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1. Introduction. The object of this paper is to study normed linear spaces
which have what we shall call property P, and to study in particular those
normed linear spaces which have property Pi. A normed linear space X has
property Ps, s 2:1, if and only if for every normed linear space F containing
X, there exists a projection T, ||r|| ^s, of F onto X.

The terminology used is for the most part as given in Banach [3](2) and
Murray [16]. Thus a Banach space means a complete normed linear space;
a linear transformation means a bounded and distributive transformation;
and a projection means a linear transformation T with the property that
T2=T. Our notation is, we believe, for the most part standard and it is
chosen so as to be the same as that of our references whenever possible.

In §2 we study some of the general properties of spaces which have
property P„ and we develop a necessary and sufficient condition for a space
to have property P„. Lemma 2.3 is of particular importance and is used
throughout the remainder of this paper.

In §3 we discuss some problems which led to the formulation of Akilov's
theorem [2, p. 646] and also give a new proof of the theorem. This theorem
gives a sufficient condition for certain normed linear lattices to have property
P..

§4 is a study of some of the conditions imposed upon the unit sphere of
a space which has property Pi. An important technique, used in many later
proofs, is developed and used to discover several necessary conditions for a
space to have property Pi.

In §5 we characterize normed linear spaces which have property Pi and
which have extreme points on their unit spheres. A partial ordering is intro-
duced into each space, and then a theorem of Clarkson's is applied to show
that the space is equivalent to the space of all continuous real-valued func-
tions over some compact Hausdorff space H.

Kakutani [10, p. 998] has shown that every abstract (Af)-space has a con-
crete representation. In §6 we find that an abstract (Af)-space which has
property Pi has a concrete representation as the space of all real-valued con-
tinuous functions over some compact Hausdorff space H. The space H is
found to have the curious property of being extremally disconnected. A
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necessary and sufficient condition for spaces having property Pi to be reflexive
is given. Finally, the known examples of spaces having property Pi are dis-
cussed.

2. Spaces which have property P.. In this section we shall study some of
the properties of normed linear spaces which have what we shall call property
P..

2.1 Definition. A normed linear space X has property P„ s 2:1, if and
only if for every normed linear space F containing X there exists a projection
T, \\T\\^s,oí Y onto X.

In parts of our work it will be necessary to specify that F is a Banach
space. This requirement involves no real loss of generality, since any normed
linear space YZ)X is contained in a complete space Y' such that a projection
T of norm 5 of Y' onto X is a projection of norm s of F onto X.

Our first theorem shows that a normed linear space which has property P,
is a Banach space.

2.2 Theorem. If X is a normed linear space which has property P„, then X
is complete.

Proof. Let F be a Banach space containing X. Since X has property P,,
there exists a projection T, \\t\\ ¿s, of F onto X. Let {xn} be any Cauchy
sequence in X and let lim»,.« x„ = y. Then y is in F since F is complete.
Therefore lim„.„„ T(xn) = T(y) since T is continuous. But lim„..007,(x„)
= lim„^.00 x„ and hence T(y) =y. Therefore y is in X and X is complete.

Two normed linear spaces are equivalent [3, p. 180] if there exists be-
tween them a one-to-one transformation U which is linear in both directions
and || U\\ —1| Í7_1|| = 1. This definition leads us to the following extremely use-
ful lemma.

2.3 Lemma. If a normed linear space X is equivalent to a normed linear
space Y and if X has property P„, then Y has property Ps.

Proof. Let IF be a normed linear space containing F and let

z = zu(nrnc7) = iur
where CY is the complement of F and W = Wr\CY. Then if F is the equiva-
lence between X and F, we can extend F to U on Z by defining

U(z) = U(w') = w' if   zGW GZ

and

U(z) = U(x) = V(x) = y if   z G X G Z.

Then U is a one-to-one transformation between Z and W.
We define the operation of addition between the elements of Z to mean
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zi + z2 = x if    U(zi) + U(z2) = Wi + w2 = y = U(x)

and to mean

zi + z2 = w' if    Z7(2i) + U(z2) = wi + w2 = w' = U(w').

If a is a real number, we define scalar multiplication by

azi = z2 = U~1[aUizî)].

Finally, we define a norm in Z by

||*|| = || £7(a) || = ||w||.

It is easily verified that these definitions make Z a normed linear space and
that U is an equivalence between Z and W.

T\\ ás, of Z onto
T'W^s. Hence F

Since X has property P„, there exists a projection T,
X. Let T'= VTU~\ V is a projection of IF onto F and
has property P8, which was to be shown.

The proof of our next lemma uses the concept of the adjoint transforma-
tion T* of a linear transformation T. If X is a linear subspace of the normed
linear space F and T is a projection of F onto X, the adjoint mapping T*
of r is defined by the relation T*(f) —g implies g(y) =f(Ty) for all y in F,
where jGP and fGX*. \\T*\\ =||r||; T* is one-to-one on X* into F*; and
if X and F are complete, X is isomorphic to F/7\0)_1 and T* is an iso-
morphism of X* and [T^O)-1]-1 [6, Theorem 1.13, chap. 4].

2.4 Lemma. If the normed linear space X has property P„ and if Y is a
normed linear space containing X, there is a subspace G of Y* which is iso-
morphic to X*, and there is a projection TA, \\Ta\\ ^s, of F* onto G.

Proof. Since X has property P„ and F is a normed linear space containing
X, there is a projection T, \\t\\^s, of F onto X. Let T* be the adjoint
mapping of T and let G = T*(X*). Then

G = {h\h(y) = h(Ty) = T*f(y), h G Y*, fGX*}.
Define the transformation TA by

TAA = g   implies    g(y) = TAh(y) = h(Ty),        gGG.

The reader may verify that TA is a projection, ||rA|| = ||7]|, of  F* onto
G=T*iX*).

The final theorem in this chapter gives a necessary and sufficient condi-
tion for a space to have property P„.

2.5 Theorem. A normed linear space X has property Ps if and only if for
each Banach space Y containing X there exist a closed linear subspace G of
F* and a projection TA of Y* onto G such that

a. ||rA||^,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



<>2 D. B. G00DNER [July

b. Y=G±®X,
c. TAh = g implies TAhig±+x) =gigj_+x) = &(x), hGY*, gGG, gxGG±,

and xGX.

