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Abstract

Definitive screening designs are increasingly used for studying the impact of many quan-
titative factors on one or more responses in relatively few experimental runs. In practical
applications, researchers often require a design for m quantitative factors, construct a
definitive screening design for more than m factors and drop the superfluous columns.
This is done when the number of runs in the standard m-factor definitive screening design
is considered too limited or when no standard definitive screening design exists for m fac-
tors. In these cases, it is common practice to arbitrarily drop the last column of the larger
definitive screening design. In this paper, we show that certain statistical properties of
the resulting experimental design depend on which columns are dropped and that other
properties are insensitive to the exact columns dropped. We perform a complete search
for the best sets of 1–8 columns to drop from standard definitive screening designs with up
to 24 factors. We observed the largest differences in statistical properties when dropping
four columns from 8- and 10-factor definitive screening designs. In other cases, the differ-
ences are moderate or small, or even nonexistent. Our search for optimal columns to drop
necessitated a detailed study of the properties of definitive screening designs. This allows
us to present some new analytical and numerical results concerning definitive screening
designs.

Key words and phrases: Conference Matrix; D-efficiency; Isomorphism; Projection; Second-
Order Model; Two-Factor Interaction.
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1 Introduction

Screening designs permit the experimental study of many factors in a small number of runs. For
a long time, the literature on screening designs concentrated on orthogonal two-level designs
(Mee, 2009). In each run of a two-level screening design, each of the factors is either set at a low
or at a high level. After completing all experimental runs, the responses of interest are modeled
as functions of the experimental factors by statistical methods such as stepwise regression or
the Dantzig selector; see Mee et al. (2017) for a recent review on two-level screening designs.

Practitioners studying quantitative factors may not feel comfortable with screening designs
that restrict attention to two levels per factor. They could argue that screening also requires
checking whether a factor’s main effect is linear or not, and identifying active two-factor inter-
actions. To meet these concerns, Jones and Nachtsheim (2011) developed three-level designs
using a number of runs that is only one more than twice the number of factors studied. The
designs are now called definitive screening designs (DSDs).

The original DSDs presented by Jones and Nachtsheim (2011) were based on a heuristic
optimal design algorithm. For an odd number of factors and also for some even numbers of
factors, the original DSDs were not orthogonal. Xiao et al. (2012) proposed constructing DSDs
using conference matrices. A major advantage of their construction is that it guarantees that
the resulting DSDs are orthogonal. A drawback is that, for certain numbers of factors, the
number of runs of the resulting DSDs is larger than two times the number of factors plus one.
In this paper, we refer to an n-factor DSD constructed from an n-dimensional conference matrix
as a standard DSD or sDSD.

As an illustration, Table 1 shows how a 10-factor sDSD is constructed from a 10 × 10
conference matrix C. The first ten runs in the table show the original conference matrix. In
general, a conference matrix C is an n-dimensional square matrix of −1s, 0s and 1s for which
CTC = (n − 1)In, where In is the n × n identity matrix. Consequently, the columns of a
conference matrix are orthogonal. This implies that a conference matrix is an ideal building
block for an orthogonal experimental design. For the design in Table 1, it is easy to verify that
CTC = 9I10.

The second set of ten runs of the 10-factor sDSD in Table 1 contains the mirror images or
the negatives of the first 10 runs. The sDSD’s final run is a center run in which all factors are
set at their middle level. Xiao et al. (2012) point out that their construction guarantees that
the linear main effects (LEs) are orthogonal to all second-order effects (i.e., the quadratic main
effects (QEs) and the two-factor interaction effects (2FIs)), and that the second-order effects
are never completely aliased.

Conference matrices do not exist when n is odd, and when n is 22, 34, or 58 (Colbourn and
Dinitz, 2006). For this reason, it is impossible to construct sDSDs for which the run size is as
small as two times the number of factors plus one when the number of factors is odd, or when
it is 22, 34, or 58. To deal with this problem, Xiao et al. (2012) recommend dropping columns
from a sDSD with one, two or three columns more than the required number. Dougherty et al.
(2015) followed this recommendation and generated a 9-factor design with 21 runs by dropping
one column from the 10-factor sDSD in Table 1. Fidaleo et al. (2016) used the 9-factor DSD to
investigate the electrochemical decolorization of the azo dye RV5, a compound used for textile
dyeing.

Dropping k columns from a sDSD with n = m+ k columns can result in an m-factor design
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Table 1: Standard definitive screening design (sDSD) with 10 factors, constructed by folding
over a 10× 10 conference matrix C.

Part Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

C 1 0 1 1 1 1 1 1 1 1 1
2 1 0 −1 −1 −1 −1 1 1 1 1
3 1 −1 0 −1 1 1 −1 −1 1 1
4 1 −1 −1 0 1 1 1 1 −1 −1
5 1 −1 1 1 0 −1 −1 1 −1 1
6 1 −1 1 1 −1 0 1 −1 1 −1
7 1 1 −1 1 −1 1 0 −1 −1 1
8 1 1 −1 1 1 −1 −1 0 1 −1
9 1 1 1 −1 −1 1 −1 1 0 −1
10 1 1 1 −1 1 −1 1 −1 −1 0

−C −10 −1 −1 −1 1 −1 1 −1 1 1 0
−9 −1 −1 −1 1 1 −1 1 −1 0 1
−8 −1 −1 1 −1 −1 1 1 0 −1 1
−7 −1 −1 1 −1 1 −1 0 1 1 −1
−6 −1 1 −1 −1 1 0 −1 1 −1 1
−5 −1 1 −1 −1 0 1 1 −1 1 −1
−4 −1 1 1 0 −1 −1 −1 −1 1 1
−3 −1 1 0 1 −1 −1 1 1 −1 −1
−2 −1 0 1 1 1 1 −1 −1 −1 −1
−1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1

0 11 0 0 0 0 0 0 0 0 0 0

with better aliasing properties than a sDSD with m columns. For instance, when comparing
different cost-efficient screening designs, Stone et al. (2014) preferred a 6-factor design with
17 runs constructed by dropping two columns from the 8-factor sDSD to a 6-factor 13-run
sDSD, due to the relatively high aliasing between pairs of 2FIs and between a QE and a 2FI
in the 13-run design. Patil (2017) studied the impact of seven factors on a welding process
where some 2FIs were expected to be active, and observed that the 7-factor design formed by
dropping one column from the 8-factor sDSD exhibited a substantial amount of aliasing among
the interactions. To reduce the aliasing, he dropped three columns from the 10-factor sDSD in
Table 1, and thus used a 21-run design instead of a 17-run design. In this paper, we refer to a
DSD obtained by dropping one or more columns from a sDSD as a projected DSD or pDSD.

