :H in the argument to doubles when the result is examined 

by a head strict function like before. 

One reason that  head strictness is of part icular  importance is that  printing may induce a head 

strict context.  Say that  e is an expression that  returns a list of characters to be printed on a 

terminal.  Then  e and H e will both print exactly the same results, but the same cannot be said 

of e and T e. Thus,  a character  printer  is head strict but not tail  strict. 

Traditionally, a function f is said to be strict  if f 3_ = 1 .  Tail strictness can be characterized 

similarly: a strict function f is tail strict iff f u = _L whenever any tail of u is 2_. This holds 

because if any tail  of u is _1_ then T u  =_L,  s o f u  = f ( T u )  = f . l_  =_L.  Similarly, a s t r i c t  

function f is both head strict and tail strict iff f u = ± whenever any head or tail of u is 1 .  This  

"f  u = _L" approach was used in [Wad87]. 

However, it is not true that  f is head strict only if f u = _L whenever some head of u is 3-. 

Two counter-examples appear above, where before u # £ although some head of u is 1 .  A main 

advantage of the context  approach is that  it can describe head strictness, whereas the ~f u -- -!- ~ 

approach cannot.  

2 P r o j e c t i o n s  

A continuous function ~ is a projeetio~ [Sco81] if for every object u, 

o~u I- tt 
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The first line says that projections only remove information from an object. The second line says 

that  all the information is removed at once, so applying the projection a second time has no effect. 

These two properties can also be written 

a r i D  

where I D  is the identity function, defined by I D  u = u for all u. In this paper, c~, fl, 7, etc., will 

always denote projections. 

As we have seen~ projections such as H and T characterize the context in which a value is 

needed, and so are useful for this style of strictness analysis. We wilt use the words ~projection ~ 

and ~context" interchangably. 

Projections form a complete lattice under  the E ordering, with I D  at the top and B O T  at the 

bottom, where B O T i s  the function defined by B O T  u = _L for all u. For example, the projections 

we have seen so far form the following lattice, 

7o;T 
The projection H n T corresponds to being both head and tail strict. 

We say that a function f is f l - s t r ie t  in  context  a if ~ o ] = a o f o fl, and write f : a =~ ft. For 

example, we have seen that before : 11) =~ H and doubles : H =:~ H .  

An alternate characterization of f : a ~ fl is given by the following result. 

Propos i t ion:  f : a ~ f l  iff a o f E f o ft. 

Proof: In the forward direction, since a o f = a o f o/~ and a E 1D, we may conclude a o f E f o/~. 

In the reverse direction, composing a with each side gives c~ o a o f E a o f o/~, and since a o a = a,  

we have a o f _E a o f o/% Since fl E ID ,  we also have a o f ___ a o f o fl, which gives the desired 

equality. [] 

The strictness relation satisfies a useful composition result. 

Propos i t ion:  If f : a =~ fl and g : fl :,. 7 then f o g : a =~ 7. 

Proof: Immediate,  since a o f o g E f o/? o g E f o g o 7. [] 

For example, from before : 1D ~ H and doubles : H ~ H we may conclude, as noted in the 

previous section, that  before o doubles : I D  ~ H .  

A similar argmnent  shows that if c~ E fl and f : fl =~ 7 and 7 E ~ then f : a =~ 6. In particular,  

f : a ~ 1D for every f and a. 

We now verify the assertion made above, that projections form a complete lattice. We first 

take care of the least upper  bound. 

Propos i t ion:  If A is a set of projections, then U A exists and is a projection. 
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Proof: For every a E A we have a E_ ID, so clearly LIA exists and U A U  ID. Further, from this it 

follows that L] A o LJ A E _ LJ A, so it remains to show that LJ A o U A = -q U A. Then for every object 

u we have 
UA (UA ~) 

= U A ( l l { a u i a @ A } )  

U{u A (~ .) t~ e A} 
_~ U{~ (~, .) l ~ ~ A} 
= U{a u l a~A}  
= U A u  

as required. [] 

Now, a difficulty arises. H we let a 

f E_ a and / ~ fl, then/ may not be 

{a, b, c} with a E b C c .  Let ~ = { a ~ - ~  

[] ,.~ denote the largest continuous function / such that 

a projection. (Counter-example: Consider the domain 

a,b~-~ a, c H  C} a n d f l =  { a ~ a , b ~ - *  b,c~-~ b}. Then  

/ = {a ~ a, b ~-* a, c ~ b}, which is not a projection since / c = b but  / ( / c )  = a.) 

Therefore,  we adopt the convention that  a [7 fl denotes the largest projection '7 such that ~/E a 

and "/C ft. (In the counter-example above, we would have " /=  {a ~ a, b ~ a, c ~-* a}.) With this 

convention, the greatest lower bound of a set of projections is given by 

~A = LJ{fl I f°r  all a 6 A, fl E_ c~} 

where/3 ranges over projections. It follows from the above proposition that VIA exists and is a 

projection. 

3 S t r i c t n e s s  a n d  a b s e n c e  

We have used projections to characterize such exotic concepts as head strictness and tail  strict- 

ness, bu t  we have not  yet tackled ordinary strictness, defined by / _L = _L. Using projections to 

characterize strictness is possible, but  requires some extensions to the framework described so far. 