Proof. Suppose TA and G exist. Then Y=G±®X by hypothesis. (Ga
= {y|g(30 =0, yGY, gGG}.) If we define Ti by the relation 7\(y) = T"i(g±+x)
= x, J"i is a projection of F onto X [16, p. 139].

TtiX*) ={h\ hiy) = T*ify) = /(Ti?), / G X*}
= {*| A(y) = *(iJL + x) = *(*)} = G.

Define TA by TAih)=g implies g(y) = TAhiy) = A(Tiy) for all y in F. Then
Tfih) = TAih) for all A, so ||7?[| HMI gi. But |[2"x|| = ||7?|| £$. Therefore,
X has property P«.

If X has property Ps and if F is a Banach space containing X, there is a
projection T, \\t\\ ^s, oí F onto X. r*(X*) = [FÍO)-1^, and by Lemma 2.4
there is a projection TA, ||rA||¿s, of F* onto [r(O)-1]-1-. Let G = [r(O)-1]-1-.
Then Ga= [r(0)-1]±L = 7\0)-1. Hence F=Gj.0X since F=T(0)-1©X. Con-
dition c is satisfied by our definition of TA; therefore the proof is complete.

3. Akilov's theorem. Akilov in a short paper [2, p. 643] considered two
problems on the extension of linear operators from one normed linear space
to another and in a later paper [l, p. 417] showed that the properties studied
in the two problems are equivalent. Day [5, p. 241] noted that both problems
are equivalent to the study of spaces with property Ps. We shall state Akilov's
problems together with a third problem and show that the three properties
involved are equivalent; that is, a space which is a solution (has the property
described in the problem) to one of the problems is a solution to the other
two. However, before we state the problems a definition is necessary.

3.1 Definition. Given a linear subspace X of a normed linear space Z
and a linear transformation !T on X into a normed linear space F, we shall
call a linear transformation Ti on Z into F an extension of T if 7"i(x) = 7\x)
for all x in X and ||7\|| =||r||.

Problem 1. Given a normed linear space F, does there exist for each
normed linear space X, each linear transformation T of X into F, and each
normed linear space Z containing X, an extension 7\ of T on Z into F?

The familiar Hahn-Banach theorem [3, p. 55] provides an affirmative
answer to problem 1 if the normed linear space F is the real line.

Problem 2. Given a normed linear space X, does there exist for each
normed linear space F, each linear transformation T from X into F, and
each normed linear space Z containing X, an extension Z\ of T on Z into F?

Problem 3. Given a normed linear space X, does there exist for every
normed linear space Z containing X, an extension Ti of the identity trans-
formation i~ of X onto X such that Ji transforms Z onto X?

In this case Ti, if it exists, is a projection of norm one of Z onto X and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1950] PROJECTIONS IN NORMED LINEAR SPACES 93

any space X which provides a solution to problem 3 has property Pi.
Proof that problem 2 implies problem 3. Suppose X is a space which

satisfies the conditions of problem 2 and let F=X. Then the identity trans-
formation / of X onto X is a linear transformation of X into F. Hence, by
problem 2 there is an extension TV of I such that 7\ transforms Z into X; that
is, there is a projection T\, || 7\|| = 1, of Z onto X.

Proof that problem 1 implies problem 3. Suppose F is a space which
satisfies the conditions of problem 1 and let X—Y. Then the identity trans-
formation 7" of X onto X is a linear transformation of X into F. Hence by
problem 1 there exists an extension Ti of I such that 7\ transforms Z into
X; that is, there is a projection J"i, || 7i|| =1, of Z onto X.

Proof that problem 3 implies problem 2. Suppose X is a space which
satisfies the conditions of problem 3 and let T be a linear transformation of
X into F. If Z contains X, there is a projection P, ||p|| = 1, of Z onto X.
Then the linear transformation 7\ = TP is an extension of T, and 7\ trans-
forms Z into F.

Proof that problem 3 implies problem 1. Suppose F is a normed linear
space which satisfies the condition of problem 3 and let T be a linear trans-
formation of a normed linear space X into F. If miS) is the space of all
bounded real-valued functions on S, the unit sphere of F*, we can imbed
Fin m(S) by an equivalence U defined by 77(y) =y' implies s(y) =y'(s) for
all s in 5. Suppose Z is a normed linear space containing X. Then by Phillips'
Corollary 7.2 [18, p. 538] the linear transformation UT of X into m(S) has
an extension 7\ which transforms Z into w(5). Since F has property Pi,
F'= I/(F) has property Pi by Lemma 2.3. Hence there is a projection P, \\P\\
= l,oimiS) onto Y'. Let T'= U~lPTi. T' is the required extension of T which
transforms Z into F.

The proof of our next theorem is similar to the proof that problem 3
implies problem 1.

3.2 Theorem. // the normed linear space Y has property P„, if T is a pro-
jection of norm t, and if T projects Y onto a subspace X of Y, then X has prop-
erty Päi.

Proof. If miS) is the space of all bounded real-valued functions on S, the
unit sphere of F*, we can imbed F in miS) by an equivalence U defined by
Uiy)=y' implies s(y)=y'(s) for all s in S. Suppose Z is a normed linear
space containing X. Then by Phillips' Corollary 7.2 [18, p. 538] the linear
transformation U of X into w(5) has an extension F which transforms Z
into m(5). Since F has property P„, F'= 77(F) has property Ps by Lemma 2.3.
Hence there is a projection P, \\P\\ ^s, oí w(5) onto F'. Let T'=TU~lPV.
Then T' is a projection of norm less than or equal to st, and T' projects Z
onto X. Hence X has property P„¡.

Akilov's study of problems 1 and 2 led him to the formulation of a suffi-
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cient condition (which we shall call Akilov's theorem) for a normed linear
space to have property Ps. His proof of the condition was based on Kantoro-
vitch's extension theorem [13, p. 285]. The proof we present here resembles
the proof of the Hahn-Banach theorem and does not make use of the Kan-
torovitch theorem.

A space is of type B£ [2, p. 643] if it is simultaneously of types Tv6 and Bi
[ll, pp. 210-212]. Using this definition we state and prove Akilov's theorem
[2, p. 646] in the following form [5, p. 241].

3.3 Theorem. If the normed linear space X is of type Bf, if the unit sphere
C of X has a least upper bound xo, and if ||xo|| =s, then X has property Ps.