At present, no guidelines exist concerning which subsets of k columns to drop from a sDSD
with n = m+ k columns. In each of the applications mentioned above, the authors arbitrarily
dropped the last k columns. This is also what commercial software packages do. However, the
following example shows that this procedure may be suboptimal. Suppose there is a budget of
21 runs for a study of six factors. A sensible design strategy would then be to use six of the
ten columns of the 10-factor sDSD in Table 1. Dropping the last four columns of the 10-factor
sDSD results in a design where nine pairs of 2FI contrast vectors possess a correlation of ±0.75.
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(a) Design utilizing columns X1–X6 (b) Design utilizing columns X1–X5 and X7

Figure 1: Color maps showing absolute correlations between LEs’ and 2FIs’ contrast vectors
for two 6-factor pDSDs obtained from the 10-factor sDSD in Table 1.

Moreover, the sum of all squared correlations between pairs of 2FI contrast vectors equals 8.25.
Dropping the columns X6, X8, X9 and X10 instead of the last four columns results in a design
in which only six pairs of 2FI contrast vectors have a correlation of ±0.75 and the sum of
squared correlations between pairs of 2FI contrast vectors is only 6.75. So, the aliasing between
the two-factor interactions is more severe when dropping the last four columns of the design in
Table 1 than when dropping columns X6, X8, X9 and X10.

The superiority of the second design option can be seen from the color maps in Figure 1,
which visualize the absolute correlations between all pairs of contrast vectors corresponding to
LEs and 2FIs. In the color maps, the largest absolute correlations for interactions are visualized
by the darkest off-diagonal cells. In Figure 1a, there are 18 of these dark off-diagonal cells
(corresponding to nine pairs of interactions), while there are only 12 in Figure 1b (corresponding
to six pairs).

The difference in the number of occurrences of the maximum absolute correlations between
the two design options may have major consequences for any data analysis using the two
designs. To illustrate this, Table 2 compares the standard errors and the powers for the 2FIs
corresponding to the last four factors (which we label C3, C4, C5 and C6) in the two pDSDs,
assuming a model with all six LEs and the six 2FIs among the designs’ last four factors. The
standard errors for the pDSD using columns 1–5 and 7 of the sDSD are substantially smaller
than those for the pDSD using columns 1–6. Consequently, the powers for detecting multiple
significant interactions are substantially higher for that pDSD.

The purpose of this paper is to identify the best sets of k columns to drop from sDSDs.
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Table 2: Standard errors relative to the standard deviation σ of the observations, and powers
for 2FIs of size σ among the last four factors in two 6-factor pDSDs obtained from the 10-factor
sDSD in Table 1.

Interaction
Columns X1–X6 Columns X1–X5 & X7

st. error power st. error power

C3C4 0.379 0.639 0.282 0.872
C3C5 0.379 0.639 0.282 0.872
C3C6 0.379 0.639 0.270 0.899
C4C5 0.379 0.639 0.270 0.899
C4C6 0.379 0.639 0.282 0.872
C5C6 0.379 0.639 0.282 0.872

This required us to define criteria that distinguish the designs obtained by dropping columns.
It turned out that several traditional statistical criteria are insensitive to the sets of columns
dropped. Therefore, in Section 2, we start by discussing statistical properties that are invariant
to the sets of columns dropped. For these properties, we also present analytical expressions,
which are new to the literature. In Section 3, we define three different criteria that do depend on
the sets of columns dropped. These criteria are all based on correlations between 2FIs contrast
vectors. In Section 4, we report the results of a complete search for the best sets of 1, 2, 3 or
4 columns to drop from sDSDs for up to 24 factors. In Section 5, we compare m-factor sDSDs
to m-factor pDSDs with larger run sizes, obtained by dropping different numbers of columns
from sDSDs with more than m factors. Finally, in Section 6, we conclude with a discussion and
some suggestions for future research.

2 Properties that do not depend on the columns dropped

It turns out that several practically relevant properties of pDSDs do not depend on the exact
set of columns dropped from a sDSD. In this section, we give an overview of all these criteria,
because it provides us with a clearer picture of the properties of DSDs. We start by discussing
DSDs’ properties when estimating linear and quadratic main effects. Next, we discuss the
projection properties of DSDs, and, finally, we study correlations between pairs of contrast
vectors corresponding to 2FIs and QEs and involving at most three factors. For each of the
criteria, we present analytical expressions. For the derivation of the analytical expressions, we
refer to Appendix A.

2.1 Models with linear main effects only

The D-efficiencies for models with m LEs and the standard errors for the LE estimates in the
models do not depend on the set of k columns dropped from a sDSD with n = m + k factors,
because (i) the LEs’ contrast vectors in a sDSD are orthogonal to each other and to the column
of ones in the model matrix (corresponding to the intercept) and (ii) the precision is the same
for each LE estimate. The D-efficiency of an m-factor pDSD with 2(m + k) + 1 runs for the
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model including the intercept and all m LEs, relative to an m-factor sDSD with 2m + 1 runs,
can be expressed as

Dle =

(

1 +
2k

2m+ 1

) 1
m+1

(

1 +
k

m− 1

) m

m+1

. (1)

The standard error for any LE estimate obtained from a (2(m + k) + 1)-run pDSD relative to
the standard error produced by a (2m+ 1)-run sDSD equals

SEle =

√

m− 1

m+ k − 1
. (2)

It is easy to see from Equations (1) and (2) that the relative D-efficiency increases and the
relative standard error for a LE estimate decreases with the number k. In other words, the
relative D-efficiency increases and the relative standard error for a LE estimate decreases with
the run size of the sDSD used to construct the pDSD.

2.2 Models with linear and quadratic main effects

Just as the D-efficiency for a model with LEs only, the D-efficiency of a pDSD for a model with
LEs and QEs is insensitive to the set of k columns dropped from an (m+ k)-factor sDSD. The
D-efficiency of a (2(m+ k) + 1)-run pDSD relative to that of a (2m+ 1)-run sDSD is

Dle+qe =

(

1 +
k

m− 1

) m

2m+1
(

1 +
k(m+ 2)

(m− 1)2

) 1
2m+1

(3)

for a model including all m LEs and all m QEs. Clearly, this relative efficiency also increases
with k and thus with the run size of the pDSD constructed. When estimating the model
including all m LEs and all m QEs, the standard error of any QE estimate obtained from a
(2(m+ k) + 1)-run pDSD relative to the one produced by a (2m+ 1)-run sDSD is

SEqe =
m− 1

√

(m− 1)2 + k(m+ 2)

√

1 +
k(m+ 1)

m2 − 3m+ 5
. (4)

For any given number of factors m, this relative standard error decreases with k and thus with
the run size of the pDSD. The relative standard error approaches

(m− 1)
√

(m+ 1)/[(m2 − 3m+ 5)(m+ 2)]

for large values of k. The relative standard errors for the LE estimates are not affected by the
inclusion of QEs in the model. Therefore, they can still be calculated using Equation (2). This
is because the LEs’ contrast vectors are orthogonal to those of the QEs whenever a sDSD or a
pDSD is used.