Roughly speaking, the problem is that  projections, as described so far, let us specify what 

information is sufficient but  not what information is necessary. For example, say that f is head 

strict, that  is, / = f o H.  Then  we know that  if the argument of / is, say, 1 : 3- : []  then it is 

sufficient to use the value H (1 : 1 : []) =- 1 : _L instead. But to characterize strictness, we must 

say something about  what information is necessary. In particular, we must use projections to say 

that  it is necessary that  a value be more defined than _L. 

In order to specify informatlon about  necessity with projections, we extend our domains with 

a new element ~, pronounced "abort" (the symbol is intended to resemble a lightning bolt). The 

interpretat ion of c~ u = ~ will be that  a requires a value more defined than u. In order for this 

interpretat ion to work, we require that all functions be strict in %, that is, / ~ - ~ for all functions 

/ .  Intuitively, if a value is not acceptable it is mapped into h., which causes all computat ion to 

abort  immediately. To define strictness, we will use a projection S T R  that  does not accept 3_, so 

we must  have S T R  _L = h, Since any projection must satisfy a u E_ u, we must have ~* beneath 3_ 

in the domain ordering. 

Therefore we extend each domain D to a new domain Dh,, derived by lifting D and adding a 

new bot tom element, b, beneath the existing bottom, _L. So h~ U _L E_ u, for every u E D. Every 

function f : D1 --~ D~ is extended to a function f : /)1N --* D~h~ by making f strict in ~.. All 

functions are strict in %, but  may or may not be strict in 3_. In particular, cons is strict in ~, so 

( u : ~ ) = ~ = ~ : v )  for a l l u a n d  v. 
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(A technical point: since everythino, even the conditional, is strict in b, the least fixpoint of any 

recursive function definition is the constant  ~) function. This is not what we want. For recursive 

functions definitions in our language, we take the least fixpoint above the function B O T  defined 

by B O T  u = 1 i f~  E u, and B O T  ~ = ~.) 

The extended domains allow contexts to specify information about necessity. A value u is 

unacceptable to a context c~ if cz u = ~. 

Proposition: If f : a =~/3 and u is unacceptable to/3,  then f u is unacceptable to a. 

Proof: Assuming a o / = a o f o fl and f~ u = ~ gives 

c~(f u) -- ~ ( f  (/3 u)) = c~(f%) = 

as required. E] 

The projection S T R  is defined by setting 

S T R  ~ = 

S T R  I = 

S T R  u = u i f . 4 E u  

We can now capture the notion of  strictness precisely. 

Proposition: f : S T R  ~ S T R  iff / is strict. 

Proof: In the forward direction, the only value unacceptable to S T R  is 4 ,  so it follows from 

the preceding result that  u = _L implies / u = ± ,  so f is strict. In the backward direction, we 

must show that  if / is strict then S T R  U u) E / ( S T R  u) for all u. If u # .l. this follows since 

S T R  u = u. If U = _L this follows since both sides of the inequality reduce to ~: on the left 

S T R  ( /  ±)  = S T R  4 = ~ and on the right f ( S T R  4 )  = f ~ = ~. [] 

Although ID is still the top element of the domain of projections, B O T  is no longer the 

bottom. The new bot tom element is the projection FAIL, defined by FAIL  u = ~ for all u. Say 

that a function / : / )1 --* D2 is divergent if ] u = I for every u E D1. The following two results 

are of interest. 

Proposition: ] : S T R  :=~ F A I L  iff ] is divergent. 

Proposition: g : F A I L  =v FAIL  for every function g. 

Both proofs are simple exercises. As a corollary, the composition rule implies that if f is divergent, 

hen  so is / o g for any g. 

The old projection B O T  is rechristened A B S ,  for ~absent ' ,  and defined by 

A B S  ~ = 

A B S ±  = 4 

A B S  u = J_ if 4 r - u  

Say that  a function f : 91 ~ 192 ignores its argument if f u = f 4 for every u E/91. Again, there 

are two results of interest. 

Proposition: f : S T R  ~ A B S  iff f ignores its argument. 
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Proposition: g : A B S  => A B S  for every function g. 

And again, both proofs are simple exercises. As a corollary, the composition rule implies that if f 

ignores its argument, then so does f o g for any g. 

The four projections we have been discussing have the following domain ordering: 

ABS STR 

FAIL 

This is just a subdornain of the domain of projections over D. This is discussed more fully ~n the 

next section. 

Context analysis can yield useful information for a compiler. If analysis succeeds in labelling a 

sub-expression e with one of these contexts, then the following interpretations apply: 

• FAIL.  No value that could be returned by e is acceptable. The compiler may safely implement 

e by code that aborts the program immediately. 

o A B S .  The value of e is ignored. The compiler may safely implement s by code that returns 

a dummy value. 

® S T R .  The value of e is required. The compiler may safely implement e by code that evaluates 

s immediately; no graph for e need be constructed. 

® ID. The value of e may be required or may be ignored. The compiler can safely implement 

e only by constructing a graph. 

Strictness annotations having exactly these four meanings are used in Wray's strictness analyzer 

[Wra86,FW86]. Most strictness analysers only distinguish between strict and non-strict arguments, 

corresponding to the distinction between S T R  and 119 above. The compilation possibilities afforded 

by FAIL  and A B S  ~re extra optimisations, not available to most compilers. 