Proof. Let Z be a normed linear space containing X, let p be a sub-addi-
tive, positive-homogeneous transformation on Z into X, and let / be a dis-
tributive transformation on X into X such that /(x) ^p(x) for all x in X.
Substituting X for the real numbers in a proof of Banach's [3, p. 28], we can
show there exists a maximal function T^o which is defined on all of Z and
which has the properties that 7*0 (x) =/(x) for all x in X and Fo(z) ^p(z) for z
in Z.

Let p be the sub-additive positive-homogeneous function defined by the
relation p(z) = Xo||s||. If we take the identity function / of X onto X as/,
I(x) úp(x) for all x, and I can be extended to a distributive function T such
that T(z) ¿p(z) =xo||3|| and T(x) =x. T is a projection, || T\\ =s, of Z onto X.
Hence X has property P„ and the proof is complete.

Let lv,n be the space of ordered w-tuples of real numbers {a}
= {(ai, a2, • ■ ■ , o„)}, l^w<oo, with the norm ||a||=(Z?=i k¿|p)1/p, lá¿
< œ. If the usual partial ordering—that is, a'2:a" if and only if a' 2:a¡' for
all i—is introduced, it can be easily verified that lp,n satisfies the conditions
of Akilov's theorem and has property Ps, s = nllp.

In a later section we will consider other examples of spaces which satisfy
Akilov's theorem. However, for the present, we shall content ourselves with
a brief examination of two spaces which do not have property P, but which
satisfy all but one of the conditions of the theorem.

Sobczyk [19, p. 945] proved there is no projection of (m), the space of
bounded sequences, onto its subspace (co), the space of sequences convergent
to zero. Hence (co) does not have property P.. (Co) is a space of type Bf but
its unit sphere has no upper bound in the space.

Fichtenholtz and Kantorovitch [7, p. 92] proved there is no projection
of 717(0, 1), the space of all bounded functions on the unit interval, onto its
subspace C(0, 1), the space of continuous functions on the unit interval.
Hence C(0, 1) does not have property P.. C(0, 1) is a space of type 73i, and
its unit sphere has a least upper bound of norm one. Hence C(0, 1) satisfies
all conditions of Akilov's theorem except the one requiring that all sets
bounded above have a least upper bound in the space.
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4. The unit sphere of a space which has property Pi. Let X be a normed
linear space and let C be the unit sphere of X. The purpose of this section
is to study some of the conditions which are imposed on C if X has property
Pi. In order to do this we make frequent use of a technique which is of im-
portance in much of our later work. Briefly it is this: our first lemma tells us
that X has property Pi if and only if the unit sphere K of any normed linear
space F containing X projects onto C; we let F be a linear (as yet unnormed)
space containing X and of dimension one greater than the dimension of X
and find points in F not in X which are symmetric about the origin and such
that their convex hull intersects X in or on C; we then norm F by letting K,
the unit sphere of F, be the closed convex hull of these points and C; then if
we have selected the points of K so that at least one of them must project
outside of C, we know that X does not have property Pi.

4.1 Lemma. The normed linear space X with unit sphere C has property
Pi if and only if for each normed linear space Y containing X there is projection
T of Y onto X which projects the unit sphere K of Y onto C.

Proof. If for each F containing X there exists a projection T of F onto X,
such that T(K) = C, then ||TJ|»lub^isa ||r(y)|| =lub|¡,ngi ||x|| = l. Hence X
has property Pi.

Suppose that for some F containing X there is no projection of F onto X
or that if a projection T of F onto X exists, there is a yo in K such that
T(yo) is not in C. Then

||r|| è ||r(yo)|| > i
and X does not have property Pi.

4.2 Theorem. If p and q^p, —p are extreme points of the unit sphere C
of the normed linear space X which has property Pi, the line segment connecting
p and q lies wholly on the surface of C.

Proof. Assume the line segment connecting p and q does not lie wholly on
the surface of C. Then (p + q)/2 is inside C since C is convex. Also (p + q)/2 is
not equal to zero for q is not equal to —p. Hence there exists a point r
= t(p+q) such that l/2<f£il and r is in or on C. Let b = (2t-l)(p+q). Let
F be a linear (as yet unnormed) space containing X and of dimension one
greater than the dimension of X; let yo be a fixed element of F not in X; let
K, the unit sphere in F, be the smallest closed convex set containing C and
the eight points + p + yo, ±q + (yo + b).

Our next step is to show that K(~\X=C. Let S be the convex hull of
+ p + yo, ±2±(yo+&). If a point in C is of the form as +(l—a)c, s in S,
c in C, a 7^0 a real number, then s is in SC\X; so it suffices for our purpose to
prove Si^iX is contained in C. S intersects X in a polygon which can have
extreme points only where a line segment of 51 connects two extreme points
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of S which are not in C. Checking all possibilities will show that the extreme
points of SC\X are +p, +q, and ± r. But these points were chosen so that
the hexagon they determine is in C. Hence KC\X=C.

Our final step is to show that every projection of F onto X carries a point
of K outside of C. Let T be a projection of F onto X and let T(yo) =xo. Then
T carries the line segment from p+yo to p—yo onto the line segment from
p+xo to p — Xo- Since p is an extreme point of C, either one end point of the
segment is outside of C or both end points equal p and Xo = 0. For T to be of
norm one, the latter condition must hold. Then T(q+ iyo+b)) =q±b. But q
is an extreme point so ||g+¿>||>l or ||g —¿>||>1, and consequently ||7]|>1.
Hence our assumption was false and the theorem is proved.

4.3 Theorem. If the normed linear space X has property Pi and if p is an
extreme point of the unit sphere C of X, then any point q of norm one, q^p, —p,
can be connected to either p or —p by a line segment lying entirely on the surface
ofC.