2.3 Powers for significance tests

Departing from a model including only the intercept or from a model containing the intercept
and all LEs, we can conduct t tests for individual LEs, QEs and 2FIs. Four pertinent tests are
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Table 3: Degrees of freedom ν and non-centrality parameters λ for various significance tests
using a pDSD, assuming a signal-to-noise ratio of 1 for the effect tested. Setting k = 0 produces
the results for a sDSD.

Label Hypothesis Model terms ν λ

L1 βi = 0 Intercept only 2(m+ k)− 1
√

2(m+ k)− 2

Lm βi = 0 Intercept + all LEs 2k +m
√

2(m+ k)− 2

Qm βii = 0 Intercept + all LEs 2k +m− 1
√

6(m+k−1)
2(m+k)+1

Im βij = 0 Intercept + all LEs 2k +m− 1
√

2(m+ k)− 4

shown in Table 3. The first two columns in the table identify the hypothesis to be tested, while
the third column shows the terms that appear in the model besides the effect to be tested. The
fourth column shows the degrees of freedom ν for the t statistic. Finally, the last column is the
non-centrality parameter λ of the non-central t-distribution needed to calculate the power of
the test. In the table’s second column, βi, βii and βij represent the linear main effect of factor
i, the quadratic main effect of factor i and the interaction between the factors i and j (where
i 6= j), respectively.

The first test, labeled L1, is useful for testing whether adding a LE to a model containing
only the intercept has added value. Since, in general, a pDSD involves N = 2(m + k) + 1
runs and the model under study includes two parameters, the degrees of freedom for the t test
equal N − 2 = 2(m + k) − 1. The second test in Table 3, labeled Lm, is useful in a scenario
where the experimenter first fits a model including all m LEs and then tests whether one LE
can be removed. Because models including the intercept and all m LEs require the estimation
of m + 1 parameters, the degrees of freedom for the t test equal N − (m + 1) = 2k +m. The
third and fourth test, labeled Qm and Im, are relevant in situations where the experimenter
first fits a model including the intercept and all m LEs, and then tests whether adding a
single QE or a single 2FI improves the model significantly. In both cases, the model under
investigation involves m+ 2 parameters, so that the residual degrees of freedom for the t tests
equal N − (m+ 2) = 2k +m− 1 in each case.

All non-centrality parameters λ listed in Table 3 are increasing functions of k. Therefore,
they increase with the number of runs of the pDSD. As a result, the powers for the four
significance tests will also increase with k and with the number of runs. The powers for the
four significance tests can all be calculated as

1− Prob(−tν,α/2 < Tν,λ < tν,α/2),

where Tν,λ is a random variable following a non-central t-distribution with ν degrees of freedom
and non-centrality parameter λ, and −tν,α/2 and tν,α/2 are the critical values based on a central
t-distribution with ν degrees of freedom for a significance level equal to α. The non-centrality
parameters and the resulting powers are independent of the sets of k columns dropped from an
(m+ k)-factor sDSD, and from the values of i and j in the effects tested (i.e., βi, βii and βij).
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The λ values in Table 3 assume that the absolute values of βi, βii and βij equal the standard
deviation of the responses, σ. In other words, the non-centrality parameters we report corre-
spond to signal-to-noise ratios of 1. To calculate the power for βi, βii and βij values equal to
δσ, the non-centrality parameter λ has to be multiplied by δ.

2.4 Correlations between specific second-order effects’ contrast vec-

tors

Regardless of which k columns are dropped from an (m + k)-factor sDSD, the correlation
between the contrast vectors of any two quadratic effects βii and βjj equals

rii,jj =
1

3
−

2

N − 3
,

where N = 2(m + k) + 1 is the run size of the design. This correlation increases with the run
size and approaches 1/3 for large values of N or k. So, the QEs’ contrast vectors of m-factor
pDSDs exhibit larger correlations when they are based on larger sDSDs and involve more runs.

The correlation between the contrast vector of any quadratic effect βii and the contrast
vector of an interaction effect βij is always zero. The correlation between the contrast vector of
a quadratic effect βii and the contrast vector of an interaction effect βjk is non-zero, and equals

rii,jk = ±

√

4N

3(N − 3)(N − 5)
. (5)

If m + k is a multiple of 4, the three correlations rii,jk, rjj,ik and rkk,ij corresponding to any
triplet of factors i, j and k are all positive, or one correlation is positive, while the other two
are negative. If m + k is not a multiple of 4, two of the three correlations are positive and
one is negative, or all three correlations rii,jk, rjj,ik and rkk,ij are negative (Schoen et al., 2017).
The correlations tend to zero as the run size N or k increases. So, when using an m-factor
pDSD, the correlations between the contrast vectors for the quadratic effect of one factor and
the interaction between two other factors are closer to zero than when using an m-factor sDSD.
In other words, the aliasing is smaller.

Finally, the correlation between the contrast vector of an interaction effect βij and the
contrast vector of another interaction effect βik, involving the same factor i, is non-zero too,
and equals

rij,ik = ±
2

N − 5
. (6)

The correlations rij,ik, rji,jk and rki,kj exhibit the same patterns as the correlations rii,jk, rjj,ik
and rkk,ij. They also decrease with the run size. So, they are closer to zero for an m-factor
pDSD than for an m-factor sDSD, which means that a pDSD reduces the aliasing between two
interaction effects βij and βik.

2.5 Projections into two or three factors

An assumption usually adopted in a factor screening context is factor sparsity. According to
this assumption, only a small subset of the factors under investigation are active. An important
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Table 4: Degrees of freedom ν and non-centrality parameters λ for various significance tests
when using a pDSD for fitting a full second-order response surface model in two or three factors,
assuming a signal-to-noise ratio of 1. Setting k = 0 or n = m shows the results for a sDSD.