We will call a : D~ --+ D~ a projection over D. Strictly speaking, we should write IDD, S T R n ,  

ABSD,  and FAILn to indicate the domain D that these projections are over. Usually we will omit 

the domain subscript since it can be derived, as the phrase goes, from context. 

The str/ct part of a projection a is ~' = a [q S T R .  For example, 11) ~ = S T R  and A B S '  = FAIL.  

A context a is strict if it is equal to its strict part,  or equivalently, if a U_ S T R .  Ironically, this 

implies that a is called strict iff a i = ~, and non-strict iff ~ ± = ± .  

The problem of analysing strictness in context a can be reduced to analysing strictness in 

context o/: 

Proposition: If a is non-strict and f : a '  =¢, fl then f : a =*, A B S  u ft. 

Proof: Since ct is non-strict, a = A B S  u a' and we have 

(ABS U a') o / = (ABS o f) U (a' o f) C (f o ABS) u (l o fl) E l o (ABS U fl) 

as required. [] 

For instance, say / is a strict function, so / : S T R  => S T R .  That  is, if the result of ] is needed, 

then the argument of f will be needed. Then since ID' = S T R  and A B S  U S T R  = ID, from the 

above we have f : 1t) =:~ 119. That  is, if the result of / may or may not be needed, then the 

argument of / may or may not be needed. 
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4 F in i te  d o m a i n s  

Let INT be the flat domain of integers. Clearly, there are an infinite number of projections a over 

INT. Using these we can specify quite precise information about functions. For example, for any 

integer m let EQUALm be the projection defined by 

EQUAL,~ m = m 

EQUAL m u = ~ if u ~ m  

Then i f / :  EQUAL,,, =~ EQUAL,, it follows that / n = m. 

For some applications this expressiveness may be useful, but it is more precise than required 

for strictness analysis in a compiler. Fortunately, we need not maintain such precise information. 

The purpose of context analysis is to label each sub-expression e in a program with a context a 

such that a e and e return the same result (within the larger context in which the sub-expression 

appears). Clearly, if it is safe to label e with a then it is also safe to label e with any fl such that 

a E ft. For example, we can safely approximate EQUAL m by STR, for any m. 

This gives a notion of "approximation" inverted from the usual one. The inequality a E_ fl is 

traditionally read %~ approximates f l ' ,  meaning a u is less defined than f lu  for every u. However, 

we may also read it as "a is approximated by f l ' ,  meaning a conveys more precise information 

than fl about the values acceptable in some context. 

Thus for purposes of strictness analysis in a compiler, we may choose to use any subset of 

projections, so long as it is closed under the operations of interest (e.g., U and n) and so long as it 

contains the largest projection, ID. For analyzing flat domains, such as the integers, a good choice 

is the four point subdomain of projections, (ID, STR, ABS, FAIL}, discussed in the preceding 

section. 

The subset of projections that we choose need not even include FAIL. For example, the two 

point domain {ID, STR} can provide quite useful analyses. When using this two point domain, 

ABS is approximated by ID, and FAIL is approximated by STR. This is indeed safe: ID safely 

approximates everything, since it is always safe to construct a graph; and STR safely approximates 

FAIL, since if the function is going to diverge anyway (as for FAIL) it is safe to evaluate the 

argument in advance (as for STR). 

5 F in i te  d o m a i n s  for l ists  

Let LIST D be the non-flat domain of lists whose elements are in domain D. For example, 

LIST INT is the domain of lists of integers, and LIST (LIST INT) is the domain of lists of lists of 

integers. We have already discussed two projections over LIST D, namely H and T. This section 

presents finite domains of projections over LIST D, analogous to the finite domains of projections 

over INT presented in the previous section. 

It is convenient to define the projection NIL and the projection generator CONS. The projection 

NIL over LIST D is defined by 

NIL '-* = 

NIL 2. = 

NIL[] = [] 
N I L ( u : v )  = L, 
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If ~ is a projection over D, and ~ is a projection over L I S T  D, the projection C O N S  ot ~ on L I S T  D 

is defined by 

CONS ~ ,8 % = 

C O N S  c~ ~ J_ = 

CONS a fl [] : 

CONS~(~:~) = ~u:~ 

These projections can be used %o describe lists precisely. For example, 

CONS ID (CONS EQUAL o NIL) 

specifies the context that oniy accepts lists of length two whose second element is zero. 

Of special interest are projections which treat all elements of a list in the same way. If o~ is a 

projection over D, then the projections FIN a and INF ~ over LIST D are defined by 

F I N  c~ = NIL  U C O N S  a ( F I N  c~) 

I N F  a =  NIL  LJ C O N S  c~(ABS U I N F  c~) 

Roughly speaking, F I N  c~ accepts only finite list% each element of which is accepted by ~, and 

I N F  a accepts finite or infinite lists, each element of which is accepted by c~. Neither accepts ± ,  

so F I N  c~ and I N F  c~ are strict for every c~, even if c, is non-strict. 

These projections are related to the ones discussed previously by the following equations: 

S T R  = I N F  ID ID = A B S  U l N F  ID 

H' = I N F  S T R  H = A B S  U I N F  S T R  

T' = F I N  ID T = A B S  U F I N 1 1 )  (*) 

H'  rq T' = F I N  S T R  H [T T = A B S  u F I N  S T R  

The projections H and T were defined before ~ was introduced, so H _L = _!_ and T J_ = .L, and 

therefore H and T are non-strict. The corresponding strict versions are, of course, H'  and T'. 