Proof. Assume there is a point q of norm one such that the line segments
pq and — pq do not lie on the surface of C. Then ip+q)/2 and ( — p + q)/2
are inside C and are not the zero element. Hence there is a point r\ in C be-
tween the points ip+q)/2 and (p+g)/||/>+g|| and a point r2 in C between the
points i-p+q)/2 and i-p + q)/\\-p + q\\- Let ei = l-|H| and e, = l-||r,||.
d>0 and e2>0. Let e equal the smaller of ei and e2 and let k equal the larger
of \\p+q\\ and ||-p + s||- Then if &i = (e/A) ip + q) and b2 = ie/k)i-p + q), \\bi\\
gc and ||ô2|| Èï*. Let F be a linear (as yet unnormed) space which contains
X and which is of dimension one greater than the dimension of X, and let
yo be an element of F not in X. Let K, the unit sphere in F, be the smallest
convex set containing C and the points +p+yo, +q+ iyo+bi + b2). Then
Kr\X=C.

Since X has property Pi, there is a projection T, \\t\\ = 1, of F onto X.
Let Tiyo) =xo. T carries the line segment from p+yo to p — yo onto the line
segment from p+xo to p — Xo. Since p is an extreme point of C, either one end
of the line segment is outside of C or both ends equal p and xo = 0. For T
to be of norm one the latter condition must hold. Then Tiq+yo + bi+b2)
= q+bi + b2. ||g+ôi+è2|| = |l+2e/A|>l. But ||g+yo + èi+Z>2|| = 1 ; so, by
Lemma 4.1, X does not have property Pi, and our assumption has led to a
contradiction. Hence the theorem is proved.

4.4 Lemma. Let X be a normed linear space with unit sphere C and let Y be
a linear space containing X and of dimension one greater than the dimension of
X. Let E be a subset of C of diameter d<2 and let a —minimum (1, 2/d — 1).
If yo is fixed in Y and is not in E, and if K is the closed convex hull on C and
the set of all points of the form ex+miax+yo), e= ±1, m= ±1, x in E, then
xr\x=c.
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Proof. Let Xi and X2 be any two points of E and consider the convex hull
C on exi+miaxi+yo) and e'x2+m'iax2+yo) where e, e', m, and m' are
equal to +1 and a is positive. CT\XGCii w = (exi+axi + e'x2 — ax2)/2 is in
C. If e = e', w=((e+a)xi+(e — a)x2)/2 and agi implies ||w||^l. If e=—e',
w= (e+a)(xi—x2)/2 and this is in C if |e+a| ^2/||xi — x2\\. This is possible
for a>0 only when \\xi — x2\\ <2; a suitable choice is, in fact, 2/||xi — x2\\ — 1.
Then w lies in C if a = minimum (1, 2/d — l). Hence KC~\X=C.

4.5 Corollary. If the normed linear space X has property Fi, each extreme
point of the unit sphere C is at a distance 2 from every other extreme point of C.

Proof. Form K as described in Lemma 4.4 and let K be the unit sphere
of F. Since X has property Pi, there is a projection T, || T^H =1, of F onto X.
Hence exi+w(axi+yo) in K must project into exi+m(axi+T(yo))=exi
+m(axi+u) in C. Then axi + u is in (C — Xi)r\(C+Xi). If Xi is an extreme
point, (C—Xi)P>(C+Xi) =0, so axi + w = 0 or u= —axi. If both Xi and X2?£Xi
are extreme points of C, u = — axi = — ax2, so a must be zero. Then by Lemma
4.4 the set E consisting of Xi and X2 must be of diameter 2.

By a face of the unit sphere C of the normed linear space X we shall mean
a maximal convex subset of the surface of C.

4.6 Lemma. If the normed linear space X has property Pi and if E of
diameter less than or equal to one is a subset of the unit sphere C, then all faces
of C which contain points of E intersect in some point of C.

Proof. Let F be a linear (as yet unnormed) space containing X and of
dimension one greater than the dimension of X. Form K as described in
Lemma 4.4 and let K be the unit sphere of F. There is a projection T,
||jT|| = 1, of F onto X since X has property Pi. If exi+m(axi+;yo) is in Kf
exi+miaxi+T(y0)) is in C. Then axi+Tiya) = axi + u is in (C — Xi)P\(C+Xi).
Hence u is in (C — Xi — axi)i^iC+xi — axi). Since the diameter of the set E
which contains Xi is less than or equal to one, a=\, u is in (C— 2xi)(~\C,
and -u is in Cn(C+2xi). If ||xi|| =/i(xi) =||/i|| = 1 for f in X*, then Hi
= {x|/i(x) = 1} separates C from C+2xi, so u lies in HiC\C. Suppose Xi and
x2 are in E and ||xi|| = ||x2|| = 1; then there exist f and f in X* such that
||/i||=||/2||=l and/i(xi)=/2(x2)=i. Let F<« {x\xGC and f(x) = 1, i=l, 2}.
-u is in Cn(C+2x2) as well as CC\(C+2xi). Then Fir\F2D~u. Hence all
faces of C which contain points of E intersect in a common point.

The proof of our first corollary makes use of Mazur's theorem [14, p. 73]
that if K is a convex body in a normed linear space X and if E is a flat sub-
set of X which contains no interior points of K, then there exists a hyper-
plane H such that H^E and K lies on one side of H.

4.7 Corollary. If X, Y, E, y0, T, and u are as in the lemma, if ||xi||
= IIxjII =1, if XiGE, and if the line segment from Xi to x2 is on the surface of C^
then the line segment from —u to x2 is on the surface of C.
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Proof. By Mazur's theorem there is a hyperplane H containing the line
through Xi and x2 and such that C lies on one side of H. Then by the lemma
— u belongs to Hi\C. Since HT\C is a convex set on the surface of C, the
line segment from —utox2 must lie on the surface of C.

The next corollary is from Akilov [l, p. 417].

4.8 Corollary. No n-dimensional normed linear space (1 <«<«>) such
that the tangent hyperplane at each point of the unit sphere is unique has property
Pi.

Proof. Let X be an M-dimensional normed linear space (1<»<°°) with
property Pi. Since X is finite-dimensional its unit sphere C has an extreme
point e. Let E be the set of all points on the surface of C at a distance less than
or equal to 1/2 from e. Let F, T, yo, and u be as in the lemma. Then all
tangent hyperplanes to C which contain points of E must pass through e.
Hence a tangent hyperplane at e is not unique.

4.9 Theorem. A normed linear space X does not have property Pi if there
exists in X a hyperplane 11= jx|/(x) = 1 =||/||} such that HC~\C (C the unit
sphere of X) is an n-dimensional simplex, 3^n.