Label Hypothesis ν λ Comment

Q2 βii = 0 2(m+ k)− 5
√

2(4m−7)
3(m+k−1)

Any n = m+ k

I2 βij = 0 2(m+ k)− 5
√

2(m+ k)− 4 Any n = m+ k

Q3 βii = 0 2(m+ k)− 9
√

2(5n3
−33n2+51n+4)

4n3
−21n2+24n+2

n = m+ k is a multiple of 4

√

2(5n3
−43n2+109n−86)

4n3
−29n2+54n−26

Otherwise

I3 βij = 0 2(m+ k)− 9
√

2(5n3
−33n2+51n+4)

5n2
−19n+14

n = m+ k is a multiple of 4

√

2(5n3
−43n2+109n−86)
5n2

−29n+36
Otherwise

feature of a DSD is therefore its potential to form statistically efficient projections into a few
factors. It is easy to see that, for any two factors, an (m + k)-factor sDSD projects into a
face-centered central composite design, in which the four factorial points each appear (m+k)/2
times, and the center point as well as the four axial points occur only once. This is also true for
any m-factor pDSD obtained from an (m + k)-factor sDSD, independent of which k columns
are dropped from the sDSD. As a result, all two-factor projections from a sDSD and any pDSD
obtained from it are identical. All statistical properties of two-dimensional projections of sDSDs
and pDSDs are therefore also identical.

It can be shown that the statistical properties of all three-factor projections of a given sDSD
or pDSD are identical too. More specifically, it can be shown that all three-factor projections
from a sDSD and from any pDSD derived from it are isomorphic (Schoen et al., 2017). The
isomorphism implies that the D-efficiency for a second-order model in three factors is the same
for each three-factor projection of a sDSD and for any pDSD derived from it. Similarly, the
I-efficiency is the same for each three-factor projection of a sDSD or a pDSD obtained from it.

When fitting full second-order models in two or three quantitative factors, it is common to
perform significance tests for the QEs and the 2FIs. Table 4 lists the four tests, the degrees
of freedom ν for the tests as well as the values for the non-centrality parameter λ needed for
calculating the powers of the tests. The tests labeled Q2 and I2 are concerned with a QE and
a 2FI in a two-factor response surface model, while the tests labeled Q3 and I3 are concerned
with a QE and a 2FI in a three-factor response surface model. In the expressions for the
non-centrality parameters for the latter two tests, we replaced m+ k by n to save space.

In Section 2.4, we pointed out that the correlations between pairs of QE contrast vectors
are all equal, while the correlation between the contrast vector of a quadratic effect βii and that
of an interaction βij is zero. For this reason, the non-centrality parameters λ and the powers
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for the two QEs in the two-factor response surface model are the same.
The power calculations for the hypotheses Q3 and I3 are more complex because the corre-

lations between contrast vectors involving three factors can take different signs, depending on
whether n = m + k is a multiple of 4 or not (recall that, due to the construction of sDSDs
using conference matrices, n = m + k is always even). Due to these differences in signs, the
expressions for the non-centrality parameters for the hypotheses Q3 and I3 also differ depending
on whether n = m+ k is a multiple of 4 or not.

3 Properties that do depend on the columns dropped

In the previous section, we showed that correlations between contrast vectors corresponding to
(i) two LEs, (ii) two QEs, (iii) a LE and a QE, (iv) a LE and a 2FI, (v) a QE and a 2FI, and
(vi) two 2FIs sharing a common factor do not depend on the set of k columns dropped from
a sDSD. The only type of correlations that does depend on the set dropped involves contrast
vectors of two 2FI effects βij and βkl, corresponding to four different factors.

For an (m+k)-factor sDSD and anym-factor pDSD obtained from it by dropping k columns,
the correlations between contrast vectors of pairs of interactions βij and βkl, not involving a
common factor, can take different values. More specifically, these correlations can take the
values

rij,kl = ±
t

m+ k − 2
,

where t ∈ {0, 2, . . . ,m + k − 4}, provided m > 4. This follows from the results of Xiao et al.
(2012). The maximum possible absolute correlation therefore is

1−
2

m+ k − 2
.

This expression tends to 1 as k increases, but, even when k = 0, it can take a fairly large value.
For instance, for the 10-factor sDSD in Table 1, the maximum correlation is 1−2/(10+0−2) =
3/4. While, according to the results of Xiao et al. (2012), absolute correlations of 0, 1/8, 1/4,
3/8, 1/2 and 5/8 are in theory also possible when m = 10, it turns out that the 10-factor sDSD
only involves the correlations 1/4 and 3/4. None of the correlations are zero. So, certainly
not all theoretically possible correlations will occur in any given sDSD or any pDSD derived
from it. The 8-factor sDSD also only involves two different values for the absolute correlation,
namely 0 and 2/3. For that sDSD, certain pairs of interactions βij and βkl have uncorrelated
contrast vectors, while other pairs of interactions have contrast vectors that have the maximum
absolute correlation of 2/3. The 16-factor sDSD involves the correlations 0, 2/7, 4/7 and 6/7,
but not the correlations 1/7, 3/7 and 5/7, for pairs of interactions βij and βkl. Note that the
correlation of 6/7 is the maximum one possible.

In any case, the maximum absolute correlations of 2/3, 3/4 and 6/7 for the 8-, 10- and 16-
factor sDSDs show that two interactions of the types βij and βkl can be strongly aliased when
sDSDs or pDSDs are used, especially when k is large. A consequence of this result is that a
broad range of rij,kl values is possible when an m-factor pDSD is obtained from a large (m+k)-
factor sDSD. The challenge then is to drop the k columns that result in a pDSD that avoids
as many large correlations of the type rij,kl as possible. It turns out that the average absolute
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Table 5: Recommended sets of k columns to drop from an (m+ k)-factor sDSD.

# factors in sDSD # columns dropped (k)

(m+ k) 1 2 3 4

6 Any Any Any Any
8 Any Any Any Last four
10 Any Any Any 6, 8, 9, 10
12 Any Any Any 7, 8, 10, 12
14 Any Any Any Last four
16 Any 8, 16 Last three Last four
18 Any Any Any Last four
20 Any Any Any 14, 17, 18, 20
24 Any Any Any 20, 22, 23, 24

correlations, the maximum absolute correlation and the sum of the squared correlations can be
reduced by making a wise choice of the columns to drop.

A large number of large correlations rij,kl in the pDSD ultimately selected results in poor
precisions of the interactions in models with multiple interactions and in a low power for the
corresponding significance tests. Also, the D- and I-efficiencies for models with multiple inter-
actions will be quite low in the event there are many large correlations rij,kl.