As another example, we have length : S T R  ~ F I N  A B S .  That is, length is defined only for 

finite lists, but the elements of the list are ignored. 

Let Dc be a finite domain of projections over D. For example, if D is I N T  then Dc might be 

{STR~ 119}. The finite domain L I S T c  Dc  of projections over L I S T  D consists of the projections 

I N F  c~ A B S  U I N F  a 

F I N  c~ A B S  U F I N  c~ 

for each c~ E Dc~ plus FAIL  and A B S .  Note that S T R  and ID are implicitly included in L I S T e  De, 

since from above we have S T R  = I N F  ID and ID = A B S  U I N F  ID, and ID must be in De. 

For example, if Dc is the two point domain {ID,  S T R } ,  then L I S T c  De is the ten point domain 

consisting of the eight projections in (*) plus A B S  and FAIL.  A diagram of this domain appears 

in Figure 2. 

As a second exampl% if De is the four point domain {ID,  S T R ,  A B S ,  FAIL} ,  then L I S T v  Dc 

is a domain with sixteen points. One would expect eighteen points (4 × 4 + 2), but 

F I N  FAIL  = ! N F  FAIL  

A B S  U F I N  FAIL  = A B S  t~ INF  FAIL  

and so four of the points collapse to two. The identifications arise because C O N S  FAIL  a = FAIL  

for any projection a, and so F I N  FAIL  = I N F  FAIL  = NIL. 
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STR 
~ T 

Hr ~ ~ . , , , , g  FAIL ABS 

Figure 2: A finite domain of projections for lists 

6 Context analysis 

The problem of context analysis is this: given a program defining f and a projection a, we wish 

to find a projection fl such that  f : a =~ ft. Of course, we could just  always take fl to be ID, but  

if possible we would like to find a smaller projection. 

Ideally, given f and a we would like to find the smallest fl such that f : a ~ / ? .  There are 

~wo difficulties with this. First~ it is not clear that a smallest fl always exists. Second, even if it 

did exist, it would not be computable. As we have already observed, f : STR ~ FAIL holds iff 

f diverges for every argument; so if we could always find the smallest fl then we could solve the 

halting problem. Therefore we will have to settle for finding some fl, not necessarily the smallest 

one. 

6 . 1  L a n g u a g e  

To analyse a function f we will need to examine the program that  defines it. We will use a small 

first-order language, with the following grammar:  

e : := z variables 

t k constants 

[ f el . . .  e~ function applications 

[ i f  e0 t h e n  el else e2 conditionals 

I case  e0 o f  [] =~ el t Y : ys ~ e2 case expressions 

Each function f has a fixed arity n. Function definitions have the form 

f z l . . . ~ = e  

Infixes are allowed as usual; e~ + e~ is equivalent to (+)  el e~, where (+) is a function name. Some 

programs in this language are shown in Figure 1 of Section 1 and Figure 5 of Section 7. 
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6 . 2  P r o j e c t i o n  t r a n s f o r m e r s  

For each function f of n arguments,  and each i from 1 to n, we will define f~ to be a transformer 

that  takes a projection applied to the result of f into a projection that  may safely be applied to 

the i ' th  argument.  Tha t  is, f i  must satisfy the following safety requirement: if fli = f l  a then 

(f u i . . .u / . . . t~ )  _ f ux...(fli u/)...u= 

for all ui, . . .7  u~. In particular,  if f is a function of one argument,  and fl = f l  a, then the safety 

requirement ensures that  f : cz ::~ ft. 

It is easy to show that  the safety requirements for f i ,  - - . ,  f~ are satisfied iff 

cz (f ux . . .  u~) E f (fix ux) . . .  (ft, u~) 

for all ul~ * *  . ~  ~Jq~, where fl~ = f i  a for each i from 1 to n. 

Similar to f i ,  for each expression e and each variable z, we will define e ~ to be a transformer 

that  takes a projection applied to e into a projection that  may safely be applied to each instance 

of z in e. Tha t  is, e ~ must satisfy the safety requirement:  if/3 = e • a then 

e _E ~[(~ =)/=] 

for all values of the variables in e (including z). Here, as usual, eo[e~/z] denotes the result of 

subst i tut ing ex for each instance of z in e0. 
(To make this definition more formal, we should give a semantics of the language, defining 

E~e]p for each expression e and environment  p. The safety requirement becomes that  if fl = e ~ a 

then 

for each environment  p. To be more formal still, for e" c~ we should write something like M~e]~x]a.) 

Having specified the safety conditions, we must now give definitions of f~ and e ~ satisfying 

these conditions. Definitions of f i  for primitive f appear in Section 6.7. Otherwise, if the program 

defining f is 

f z x . . . ~  = e  

then f~ is defined by 

for each i from 1 to n. The definition of e ~ may in turn refer to the f ; ,  so the definitions are 

mutual ly  recursive. The full definition of e ~ is given in Figure 3. If it looks forbidding, don ' t  

worry: all wilt be explained as we go along. 