Proof. Let F be a linear space containing X and of dimension one greater
than the dimension of X. Suppose IT exists and let pi, p2, ■ ■ ■ , pn be the
vertices of F=Hi^C. The centers of the faces of F are g; = (l/(w — 1)) J^v.- p¡
where i, j= I, 2, • • • , n.

Ik* - ?*ll =-: \\P* - PÁ\ = 1-n—l

Hence E= {g¿}, i= 1, 2, • • • , n, is a set of diameter less than or equal to one.
Let yo be a fixed point in F which is not in X and construct the points
±g.-±(g;+yo), ¿ = 1, 2, • • • , n. Then if K is the closed convex hull of these
points and C, KC\X=C by Lemma 4.4. Let K be the unit sphere of F. If
X has property Pi there exists a projection T, \\T\\ =1, of F onto X. T( + qt
+ (g<+yo))= ±g¿ + (g« + w) is in C and by our previous work — u must be
on every face of F. Since this is impossible, X cannot have property P¡.

Our next corollary is from Akilov [l, p. 417].

4.10 Corollary. No abstract (L)-space (AL) of dimension greater than
or equal to 3 has property Pi.

Proof. Realize (AL) as a space L' of measurable functions which are
integrable with respect to a completely additive measure on some space
5 [9, p. 533]; take three disjoint subsets Si, i=l, 2, 3, of S such that
each Si is of positive finite measure, and let L be the subspace of L'
spanned by the three characteristic functions of these sets. Then let Tf = g
mean that g(s) =0 if 5 is not in one of the three sets and let g(s) be equal to
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the average value of / over Si, i = l, 2, 3, if 5 belongs to 5¿. It may be easily
verified that T is a projection, || T\\ = 1, of L' onto L. Then if L' has property
Pi, L has property Px by Theorem 3.2. But L does not have property Pi by
Theorem 4.9. Hence L' does not have property Pi. Lemma 2.3 then tells us
that (AL) does not have property Pi.

5. A characterization of certain normed linear spaces which have prop-
erty Pi. The purpose of this section is to characterize those normed linear
spaces which have property Pi and which have extreme points on their unit
spheres. Since an equivalence preserves extreme points, such a characteriza-
tion includes spaces with property Pi, any one of which has an extreme point
on its unit sphere; hence it includes finite-dimensional spaces, conjugate
spaces, and reflexive spaces, which have property Pi. The extreme point is
used to introduce a partial ordering in X. This partial ordering enables us
to show that a space with property Pi is equivalent to the space of all real-
valued continuous functions over some compact Hausdorff space H. From
this the characterization follows easily.

Let C, the unit sphere of the normed linear space X which has property
Pi, have an extreme point u. Let

Cu = {x | x = tx', x' G C + u, t real, / 2; o}.

Cu is closed [4, p. 849]. We define Xi2:x2, Xi and x2 in X, if and only if Xi—X2
is in Cu. This definition gives X a partial ordering such that the unit sphere
C of X consists of just those elements x with —u^x^u [4, p. 850].

5.1 Lemma. Let the normed linear space Y%with unit sphere K contain the
normed linear space X in which the unit sphere C has an extreme point u. A
projection T of Y onto X maps K onto C if and only if it maps Ku = {y | y = ty ',
y'GK+u, 72:0} onto Cu.

Proof. Suppose T maps K onto C and let y = ty' be in Ku where t is a
real number greater than or equal to zero and y' is in K+u. Then y = t(y"+u)
where y " is in K. '

T(y) = THiy" + u)) = <(r(y") + r(«)) = tix" + u)
where x"G C. Hence

Tiy) = tix" + u) = tix') G Cu   where    x' G C + u.

Hence T maps Ku onto Cu.
Suppose T does not map K onto C; that is, suppose there is a y in K such

that Tiy) =x is not in C. Then ||x|| >1. We assume x is in Cu — u, for other-
wise we are done. Then x+uGCu; that is, x2: — u. — yGK since yGK and
hence Ti— y) = — x(£C since x(£C. Suppose — x+u is in Cu- Then w2:x.
Hence —u^x^u and x is in C, a contradiction since ||x|| >1. Then — x+u is
not in Cu as we assumed above. Thus u—y is in Ku but Tiu — y) =u — x is
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not in Cu. Hence if TiK)?¿C, TiK^^Cu, that is, T(KU) =CU implies T(K)
= C.

5.2 Lemma. If the normed linear space X has property Pi, if the unit sphere
C of X has an extreme point u, and if Xi2:x2 means Xi — x2 is in Cu, then every
set in X bounded above has a least upper bound.

Proof. Suppose there is a set A in X such that A is bounded above but
has no least upper bound. Let B be the set of all upper bounds of A and ex-
pand A to include all lower bounds of B. Then a^x^b, a in A and b in B,
is impossible since x would be a least upper bound of the original set A. Let
F be a linear (as yet unnormed) space of dimension one greater than the
dimension of X, let y0 be a fixed element of F not in X, and let K¿ be the
smallest half-cone with vertex at the origin containing Cu, yo+B, and —yo
- A. Then K¿r\X=Cu.

If there exists a projection T of K¿ onto Cu, for b in B, Tiyo+b) = Tiyo)
+ bGCu and &2r—r(y0). Likewise for a in A, Ti—yo—a) = —Tiyo)—aGCu
and —Tiyo)^a. Then — T(y0) would have to lie between A and B, an im-
possibility. Hence there does not exist a projection of KÚ onto Cu.

Let a be a real number greater than zero and let bGB. If x = ab, x+cryo
=a(b+yo)GKÚ ■ If x+ayoGKÚ , xGK¿—ayo and x = a(b+yo) — ay0 = ab
for some b in B. Hence for a>0, x+ayoGKÚ if and only if x = ab with b in
B. Similarly, for a<0, x+ayoGKú if and only if x=aa with a in A, and for
a = 0, x+ayoGKÚ if and only if x G GM.

We are now ready to show that K¿ is closed. Suppose a is a real number
greater than zero. Let a„(xn+yo)—yx+ayo where anx„+anyoGKÚ. a„>0 for
n large enough since a„—*a. a„x„—>x and by a previous result x„GB for an >0,
so for large enough n, a„xn2:ana for each a in A. For e>0 there exists an n(e)
such that (e/2)u^(a — a„)a if n>n(e). Also there exists m(e) such that if
n>m(t), (e/2)u^anxn — x; that is, x2ta„x„ — (e/2)w. Combining these results
gives x^aa — eu. But since Cu is closed, x2:«a for all a in A. Then xGaB by
the definition of B and x+ayo = aib+y0)GKU ■ By similar arguments we
see that the same conclusion holds for a<0 and a = 0. Hence K¿ is closed.