4 Best sets of k columns to drop

We performed a complete search for the best sets of k columns to drop from an (m+ k)-factor
sDSD for m + k ∈ {6, 8, . . . , 20, 24} and k ≤ 8. Detailed results on the best and worst sets
of columns to drop are given in Table A1 in Appendix B and include (i) the average absolute
correlations, (ii) the maximum absolute correlations, and (iii) the sum of all squared correlations
between the contrast vectors for pairs of 2FI columns. In this section, we present an overview
of our most important results, restricting attention to k ≤ 4.

Table 5 shows the recommended sets of 1–4 columns to drop from each (m+k)-factor sDSD.
Sometimes, there are multiple sets of columns that give rise to equally good pDSDs. In that
case, we report the lexicographically maximal set of columns to drop, i.e., the set of columns
that involves the largest indices. For all cases where the set of columns dropped does not affect
the quality of the resulting design, we inserted the entry ‘Any’ in the table.

Table 5 shows that we can drop any single column, any pair of columns and any triplet of
columns from a (m + k)-factor sDSD without affecting the 2FIs’ contrast vectors’ correlations
(in other words, without affecting the aliasing among the 2FIs), except when starting from the
16-factor sDSD. As a result, Dougherty et al. (2015), Fidaleo et al. (2016), Patil (2017), and
Stone et al. (2014) coincidentally used the best possible pDSD for their experiment. Any other
choice of columns to drop would have resulted in an equivalent pDSD for their experiments.

Dropping different sets of four columns from a sDSD generally results in pDSDs with different
values of the correlation criteria for 2FIs. To construct pDSDs for 4, 10, 12 and 14 factors from
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8-, 14-, 16- and 18-factor sDSDs, respectively, the best option is to drop the last four columns.
However, the introductory example showed that a 21-run 6-factor pDSD obtained by dropping
columns 6, 8, 9 and 10 from a 10-factor sDSD is better than the one obtained by dropping the
last four columns. Dropping columns 6, 8, 9 and 10 is in fact optimal. Similar results hold for
dropping four columns from 12-, 20- and 24-factor sDSDs.

Table 6 shows to what extent the choice of the set of columns dropped from a sDSD affects
the correlations among 2FI contrast vectors in a pDSD. More specifically, it shows the average
and maximum absolute correlations for 2FI contrast vectors, as well as the sum of the squared
correlations, for the best and the worst set of columns dropped from a sDSD. For each com-
bination of number of factors and number of columns dropped, the results for the best set are
shown first followed by the results for the worst sets. The table only covers the 10 cases in
which the set of columns dropped matters (i.e., the cases for which Table 5 does not have the
entry ‘Any’).

The difference between the best and the worst sets of k columns is most pronounced for the
case in which four columns are dropped from the 8-factor sDSD. For that case, the best set
provides a maximum absolute correlation as small as 0.167, an average absolute correlation of
0.133, and a sum of squared correlations of 0.333. In contrast, the worst set has a maximum
absolute correlation of 0.667, an average absolute correlation of 0.267, and a sum of squared
correlations of 1.667. As explained in the previous section, the value of 0.667 is the maximum
possible value for the correlations between pairs of 2FI columns when m+ k = 8.

In all other cases, the maximum correlation is not affected by the columns dropped. However,
the average correlations and the sum of squared correlations are smaller when the optimal sets
of columns are dropped. For m+k = 10, there is an appreciable difference in average correlation
and in the sum of squared correlations. However, for m + k ≥ 12, the best and worst sets of
columns to drop show only minor differences in terms of the average absolute correlation and
the sum of squared correlations. Also the standard errors and powers for models with many
2FIs are affected very little by the sets of columns dropped. In conclusion, dropping the last
few columns from a sDSD is generally a good strategy, except when leaving out four columns
from an eight factor or a ten-factor sDSD.

5 Comparing DSDs with different run sizes

Creating pDSDs by dropping columns from sDSDs is useful because it increases the number of
runs for a given number of factors under investigation. This results in smaller standard errors
and larger numbers of estimable 2FIs, for instance. We demonstrate the benefits of pDSDs by
looking at power curves for 6-factor designs, namely the 6-factor sDSD and five 6-factor pDSDs
obtained by dropping 2, 4, 6, 8 and 10 columns from 8-, 10-, 12-, 14- and 16-factor sDSDs,
respectively. We used the analytical expressions in Tables 3 and 4 to determine the power
curves.

5.1 Power for significance tests

Figure 2 shows the power curves for the four types of tests in Table 3, assuming a significance
level of 0.05 and signal-to-noise ratios of 1 and 2. The horizontal axis in the power curves shows
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Table 6: Differences in average and maximum correlations among 2FI contrast vectors and in
the sum of the squared correlations between the best and worst sets of k columns dropped from
an (m+ k)-factor sDSD.

# Factors Set size Run size Average Maximum Sum of squared
(m+ k) k 2(m+ k) + 1 correlation correlation correlations

8 4 17 0.13333 0.167 0.3333
0.26667 0.667 1.6667

10 4 21 0.20714 0.75 6.75
0.22143 0.75 8.25

12 4 25 0.19048 0.4 23.76
0.19365 0.4 24.24

14 4 29 0.19394 0.5 58
0.19495 0.5 58.6667

16 4 33 0.12747 0.857 115.0408
0.13467 0.857 116.0204
0.12867 0.857 117.2449

16 3 33 0.13173 0.857 166.0102
0.13458 0.857 166.0102

16 2 33 0.13333 0.857 231.8571
0.13585 0.857 231.8571

18 4 37 0.18159 0.375 201.1875
0.18178 0.375 201.5625

20 4 41 0.17292 0.444 322.2222
0.17311 0.444 322.8148

24 4 49 0.13479 0.364 693.3471
0.13485 0.364 693.7438

the numbers of columns dropped from the larger sDSDs. These numbers correspond to run
sizes 13, 17, 21, 25, 29 and 33. The figure shows that the powers for the four tests increase with
k and thus with the run size. The powers for the QEs’ significance tests are much lower than
the powers for the other tests. Figure 2a shows that QEs with the same size as σ are unlikely
to be detected, as the power is only about 25%. Figure 2b shows that QEs twice as large are
quite likely to be detected. However, the power for the QEs twice the size of σ is still markedly
lower than the powers for LEs and 2FIs of that size. The powers for active LEs and 2FIs that
are twice as large as σ equal one for the 6-factor sDSD and any pDSD constructed from a larger
sDSD.