It is clear that  the rule defining f~ is safe (that is, satisfies the safety condition) if the rules 

defining e ~ are safe. In what follows, we will show that  the rules defining e: are safe if the f i  are 

safe; and that the f i  are safe for primitive f .  It follows by recursion induction that the definitions 

of f i  and e: are indeed safe. 

Three rules in the definition of e ~ are obvious: 

y* oz = ABS  if z # y  

k* a = ABS  i f k i s a c o n s t a n t  

More generally, it is safe to set e ~ a = A B S  whenever z does not appear in e. 
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e z o~ = Oc ~> e s Cl I 

If a is s t r ict  and a 7 F A I L  then:  

Z ~ Of ~ OZ 

y" a = A B S  if x # y  

k ~ a  = A B S  i f k i s a c o n s t a n t  

(S e , . . .  e,,): a 

= el (fz a )  & - . - &  e: ( f "  a )  

( i f  e0 then el else e2)~a 

= e f S T R & ( e  I O f U e ~ O f )  

= (eft N I L  & e I a)  U (el ( C O N S  (el  Of) (e l '  a))  & e~ a)  

Figure 3: Definition of e ~ a 

As an example,  say t ha t  the  cons tan t  funct ion K is defined by 

K z V  = x 

T h e n  we have K 1 a = x * a = a and  K 2 a = x" a = A B S .  In o ther  words, evaluat ing  K in context  

a causes its first a rgument  to be evaluated in context  a and  its second a rgument  to be ignored.  

6.3 The  I> operat ion  

Results  f rom Section 3 guaran tee  t ha t  it 

t ha t  if a is non-s t r ic t  we may set e z a = 

our  a t t en t ion  to the  case t ha t  a is s t r ict  

To aid in doing so, we in t roduce the  

F A I L  I> fl = 

A B S  I> fl = 

a l>• = 

( A B S  u a)  I> fl = 

It  follows I rom the  above t h a t  we may safely set 

is safe to set e ~ F A I L  = F A I L  and e z A B S  --. A B S ,  and 

A B S  U e z a'. Therefore,  in defining e z a ,  we can res t r ic t  

and not  FAIL.  

I> operator ,  p ronounced  "guard" ,  and  defined by 

F A I L  

A B S  

fl if a is s t r ict  and a # F A I L  

A B S  U B if a is s t r ict  and  a # F A I L  

e z o~ = of ~> e z ofl 

This  rule holds for all a ,  bu t  has  no effect unless a is non-s t r ic t  or FAIL.  We assume in all o the r  

rules t ha t  a is s t r ic t  and  not  FAIL .  

6.4 Appl icat ion  and the  & operat ion 

Say we wish to  de te rmine  ( f  el e2) ~ a .  T h e n  we need to find a 6 such t ha t  

(f e, e2) E (f e, e2)[<5 :':/~:] 

We go abou t  doing so in three  stages.  
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& is commutat ive  and associative 

or&or = O~ 

A B S  & a  = a 

FAIL  & a = FAIL 

a (8 u "r) = (~ & 8) u (,~ e ,~) 

CONS a S & NIL  = FAIL 

CONS a S & CONS 5 6 = CONS (a & ~) (S & 6) 

Figure 4: Laws of & 

First,  we know from the definition of p that  

ff e, e2) E_ / (81 el) (82 e2) 

where 8~ = f '  a,  for i = 1,2. Second, we know from the aefinition of e I that  

Y (8, ,,) (82 ~2) _E / (~,[,r, =/~1) (,2[-r2 =/~]~ 

where 7i = e~ 81, for i = 1, 2. Third,  we need to find a 6 such that  

f (ex['h z/x])(e213'2 xlx]) _ (f el e2)l 6 x/x] 

Clearly, we could take 6 = '71 u 3'2- But we can do a little bet ter  than this. Since all functions are 

strict in %, assuming z appears in both el and e2 then if either "/1 = = ~* or 3'~. x = % the left hand 

side evaluates to %, so we may safely set 6 x = ~. Therefore we define 

% if 71 u = ~ o r  ' 1 2 u =%  
('rl & 72) u = 

7, u U "/2 u otherwise 

Taking 8 = 7~ & 72, we have shown that  the rule 

( /e ,  e2) ~ = eT ( g  a) & e~ (/z a) 

is safe. For a function of n arguments,  we get the rule show in Figure 3. 

What  if z does not appear  in e~ or e2? No problem. If z does not appear  in e~, then 7i = 

e~ 8i = A B S ,  so we won' t  have 7i z = % anyhow (unless z is N, of course). 

As an example,  we have 

(K z y) '  STR = z ,  ( K  ~ S T R )  & y,  ( K  2 S T R )  

= x ~ S T R & y * A B S  = A B S & A B S  = A B S  

so ~ne expression K x y ignores the value of y, as we would expect. 

The  & operation satisfies many laws, some of which are shown in Figure 4: it is commutat ive,  

associative, idempotent ,  has A B S  as a unit, FAIL as a zero, distributes over U, and satisfies various 

properties with NIL  and CONS.  

Many people at first expect the role of & to be played by Iq. It is worth noting, therefore, that  

& is certainly different from Iq; for instance, A B S  & S T R  = S T R  whereas A B S  17 S T R  = FAIL. As 

we shall see in Section 8, Dybjer 's  inverse image analysis [Dyb87] might be considered a restriction 

to the class of projections for which & and rq are identical. 
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6.5 Conditional expressions 

To derive the rule for condit ional  expressions, we need to find a $ such tha t  

a ( i f  eo t h e n  el e l se  e2) E ( i f  e0 t h e n  el e lse  e~)[~ z/x]  

Again, the derivation proceeds by a sequence of steps. 