Let

K = {x + ayo | | a | ^ 1, x + ay0 + u G KÚ, u — x — ayo G K¿ }.

K may be used as the unit sphere of F. Then

K + u =  {x + ay0| |a|   S 1, x + ay0 G K'u, 2u - x — ay0 G K'u}.

KuQKJ since K+uGK¿. Let zGK¿ ; then

z = x + a( — a — yo) + ßib + y0)

where xGCu, aGA, bGB, and a and ß are real numbers greater than or equal
to zero. For all real numbers X>0, Xz£7£¿ . To get X| — a+ß\ ^ 1 we need only
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takeX small. It remains to be shown that for X sufficiently small 2u—\zGKu'.
In this connection it suffices to show that for k sufficiently large, ku — zGKl,
for by setting X = 2/A>0, we have 2u— Xz£XX„' = K¿. Take &i = max (||x||, 1).
Then kiU—xGCu. Take k2 so that k2u+aaGccB, that is, so that k2u+aa = ab'
for some b' in B. Take k3 so that k^u—ßbG —ßA, that is, k3u—ßb= —ßa' for
some a' in A. Then ku— z = iki+k2+ki)u — x— a( — a — yo) — ßib+yo) =kiu
— x+aiyo+b')+ßi—yo —a')GKf Hence zGKu and KU~DKÚ ■ But we have
previously shown that KJ^K¿ so KU = KÚ.

There is a projection T, ||7]| = 1, of F onto X since X has property Pi.
Then TiK) = C by Lemma 4.1 and TiKu) = C„ by Lemma 5.1. But we have
shown above that TiKu ) = TiKu) ^ Cu. Hence our assumption is false and A
must have a least upper bound. This completes the proof of the lemma.

We now quote a theorem of Clarkson's [4, p. 847] with the notation
modified slightly so as to be consistent with the notation of our previous
work.

5.3 Theorem. Let X be a real Banach space. In order that there shall exist
a compact Hausdorff space H such that X is equivalent to CiH), the space of all
real-valued continuous functions over H, the following two conditions are neces-
sary and sufficient:

A. There exists an element u of C, the unit sphere of X, such that any element
of S, the surface of C, is co-facial either with u or —u.

B. The half-cone Cu has the property that the intersection of two of its trans-
lates is itself a translate.

The following lemma is a direct result of this theorem and our previous
work.

5.4 Lemma, i/ the normed linear space X has property Pi and if the unit
sphere C of X has an extreme point u, then X is equivalent to a space CiH) of all
real-valued continuous functions on some compact Hausdorff space H.

Proof. X satisfies Clarkson's condition A by Theorem 4.3. To show that
X satisfies Clarkson's condition B, we let Xi and X2 be any two elements in X
and prove that C„+Xi and C„+X2 intersect in a translate of C„.

Cu + Xi = { x j x — Xi 2: 0}.      Cu + x2 = { x | x — x2 2: 0}.

Hence iCu+Xi)r\iCu+x2) = {x|x — Xi^O, x —x22:0}. Let A = max (||xi||,
||x2||, 1). Aw2:xi and ku^x2 since m2:x if ||x|| ál. Then Xi and X2 are bounded
above. Therefore by Lemma 5.2 there exists in X an element Xo which is the
least upper bound of xi and X2. Hence iCu+Xi)r\iCu+x2) = Cu+x% is a trans-
late of Cu- Then X satisfies Clarkson's conditions and is therefore equivalent
to a space CiH) of continuous functions over some compact Hausdorff
space H.

Lemma 5.4 enables us to give another proof of Corollary 4.5. If the space
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X has property Pi and an extreme point on its unit sphere, X is equivalent
to a space CiH) by Lemma 5.4. The extreme points of the unit sphere of
CiH) are all at a distance two from each other. Since an equivalence preserves
distances and extreme points, the extreme points of the unit sphere of X are
at a distance two from each other.

5.5 Theorem. A normed linear space X with an extreme point u on its unit
sphere C has property Pi if and only if X is equivalent to a space Y of type B£
whose unit sphere S has a least upper bound v of norm one.

Proof. Suppose X is equivalent to a space F of type Bf whose unit sphere
S has a least upper bound v of norm one. Then F has property Pi by Akilov's
theorem. Therefore X has property Pi by Lemma 2.3.

If X has an extreme point on its unit sphere C and if X has property Pi,
then X is equivalent to a space CiH) of all real-valued continuous functions
over some compact Hausdorff space H, by Lemma 5.4. CiH) is a space of
type Bi when given its usual norm and partial ordering. But CiH) has prop-
erty Pi and hence is of type Bf by Lemma 5.2. Let v in CiH) be the element
such that vit) = 1 for all t in H. ||z>|| = 1 and v is the least upper bound of 5.
Hence CiH) is a space of type B£ whose unit sphere has a least upper bound v
of norm one.

6. Abstract (Af)-spaces which have property Px.

6.1 Theorem. An abstract iM)-space X which has property Pi has a unit
element.

Proof. X is isometric and lattice isomorphic to a space CiH; ta, tá ',
X«; «GSJî) by Kakutani's theorem [10, p. 998]. Let Q be the transformation
between the two spaces. Q preserves property Pi by Lemma 2.3, so
CiH; ta, tá ; X„; aGSDí) has property Pi. Hence there is a projection T,
\\t\\ = 1, of CiH), the space of all continuous functions on H, onto its sub-
space CiH; ta, tl ; \a; aGüD?).