Figure 2a shows that, when effects as large as the noise are of interest, the 6-factor sDSD
involving 13 runs (and having k = 0) cannot be recommended. Instead, we recommend the
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Figure 2: Statistical power for testing the hypotheses in Table 3 for the 6-factor sDSD (k = 0)
and several pDSDs (k > 0). � : L1; © : Lm; △ : Qm; + : Im.

pDSD used by Stone et al. (2014) and constructed by dropping two columns from an 8-factor
sDSD. For this option, the powers of the tests for the LEs and the 2FIs are larger than 0.86.
Larger designs only marginally improve the powers. When the signal-to-noise ratio is greater
than or equal to 3, the powers for all tests in Table 3 are larger than 0.90, even for the 6-factor
sDSD. We conclude that it is worth considering a pDSD with four extra runs (and thus k = 2)
when the interest is in detecting small effects.

Figure 3 shows the power curves for the tests in Table 4 for the 6-factor sDSD and 6-factor
pDSDs constructed by dropping 2–10 columns from sDSDs with 8–16 factors, respectively. The
signal-to-noise ratios assumed to construct the curves were again 1 and 2. Comparing this figure
with Figure 2, we observe that the powers for hypothesis Q2 hardly differ from the powers for
hypothesis Qm, while the powers for hypothesis I2 lie between those for hypotheses Im and Lm.
The powers for hypotheses Q3 and I3 in the context of a three-factor model are lower than those
for the hypotheses Q2 and I2 in the context of a two-factor model.

Figure 3a shows that QEs with the same size as σ are unlikely to be detected when a second-
order model in three factors is estimated. The powers for the QEs are only about 25%. The
figure also shows that, for 2FIs, powers of 75% or more are achieved only when a 6-factor pDSD
is formed with at least four more runs than the sDSD (by dropping two or four columns from
an 8- or 10-factor sDSD). Figure 3b shows that the powers for effects that are twice as large
as the standard deviation of the noise are much larger than those for effects that are as large
as the standard deviation of the noise. The power for hypothesis test Q3, however, remains
substantially smaller than 1 for any of the run sizes considered here. Signal-to-noise ratios
greater than or equal to three times the noise’s standard deviation result in powers larger than
0.90 for all tests listed in Table 4, except for hypothesis Q3, in the event the sDSD is used. In
conclusion, when testing QEs end 2FIs in 2- or 3-factor second-order models, it pays off to use
a pDSD involving more runs than the sDSD to detect effects with sizes equal to or twice the
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Figure 3: Statistical power for testing the hypotheses in Table 4 for the 6-factor sDSD (k = 0)
and several pDSDs (k > 0). � : Q2; © : I2; △ : Q3; + : I3.

standard deviation of the noise.

5.2 Aliasing of 2FIs

Based on the results reported in Section 4, we investigated whether pDSDs have the potential to
improve the aliasing pattern of 2FIs in sDSDs. We studied pDSDs involving 4–18 and 20 factors
constructed by dropping the optimal sets of 1–4 columns from sDSDs with up to 24 factors. For
even numbers of factors up to 16, we consider the three designs obtained by dropping 0, 2 and
4 columns. For 18 and 20 factors, we consider only two different designs because there exists
no 22-factor sDSD. So, 18- and 20-factor pDSDs can only be constructed starting from the 20-
and 24-factor sDSDs. For odd numbers of factors up to 17, we consider the pDSDs constructed
from sDSDs with one and three extra factors. For 19 factors, this is impossible, again because
because there is no 22-factor sDSD. For this reason, we do not discuss the 19-factor case here.

Figure 4 shows the average and maximum absolute correlations between pairs of 2FI contrast
vectors for the designs under study. Figures 4a and 4b show the results for even numbers of
factors m, while Figures 4c and 4d show the results for odd numbers of factors m. Figures 4a
and 4c show average absolute correlations, while Figures 4b and 4d show the maximum absolute
correlations.

Figures 4a and 4c show that pDSDs with 4, 6, 8, 10, 12, 18 and 20 factors involve less aliasing
among the 2FIs than the corresponding sDSDs and that 5-, 9-, 11-, 13- and 17-factor pDSDs
with six extra runs and thus k = 3 involve less aliasing among the 2FIs than the corresponding
pDSDs with only two extra runs, since the average absolute correlations decrease with k for
these numbers of factors. The largest decrease in average correlation is for the 4-factor designs
where the 9-run sDSD provides an average absolute correlation of 0.4, while the 17-run pDSD
obtained from the 8-factor sDSD has an average as low as 0.13.
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For seven and 15 factors, increasing the run size by four (i.e., using k = 3 instead of k = 1)
causes the average absolute correlation between pairs of 2FI contrast vectors to go up. In other
words, for these cases, the larger pDSDs involve more aliasing than the smaller ones. For eight
factors, the pDSD with four extra runs (corresponding to k = 2) has a larger average absolute
correlation than the sDSD (k = 0), and it is the pDSD with eight extra runs (k = 4) which
has the smallest average absolute correlation. For 14 and 16 factors, the best design options in
terms of the average absolute correlation are the pDSD obtained by dropping two columns from
the 16-factor sDSD and the 16-factor sDSD itself. The 16-factor sDSD turns out to perform
well in terms of the average correlation, as the best 12-, 14- and 16-factor designs in terms of
that criterion are all based on it, as well as the best 13- and 15-factor design.

Figures 4b and 4d show that, for designs with 5–7, 11–13, 17 and 18 factors, the maximum
absolute correlation increases with the run size. The patterns in the maximum absolute cor-
relations are thus quite different from those in the average absolute correlations. This means
that, often, the most severe aliasing between 2FI contrast vectors is exacerbated when using
pDSDs instead of sDSDs, while the total amount of aliasing goes down. The largest increase
in maximum absolute correlation is for designs with 12 factors. The 12-factor sDSD provides
a maximum correlation of 0.4 while the pDSD with eight extra runs (corresponding to k = 4)
features a maximum of 0.857. For 8–10, 15, 16 and 20 factors however, there are pDSDs which
have smaller maximum absolute correlations than the corresponding sDSDs.

Figure 4 shows that the design options used by Patil (2017) and Stone et al. (2014) were not
optimal in terms of the maximum absolute correlation between pairs of 2FI contrast vectors.
While the 6-factor design with 17 runs of Stone et al. (2014) provides a smaller average absolute
correlation than the 6-factor sDSD, it has a larger maximum absolute correlation (0.66 versus
0.5). The 7-factor design with 21 runs and k = 3 of Patil (2017) has larger maximum and
average absolute correlations between its pairs of 2FI contrast vectors than the 7-factor design
with 17 runs and k = 1.