We begin by pointing out an incorrect derivation. An obvious first s tep would be 

( i f  eo t h e n  el e l se  e2) = ( if  S T R e o  t h e n  ~ e l  e l se  c~e2) 

where ~ is str ict  and S T R  is over booleans. But in a domain containing ~ this law is invalid. 

For example,  if a is S T R  over integers, eo is true, el is 1, and e~ is _L, then the left-hand side of 

the ~bove equation yields 1, while the r ight-hand side yields % (because i f  true t h e n  1 e lse  

evaluates to % and not 1). 

Instead,  as a first s tep we use the rule 

a ( i f  eo t h e n  el e l se  e2) 

= ( i f  STR eo t h e n  a el e l se  ± ) u  ( i f  ST R eo t h e n  ± e l se  ~ e2) 

where, again, a is strict  and S T R  is over booleans. It is easy to verify that  this rule is valid by 

considering the four possibilities h~, 1 ,  true, and false for the value of eo. 

We then have 

a ( if  eo t h e n  el e lse  e~) 

= ( i f  S T R  eo t h e n  a el e lse  _L)U 

( i f  S T R  eo t h e n  ± e lse  a e2) 

E ( i f  e0LS0 x/x] t h e n  &lift, x /z]  e lse  _L)U 

(ie ~o[Zo x/~] then ± else ~[Z~ ~/~]) 
_ (if  eo then e, else l ) [ ( (Zo & Z , )~ ) /~ ]  U 

( i f  ~ then _L else e~)[((Z~ & Z~)~)/~] 
(( i f  eo t h e n  el e l se  .L)U ( i f  eo t h e n  _L e lse  e2)) 

= ( if  eo t h e n  e, e lse  e2) [(((fl0 & Z,) u (/?0 e / ~ ) )  x)/x] 

= (if eo then  e, else e~)[((/~0 & ( ~  u Z~))~)/~] 

where flo = e~ STR,  fll = e~ a, and fir = e~ a .  The last step uses the distr ibutive law from Figure 

4. 

This establishes the rule 

( if  eo t h e n  el e lse  e2) ~ a  = e ~ S T R & ( e [ a u e ~ a )  

when c~ is strict .  An intuitive reading of this rule is as follows. If the conditional expression is 

evaluated under  strict  a then x will be evaluated in eo under S T R  and either x will be evaluated 

in el under  a or x will be evaluated in e2 under  c~. 

Re~ders familiar  with str ictness analysis by abst ract  interpretat ion will note a resemblance 

between the rule given above and the rule 

(if ~o the, ,  e, else e2)~ = e~ n (e? u e~) 

used in abs t rac t  interpretat ion.  
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6 . 6  C a s e  e x p r e s s i o n s  

The rule for case expressions is 

( c~se  eo o f  i] =~ el l ~ : ys ~ e2? 
= (e~ NIL ~ e(~) U (e~ (CONS (d  ~) (d" ~)) a e~ ~) 

when c~ is strict. An intuitive reading of this rule is as follows. If the case expression is evaluated 

under strict c~, then e0 must evaluate to nil or to a cons cell. If e0 evaluates to nil, then z will 

be evaluated in e0 under NIL, and in el under c~. If t0 evaluates to a cons cell~ then the head of 

this cons cell will be evaluated as much as y is evaluated in e2 under c~, that is, the head will be 

evaluated under e~ c~. Similarly, the tail will be evaluated under e~ ° a. So x will be evaluated in 

~o under (CONS (e! , )  ( d '  ~)), and in e2 under ~. 

Using the concepts developed in the preceding sections, the proof of safety of this rule is 

.traightforward~ Mthough lengthy. We outline only some key points here. To start,  translate the 

case expression 

case eo of [ ] = ~ e l l y : y s = ~ e ~  

to the equivalent form 

if  r~uU eo t hen  e~ else e2[head zs/y ,  tail zs/ys][eo/z8] 

where zs is a new variable and null, head, and tail are defined in the usual way. The proof uses 

the facts 
a (head e) = head ((CONS a ABS)  e) 

a (tail e) = tail ( iCONS ABS  a) e) 

and the last two taws in Figure 4. 

As pointed out in (Wad87], including case expressions in the language is essential when the 

analysis uses finite domains for lists. If the case expressions were rewritten in terms of head and 

tail, as above, then context analysis would yield less precise results. Case expressions are essential 

because they gather in one place information about how both the head and tail of the list are 

evaluated. 

6 . 7  P r i m i t i v e  f u n c t i o n s  

Finally, we need to define f~ where ] is a primitive function. 

If f is strict in all its arguments, then we may set 

f~ c~ = ~ ~> STR 

This definition is suitable for all primitives functions on flat domains, such as (+) and (=) over 

integers. 