We now show that if y is in CiH) and y 2:0, then Tiy) = x2:0. If y = 0,
Tiy) =0 and it is true for this case. Suppose y>0 but Tiy) =x is not greater
than or equal to 0. Then ||y|| >0 and ||x|| >0. Let yo = y/||y|| and xo=x/||y||.
Then ||y0|| =1 and ||xo||>0. Let x' = xoAO. x' is in CiH; ta, tj ; Xa; aGfflî)
since the space is a lattice; x'<0; ||x'|| =A>0. Since H is compact, there is a
/ in tfsuch that x'it) = -k. Let x" = x'/\\x'\\=x'/k. ||*"||=1, *"(*)--1,
and x"<0. Then ||yo+x"|| =T and Tiyo+x") =x0+x". But |(x0+x")(i)|
= | — k —1| >1, which is a contradiction since ||r|| = 1. Therefore our assump-
tion was false and Tiy) 2:0 when y 2:0.

Let v in CiH) be the element such that vis) = 1 for all 5 in H. If y is in
CiH) and ||y|| £1, then v — y 2:0; in particular if xis in CiH; ta, t¿ ;Xa;aG5D?)
and ||x||^l, then v—x2:0. Hence T"(w—x) =e — x2:0 since T is a positive
transformation. Then the element u = Q~1ie) in X is the unit element of X.
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6.2 Corollary. An abstract iM)-space X which has property Pi has a
concrete representation of the form CiH), where CiH) is the space of all real-
valued continuous functions over some compact Hausdorff space H.

Proof. By Theorem 6.1, X has a concrete representation of the form
CiH; ta, t¿ ; Xa; aGSJî) which has a unit element. Then by a proof of Kaku-
tani's [10, p. 1005], CiH; ta, t¿ ; X«; aGïDi) is actually the entire space C(H).

In Lemma 5.4 and again in Corollary 6.2 we found that certain spaces
which have property Pi are each equivalent to a space of all continuous real-
valued functions over some compact Hausdorff space H. We shall now turn
our attention to the compact Hausdorff space H and find that it possesses a
very curious property known as extremal disconnectivity. A Hausdorff
space H is said to be extremally disconnected if every pair of disjoint open
subsets of H have disjoint closures.

6.3 Theorem. The space C(H) of all real-valued continuous functions on a
compact Hausdorff space II has property Pi if and only if H is extremally dis-
connected.

Proof. Suppose C(H) has property Pi. Then by Lemma 5.2 every set of
elements of C(H) which is bounded above has a least upper bound. Stone
has shown [20, p. 186] that if C(H) has this property, then every open set in
H has a closure which is open. Then by a theorem of Hewitt's [8, p. 326],
the closures of disjoint open sets in H are disjoint. From this we conclude
that H is extremally disconnected.

C(H) is a space of type Bi and its unit sphere has a least upper bound e
of norm one where e is the element identically equal to one on H. If H is ex-
tremally disconnected, every set in C(H) that is bounded above has a least
upper bound [20, p. 186]. Hence C(H) is a space of type BJ~ whose unit sphere
has a least upper bound e of norm one. Then by Akilov's theorem, C(H) has
property Pi.

6.4 Theorem. The unit sphere S of C(H), the space of all bounded continuous
real-valued functions on an extremally disconnected Hausdorff space II, is the
closed convex hull of its extreme points.

Proof. Let K be the convex hull of the extreme points of S; let F be any
element of S; let € be a real number greater than zero; let N be the smallest
integer greater than 2/e; let the elements of H be denoted by x's. Our first
step is to show that there is an element of K within e of F, that is, there is an
element g in K such that \\F—g\\ ¿e. Let

Ei = {x|77(x) > 1 - e}.

Ei is open [15, p. 40]. Then E{ =cEx, the closure of E\, is open and closed
since H is extremally disconnected [8, p. 326]. Hence CE{, the complement
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of El, is open and closed. The characteristic function Ce[ of E[ is upper semi-
continuous since E{ is closed and lower semi-continuous since El is open.
Hence Ce[ is continuous. Let

E2 = {x|F(x) > 1 - 2e}.

Since E2 is open, cE2 is open and closed and hence E{ = CE{ C\cE2 is open and
closed. Then Ce[ is continuous. In general if

En = {x | F(x) > I - nt,n <: N},

then

H =(cVei\Eu = (C U E{) n (cEn)

is open and closed and has a continuous characteristic function Ce'„. Also
U^iE/ =iíand EiC\E¡ =0 when i^/. It is easily verified that Zi-i mtC^
are extreme points of 5 when m¡= +1.

Let kn^ne/2 for n<N and A.v = l. Form the functions

gi = h ^-CE[ + Z Ce) + (1 - ¿i) (c,; + Z C,^

= (1 - e)C*; + Z CV/(
3=2

J

n N

gn = Z (1 - ")C*;+ Z CB; for   n < N,
i=l î'=n+l

N-l

gN = Z (i — m)c^ — Cjv
•-i

An element g is in A! if and only if there exist an integer n, elements
g/, gl, • ■ ■ , gn in K, and positive numbers Oi, «a, • ■ ■ , aB with Z*-i a¿ = l
such that g = Z"-i a«'£<   [6, Theorem 2.9, Chap. 2].

In the above set of equations each kn is positive or zero and is less than or
equal to 1. Hence 0^kn, 1— A„Ssl for n=l, • • • , TV. A„+(l— A„) = l.
gn = A„|„_i+(l—A„)g„_i, n = 2, 3, ■ ■ ■ , TV where gn-i is equal to gn_i with the
sign of Ce'„ changed. g„_iG7"C when gn-iGK; so by the theorem just quoted
gnGK when gn_iGX. Then since giGK, all the gn are in K; in particular gx
is in K.

For any x in H there is an i^N such that Ei contains x. Then | F(x)
— gjv(x)| ^e. Hence \\F—g;v||^e; that is, for any F in 5 and e>0 there is an
element g in K within e of F.
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If we now choose a sequence {e(n)} of e's, such that e(«) =l/re, we can
find a sequence of functions g«(„) in K such that lim„<00 g((ni = F. Hence F
is in the closure of K; that is, 5 is the closed convex hull of its extreme points.

6.5 Corollary. If the normed linear space X has property Pi and if the
unit sphere C of X has an extreme point, then C is the closed convex hull of its
extreme points.

Proof. X is equivalent to CiH), the space of all real-valued continuous
functions over some compact Hausdorff space H, by Lemma 5.4. Then CiH)
has property Pi and hence H is extremally disconnected. Theorem 6.4 tells
us the unit sphere of C(7J) is the closed convex hull of its extreme points.
Then C is the closed convex hull of its extreme points since an equivalence
preserves extreme points, line segments, and distances.