If there is one thing that Figure 4 makes clear, it is that certain sDSDs and pDSDs in-
volve very large absolute correlations between pairs of interactions, indicating close to complete
aliasing. We would feel uncomfortable using a pDSD with correlations in pairs of 2FI contrast
vectors exceeding 0.5, unless one of the 2FIs involved in each pair can be assumed negligible.
Particularly unfavorable in this respect are the designs constructed by dropping columns from
the 16-factor sDSD, because all of these designs have quite a number of absolute correlations
of 0.857 (despite the fact that the average correlations for this design are small). The figure
shows that good design options (i.e., options with a maximum absolute correlation of at most
0.5) are available for all numbers of factors, except 7. For applications involving seven factors
in which 2FIs are expected to be important (such as in Patil (2017)), we recommend dropping
five columns from the 12-factor sDSD because the absolute correlations between the contrast
vectors for the resulting design are smaller than or equal to 0.4.

Figure 4 does not show the sums of the squared correlations between pairs of 2FI contrast
vectors. We found that increasing the run size of pDSDs improves the value of this criterion.
The largest decrease we found was for 20-factor designs. Detailed results concerning the sums
of squared correlations are given in Appendix C.
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Figure 4: Absolute correlations between pairs of 2FI contrast vectors.
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6 Discussion

In this paper, we studied pDSDs for m factors constructed by dropping sets of k columns from
sDSDs with m + k factors. We considered sDSDs with 6–24 factors, and studied the pDSDs
resulting from dropping sets of 1–4 columns. Table A1 in Appendix B includes additional results
on dropping up to eight columns.

The sDSDs used in this study were constructed from conference matrices. This allowed
us to derive analytical expressions for the relative D-efficiency to estimate models including
all LEs and models including all MEs and QEs for designs with different run sizes, as well
as analytical expression for the relative standard errors for LE and QE estimates. We also
derived expressions for the non-centrality parameter required for calculating the power of various
significance tests. We showed that the correlations between two QE contrast vectors, a QE and
a 2FI contrast vector, and between two 2FI contrast vectors involving a common factor are
independent of the set of k columns dropped from the (m + k)-factor sDSD. We also present
analytical expressions for these correlations. Georgiou et al. (2014) provide similar expressions
for the correlations between second-order effects columns but their focus is different from ours.
They study the added value of extra center runs whereas we focus on the number of dropped
columns. Increasing the number of dropped columns from the sDSD withm+k factors improves
the statistical properties mentioned, except for the correlation between pairs of QE contrast
vectors. However, this correlation cannot become larger than 1/3.

How well multiple 2FIs can be estimated at the same time depends on the selection of the
sets of k columns to drop from the sDSDs. Using a complete search, we identified the best
sets of columns to drop in terms of the average absolute correlation, the maximum absolute
correlation, and the sum of squared correlations between pairs of 2FI contrast vectors. The
differences between the best and worst sets were largest when dropping four columns from the
8- and 10-factor sDSDs. Table A1 in Appendix B shows moderate or small differences when
dropping more than four columns from a sDSD except when dropping columns from the 10-
factor sDSD or eight columns from the 12-factor sDSD. For these cases, the maximum absolute
correlation of the worst option is at least three times larger than that of the best option. The
table also shows that, in all but three cases, dropping the last columns from a sDSD is not
optimal.

We compared the designs constructed by dropping columns from sDSDs in terms of the
average absolute correlation, the maximum absolute correlation, and the sum of squared corre-
lations between pairs of 2FI contrast vectors. We found that increasing the run size for a given
number of factors, which is equivalent to dropping more columns from larger sDSDs, improves
the sum of squared correlations between pairs of 2FI contrast vectors. However, the average
and maximum absolute correlations do not necessarily improve. In fact, these values may even
increase with the run size of the pDSD. Thus, in order to limit the amount of aliasing between
2FIs, a careful design selection is needed. For certain sDSDs and pDSDs, quite large numbers
of 2FIs are nearly completely aliased.

A major result of the research leading to this paper is that, for a given sDSD, all three-factor
projections are isomorphic. This implies that any 3-factor pDSD obtained from any given sDSD
provides the same D-efficiency and the same I-efficiency for the full second-order model in these
factors. Due to the isomorphism, the properties of three-factor projections from any pDSD do
not depend on the set of k columns dropped from a sDSD. There is no such result for 4-factor
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projections, because the 4-factor projections from a sDSD can differ in statistical properties.
Evaluating all pDSDs that can be obtained by dropping k columns from an (m+k)-factor sDSD
in terms of their four-, five- or six-factor projections is a major computational task, which would
be an interesting topic for future research.

In this article, we focused on completely randomized DSDs involving quantitative factors
only. The sDSDs have, however, also been adapted to deal with two-level categorical factors and
with blocking factors. The methods developed by Jones and Nachtsheim (2013) and Nguyen
and Pham (2016) to include k two-level categorical factors in a DSD transform the last k
columns into two-level columns. Picking other columns than the last k may yield better designs.
Similarly, the blocking schemes of Jones and Nachtsheim (2016) convert the last k columns of
DSDs into blocking factors. Possibly, better designs can be obtained by using other columns to
create the blocking factor. Investigating these issues would be an interesting avenue for future
research too.

Appendices

A Derivations of design properties

In this section, we derive the properties of pDSDs constructed by dropping columns from sDSDs.
For notational simplicity, we assume that the pDSD with m factors and N = 2(m+ k)+1 runs
is constructed by dropping k columns from an (m + k)-factor sDSD. Note that, if k = 0, then
the design is the original sDSD; otherwise, it is a pDSD.

A.1 Estimation efficiency

A.1.1 Efficiency to estimate the model with linear effects.

Consider the N × (m+ 1) matrix Xl including the intercept and all linear effect (LE) columns
of the pDSD. It is easy to show that XT

l Xl is a diagonal matrix with determinant |XT
l Xl| =

[2(m+k)+1][2(m+k)−2]m. For an m-factor sDSD, this determinant equals (2m+1)(2m−2)m.
Therefore the relative D-efficiency of the pDSD and the m-factor sDSD for a model with all the
LEs is

Dle =

[

2(m+ k) + 1

2m+ 1

(

2(m+ k)− 2

2m− 2

)m] 1
m+1

.

After simplification, we obtain the expression for Dme in Section 2.1.

A.1.2 Relative standard error for a linear main effect.