Most functions on non-fiat domains, such as (=) over lists, need not be given as primitives, 

since they can be defined in the language. The exception is the constructor function, (:). Writing 

HEAD for (01 and TAIL for (:)2 (do not confuse these with H and T), we must have 

c~ ( u :  v) ~ ((HEAD a) u) : ((TAILc~) v) 

for all u, v, and c~. It is not hard to verify that the following definitions fit the bill: 

(HEAD ~) u = U~eLisr D head (c~ (u : v)) 

(TAILc~)v  = L].~D ta i l (c~(u:v) )  



401 

where a is over L I S T  D, and, as usual, head (u : v) = u and tail (u : v) = v. It follows that 

H E A D  ( C O N S  ct fl) = c~ if f~ # FAIL 

TAIL  ( C O N S  ct fl) = fl if a # FAIL 

and so H E A D  and TAIL  take after their smaller brethren. 

7 Examples 

Applying the analysis method of the previous section to the definitions in Figures 1 and 5 gives 

the following results: 

length ~ ct = NIL u CONS A B S  (length Ict)  

beforel ct = NIL u CONS ( S T R  & H E A D  ct) ( A B S  U beforei ( TAIL  ct) } 

doubles 1 ct = NIL u CONS (HEAD a) (doubles 1 (TAIL  a)) 

appendi a = NIL U CONS (HEAD a) (append 1 (TAIL  a)) 

append 2 c~ = c~ u append 2 (TAIL  ct) 

reverse 1 cr = NIL u CONS (HEAD (append 2 ct)) (rev 1 (append I a)) 

As usual, this assumes a is strict and not FAIL; otherwise, we use the rule f ;  a = a b f~ a ' .  For 

the interested reader, details of the derivation for append are shown in Figure 6. The results have 

been simplified to improve readability, by reducing terms of the form A B S  & fl to ft. 

Not surprisingly, recursive function definitions yield recursive definitions of projection trans- 

formers. Using the finite domains of Sections 4 and 5, we can solve these in the usual way by 

taking the limits of ascending Kleene chains [CP85]. For instance, for length we define: 

length i(°) a = FAIL 

length l(~+i} a = NIL  U CONS A B S  (length l(O ct) 

We then have 
length i(°) S T R  = FAIL 

length 1(1) S T R  = 

length q21 S T R  = 

length i{~) S T R  = 

NIL u CONS A B S  FAIL 

F I N  FAIL 

NIL U CONS A B S  (F IN  FAIL) 

F I N  A B S  

NIL U CONS A B S  (F IN  A B S )  

F I N  A B S  

and so length 1 S T R  = F I N  A B S ,  just as we expected: length must be given a finite list, but ignores 

the lists elements. 

Because the domains are finite, the ascending chains are guaranteed to reach a fixpoint after a 

finite number of iterations. Further, no algebraic simplification methods are required. For any given 

list domain, we may construct finite tables for calculating the relevant functions (u, &, CONS,  

HEAD,  TAIL) and then compute the limits as above in a completely mechanical fashion. 
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append zs zs 

reverse x8 

= c a s e  z 8  o f  

y : ys :=~ y : append ys zs 

: c a s e  x s  o f  

[] ~ [] 

y: ys ==~ append (revese ys) [y] 

append ~ O~ 

append 2 

Figure 5: More example programs 

= (zs ~ NIL&zs  ~ ~) 

U(xs ~ (CONS ( (y:  append ys zs)" ~) 

( ( y :  append y~ zs )" ~) ) 

&(y" append ys zs) ~' a)) 

= (NIL & ABS) 

u((CONS (y' (HEAD a) & (append ys zs)~ (TAILs))  

(y" (HEAD ~) & (append ys zs)" ( TAILcO)) 

&ABS) 

- NIL a (CONS (HEAD a) (append 1 (TAIL a))) 

= (zs TM NIL & zs ~' ~) 

U(xs" (CONS ( (y:  append ys zs)' a) 

( (y:  append ys zs) y° o~)) 

a(y: append Vs zs)" ~)) 
= (ABS ~ ~) 

u(ABS 

&(y~ (HEAD a) & (append ys zs) ~' (TAILs)))  

= ~ ~ append 2 (TAIL a) 

Figure 6: Context analysis of append 
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Applying the above techniques we can derive, among other results, the following: 

(1) before ~ ID = ABS U INF STR 

(2) before 1 STR = 1NF STR 

(3) doubles 1STR  = STR 

(4) double~X (INF STR) = INF STR 

(5) append ~ (FIN STR) = FIN STR 

(6) append 2 (FIN STR) = FIN STR 

(7) append ~ (INF STR) = INF STR 

(8) append ~ (INF STR) = ABS  tJ INF STR 

(9) reverse 1 STR = FIN ID 

(10) reverse ~ (FIN STR) = FIN STR 

Line (1) shows that before is head strict (recalling that H = ABS u INF STR), and line (2) shows 

in addition that it is strict. (In fact, line (1) follows immediately from line (2), by an application 

of the guard rule.) Line (3) shows that doubles is strict, but says nothing else, while line (4) shows 

that doubles is head strict in a head strict context. Lines (5-6) show that in a context requiring a 

completely evaluated list, append must completely evaluate both its arguments. Lines (7-8) show 

that in a head strict context append is head strict in both arguments, but it is only strict in the 

first argument. Line (9) shows that the argument to reverse must be a finite list, and line (10) 

shows that if reverse is ewIuated in a head and tail strict context, then so is its argument. 

The results for reverse are particularly significant, since in the original work on contexts [Hug85] 

the analysis of reverse was more problematic. The analysis method has also been applied to a few 

other functions (the other common definition of reverse, insertion sort) with equally good results. 