6.6 Corollary. If the normed linear space X has property Pi, if X is
infinite-dimensional, and if the unit sphere C of X has an extreme point, then
C has an infinite number of extreme points.

Proof. If C has a finite number of extreme points, it is not the closed
convex hull of its extreme points. Hence it does not have property Pi by the
corollary above.

Our next theorem gives a necessary and sufficient condition for a normed
linear space X to be equivalent to a space of type Bf which has a unit ele-
ment. A space of type Bi~ which has a unit element is in turn equivalent to an
abstract (Tkf)-space CiH).

6.7 Theorem. A normed linear space X which has property Px is equivalent
to a space Y of type Bi~ which has a unit element if and only if the unit sphere C
of X has an extreme point.

Proof. Suppose the unit sphere C of X has an extreme point u. Let
Xi = x2 mean Xi — x2GCu- Then X is equivalent to a space C(77) of all continu-
ous real-valued functions on some compact Hausdorff space H, by Lemma 5.4.
The element e which is identically equal to one on H is the unit element in
CiH). Since CiH) has property Pi, every set in CiH) which is bounded above
has a least upper bound, by a previous lemma. Hence CiH) is a space of type
73Í*" and has a unit element e.

Suppose X is equivalent to a space F of type Bf which has a unit element
e. e is an extreme point. Let U be the equivalence between X and F and
consider the point u = U~lie) in X. ||m|| = 1 so u is in C. Suppose u = (xi +x2)/2
where Xi and x2 are in C.

Uixi) + Uix2)      yi + 3-2
Uiu) = e =-=-

2 2
where yi and y2 are in 5 the unit sphere of F. Then yi = y2 = e since e is an
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extreme point. Hence Xi=x2 = u and u is an extreme point.

6.8 Theorem. Let X be a normed linear space which has property Pi. Then
X is reflexive if and only if it is finite-dimensional.

Proof. Let X be reflexive and define x2:y to mean x — yGCu- Then by
Lemma 5.4, X is equivalent to the space CiH) of all real-valued continuous
functions over some compact Hausdorff space H. Since a space is reflexive
if and only if every space isomorphic to it is reflexive, CiH) must be reflexive.
CiH) is an abstract (Af)-space. But an abstract (Af)-space is reflexive only
when it is finite-dimensional [10, p. 1022]. Hence CiH) is finite-dimensional
and it follows that X is finite-dimensional.

A theorem of Myers' [17, p. 404] gives us a bit of additional information
about H. Since H is a compact Hausdorff space, it is completely regular.
Then Myers' theorem tells us that CiH) is reflexive if and only if H consists
of a finite number of points.

6.9 Theorem. The conjugate space iAL)* of an abstract iL)-space iAL)
has property Pi.

Proof. iAL)* is an abstract (Tkf)-space with a unit element [10, p. 1021]
and consequently is a space of type Bi whose unit sphere has a least upper
bound of norm one. Hence it suffices to prove that if a set E in iAL)* is
bounded above by an element go in iAL)*, then E has a least upper bound,
for then iAL)* has property Pi by Akilov's theorem.

Since/2:g in iAL)* means /(x) 2:g(x) for all x in the positive half-cone
K of (AL), let G= {g\go^g^E, g in iAL)*\. Then GÇZ {g|g„2:gè/0} for/0
fixed in E. Hence G is contained in a sphere in iAL)*. If K*= {f\fix) 2:0 for
xin K}, then G = [i^f^EÍK*+f)]í^igo — K*). Since K* is weak star closed, so is
G. Then G is weak star closed and bounded and hence is weak star compact.
If x is in K and fax) =glbsg=eg(x), then by compactness Gx = Gl~\{g\gix)
=</>(x)} cannot be empty. If Xi, x2, • • • , xn are in K, let gi, ga, • • • , gn be
such that giGGXi and define g = g!AgaA • • ■ Agn- Then gf(x/) 2:<£(x/) for all
i, j since giGG, so g(x/) 2:0(x/) for all j. Also g(x/) ^gy(x;) =</>(x/) for all j
so g(xj)=faxj) and gGr^-iG*,-. Then by compactness OxexGx^O.

Ifg^ndg'^reinHxexG,, theng'Ag"isinG. (g'-(g'Ag"))W=0forall
xinK and if g ' > g ' Ag " there is an element xo in K such that (g ' — (g ' Ag ") ) (*o)
>0; that is, g'(xo) > (g'Ag")(xo). But this is impossible since g' is in G^.
Hence g' = g'Ag"- Likewise g" = g'Ag" so gi = g2 and the intersection con-
tains only one element, which is a least upper bound of E.

6.10 Corollary. The second conjugate space (AM)** of an abstract (M)-
space (A M) has property Pi.

Proof. (AM)* is an abstract (L)-space (AL) [10, p. 1021], and hence
(AM)** = iAL)* has property Pi.
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6.11 Corollary. An abstract (M)-space (AM) has property Pi if and only
if there is a projection T, || T\\ =1, of (AM)** onto Q(AM), where Q is the na-
tural mapping of (A M) into (A M) * *.

Proof. If there is a projection T, ||r||=l, of (AM)** onto (AM), then
(AM) has property Pi by Theorem 3.2.

If there is no projection of norm one of (AM)** onto Q(AM), then QiAM),
and hence (^4Tkf), does not have property Pi.

The real line R is the simplest example of a space which has property Pi.
That it has this property was first shown by applying the Hahn-Banach
theorem [3, p. 55] to the identity transformation of R onto R, since by the
theorem there is an extension of any linear functional on R to a normed
linear space containing R. It is easily seen that R satisfies the conditions of
Akilov's theorem. A result of Phillips' [18, p. 358] showed that im), the
space of all bounded sequences, has property Pi. It is easily verified that (w)
also satisfies the conditions of Akilov's theorem. Finally, the space M of all
essentially bounded measurable functions on the unit interval satisfies the
conditions of Akilov's theorem and hence has property Pi.

Each of the known examples of spaces having property Pi is the conjugate
space of an abstract (L)-space. Hence each of the examples has a concrete
representation as the space of all continuous real-valued functions over some
extremally disconnected compact Hausdorff space H. It is an open question
as to whether or not a necessary condition for a space X to have property
Pi is that X is equivalent to the conjugate space of an abstract (Z)-space.
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