What are the method's limitations? The major one is that conditional and case expressions 

have a special role. For instance, if we define a function eond by 

e o n d x y z  = if z then  y else z 

and then replace an arbitrary conditional by an equivalent call on cond, then analysis of the 

transformed function may give a much worse result. This is worrying, although more research is 

needed to discover whether this will be a significant problem in practice. 

8 Re la t ion  to  o ther  work  

Burn's evaluation transformers. Geoffrey Burn has suggested evaluation transformers as a way 

of controlling parallelism in a functional language implementation [Bur87]. There are some close 

relationships between his work and ours, but also some important differences. 

Burn introduces four evaluators, C0, C~, C2, Ca, which correspond to the four projections ID, 

STR, T', H' R TL His main result can be re-phrased in our terms as follows: it is safe to use an 

evaluator ei(in the sense that this will waste no work) whenever it is safe to apply the corresponding 

projection (in the sense that this will not change the result). 

For example, writing f (~'2 e) means that the spine of e can be evaluated in parallel with the 

application of ] .  This is rather different than writing f (T'  e), which insists that the entire spine 

of e is evaluated before it is passed to f .  However, f (C~ e) wastes no work (evaluates no unneeded 

portion of the spine) only when / (T' e) = / e (that is, only when f is tail-strict). The key to Burn's 
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work is this link between an operational notion of safety ("wastes no work") and a denotational 

one (Udoesn't change the result"). 

Burn's analysis is based on Wadler's previous work [Wad87]. Whether evaluation transformers 

can take advantage of the extra information revealed by projection analysis (such as absence or 

head strictness) is one of many remaining open questions. 

Dybjer's inverse image analysis. Inspired by earlier work on context analysis, Peter Dybjer 

has devised a method of analysis based on inverse images of open sets [Dyb87]. The method has 

a simple and elegant mathematicM foundation. Like earlier work on contexts, it uses algebraic 

manipulation to solve equations. 

Interestingly, the open sets used by Dybjer correspond exactly to a restricted class of projections. 

Namely, open sets correspond to projections a with the additional restriction that for each u, either 

a u = ~ or a u = u. It is easy to see that with this restriction, the & operation defined in Section 

6.4 is exactly equivalent to Flo The projections STR and T ~ satisfy this restriction, while ABS  

and H'  do not. Thus open sets can describe strictness and tail strictness, but appear ill-suited for 

describing absence and head strictness. 

Hall's strictness pattern~. Cordelia Hall's strictness analyser is based on strictness patterns 

[HW871. There are striking similarities between strictness patterns and projections; compare the 

strictness pattern laws, $$Ir = $~ and $ r  _ r ,  to the projection laws, a(c~ u)= a u, and a u E_ u 

(note that strictness patterns reverse the ordering). However, there appear to be no strictness 

pattern corresponding to ABS.  

Unlike us~ Hall can extract useful strictness from a list in which, say, every other element is 

strict. Also unlike us, Hall has examined the question of how to generate different versions of a 

procedure depending on the context in which it is called. Overall, the two works appear to be 

complementary. Whereas our work has stressed simple foundations, Hall's has stressed practical 

issues in building a prototype. 

Wray's strictness analyser. The relation between the four point domain { ID, STR, ABS,  FAIL} 

and the work of Stuart Wray [Wra86,FW86] has already been mentioned. Wray's analyser also 

handles higher-order functions and a flexible type system; this inspired the similar extensions for 

backwards analysis outlined in [Hug87b]. 

Finally, here are two applications of projections outside of strictness analysis. 

Bjerner's complexity analysis. An important open problem is analysis of the time and space 

complexity of lazy functional programs. Bror Bjerner has devised an elegant solution to this 

problem for the programming language of Martin-LSf's type theory [Bje87]. The solution makes 

use of evaluation notes to describe how much of the result of a program is required. It appears 

straightforward to adapt projections for use as evaluation notes, and to adapt Bjerner's method to 

lazy functional languages. 

Pre-order traversal. In connection with Wadler's work on the listless transformer, it was nec- 

essary to describe the notion of pre-order traversal of a data structure [Wad85b]. This was done 

by introducing a function PRE, satisfying P R E  E ID and PRE o PRE = PRE. A function f was 

pre-order if PRE o f = PRE o / o PRE. In other words, pre-order traversal was characterized 

by a projection. (Thus, this paper can be applied directly to solving the problem, posed by that 

paper, of how to analyse pre-order traveral.) 

It was exactly at this time that the two authors were pursuing the work on strictness analysis 

described in the introduction. But it was not until a year later that Wadler realized that  this 

approach could describe the work of Hughes! 



405 

9 C o n c l u s i o n  

This work has provided a simpler explanation of contexts than available previously. The finite do- 

mains for lists presented here make it possible to solve recursive equations in a straightforward way, 

using standard fixpoint techniques, which has advantages over the previous method of algebraic 

manipulation. 
An important next step is to extend backwards analysis to languages with higher-order func- 

tions and p01ymorphic typing; a way of doing this is outlined in [Hug87b]. Some applications of 

projections outside strictness analysis were suggested in the last section. We hope the approach 

presented here will provide fertile soil for future developments. 
Our projection for strictness analysis is a rosy future. 
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