The variances for the ordinary least squares (OLS) estimators of the intercept and all LEs in
the pDSD are calculated from the matrix σ2(XT

l Xl)
−1, where σ2 denotes the variance of the

residual errors. It is easy to see that the variance for any LE equals σ2(2(m + k) − 2)−1. For
the m-factor sDSD, this variance equals σ2(2m− 2)−1. Thus the relative standard error of the
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pDSD and the m-factor sDSD is

SEle =

(

2m− 2

2(m+ k)− 2

)1/2

.

After simplification, we obtain the expression for SEme in Section 2.1.

A.1.3 Efficiency to estimate the model with linear and quadratic main effects.

Consider the N × (2m+1) model matrix Xlq = [1n,Q,L], where 1n is an N × 1 column vector
of ones (the intercept column), Q the N ×m matrix including the quadratic main effect (QE)
columns, and L the N × m matrix including the LE columns of the pDSD. The information
matrix is

XT
lqXlq =





N 2(n− 1)11×m 01×m

2(n− 1)1m×1 2(n− 2)Jm×m + 2Im×m 0m×m

0m×1 0m×m 2(n− 1)Im×m



 , (7)

where Im×m is the identity matrix of order m, Jm×m is the matrix with all its entries equal to 1,
0p×q denotes a p× q matrix of zeroes, and n = m+ k. Note that matrix (7) is a block diagonal
matrix and can be expressed as

XT
lqXlq =

(

A 0(m+1)×m

0m×(m+1) B

)

,

where

A =

(

N 2(n− 1)11×m

2(n− 1)1m×1 2(n− 2)Jm×m + 2Im×m

)

, and B = 2(n− 1)Im×m.

Using Harville (2011, p.p. 187), we have that |XT
lqXlq| = |A||B|. We can calculate the

determinant of A by taking c0 = N , c = 2(n − 1), a = 2(n − 2), and b = 2, and applying
lemma 2iii of Zhou and Xu (2016). The determinant of the information matrix |XT

lqXlq| is
then 22m(m + k − 1)m [(m− 1)2 + k(m+ 2)]. For the m-factor sDSD, this determinant equals
22m(m− 1)m+2 for the information matrix of a model including the intercept, all QEs, and all
LEs. As a result, the relative D-efficiency of the pDSD and the m-factor sDSD is

Dle+qe =

{(

m+ k − 1

m− 1

)m [

(m− 1)2 + k(m+ 2)

(m− 1)2

]}
1

2m+1

.

Simplification yields the expression for Dle+qe in Section 2.1.

A.1.4 Relative standard errors for quadratic effect estimates.

Consider the information matrix (7) for the pDSD. Using Harville (2011, p.p. 89), we have that
the variances for the OLS estimators of the model including the intercept, all LEs, and all QEs
in the pDSD are calculated from the matrix

σ2
(

XT
lqXlq

)

−1
= σ2

(

A−1 0(m+1)×m

0m×(m+1) B−1

)

.
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Note that sub-matrix σ2A−1 contains the variances for the OLS estimators of the QEs.
Consider the following sub-matrices

W = N,T = 2(n− 2)Jm×m + 2Im×m, and V = UT = 2(n− 1)11×m,

that partition matrix A into four parts. Using Harville (2011, p.p. 99) and Lemma 2i of Zhou
and Xu (2016), it is straightforward to show that the variance of the OLS estimator for any
QE, denoted as β̂ii, in a model including the intercept, all LEs and all QEs based on the pDSD
is

Var(β̂ii) = σ2 (m− 1)2 +m(k − 1) + k + 4

2 [(m− 1)2 + k(m+ 2)]
,

For the m-factor sDSD, Var(β̂ii) = σ2(m2 − 3m + 5)/(2(m − 1)2). Then the relative standard
error of the OLS estimate of any QE in the pDSD and the m-factor sDSD is

SEqe =

{[

(m− 1)2

(m− 1)2 + k(m+ 2)

] [

m2 − 3m+ 5 + k(m+ 1)

m2 − 3m+ 5

]}1/2

.

After simplification, we obtain the expression for SEqe in Section 2.2.

A.2 Pairwise correlations among contrast vectors

A.2.1 Correlation between a quadratic effect column and a two-factor interaction

column.

The expression for rcss,tt r
c
ss,tu and rcst,su in Section 2.4 are obtained by substituting m+ k for m

in the corresponding expressions given in Jones and Nachtsheim (2011).

A.2.2 Correlation between pairs of two-factor interaction columns with a common

factor.

Consider two two-factor interaction (2FI) columns xst and xsu formed by the element-wise
multiplications of the LE columns s and t and the element-wise multiplication of the LE columns
s, and u, respectively, in the pDSD. Denote the elements in xst and xsu as xi,st and xi,su,
respectively; i = 1, . . . , N . Note that the average of these elements, denoted as x̄i,st, equals zero
and that their sum of squares equals 2(m + k) − 4. The correlation between two 2FI columns
with a common factor is then

rcst,su =

∑

[xi,st − x̄st] [xi,su − x̄su]
√

∑

[xi,st − x̄st]
2 ∑ [xi,su − x̄su]

2
=

∑

xi,stxi,su
√

∑

(xi,st)
2 ∑ (xi,su)

2
=

∑

xi,stxi,su

2(m+ k)− 4
, (8)

where all sums run from i = 1, . . . , N .
The numerator in (8) is calculated as follows. We first note that

∑

xi,stxi,su =
∑

xi,ssxi,tu,
where xi,ss is the i-th element of the QE column xss. It is easy to show that

∑

xi,ssxi,tu = ±2.
If we substitute

∑

xi,stxi,su = ±2 and 2(m + k) + 1 by N in expression (8) and simplify, we
obtain the expression for rcst,su in Section 2.4.
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A.2.3 Correlation between pairs of two-factor interaction columns not sharing a

common factor.

The derivations for possible values and the maximum absolute value for the correlations between
pairs of 2FI columns in the pDSD are straightforward and therefore omitted.

A.3 Power calculations

In Sections 2.1 and 2.2 of the main paper, powers for t tests of the hypotheses L1, Lm, Qm, Im,
Q3 and I3 are discussed. The statistical power provided by the pDSD to test these hypotheses
is computed as Power = 1−Prob(−tc < t[df,λ] < tc), where t[df,λ] is a random variable following
a non-central t distribution with df degrees of freedom, and non-centrality parameter λ, tc is
the critical value of the null distribution at level α, and α = Prob(|t[df,0]| > tc). For all the
hypothesis tests df = N − p, where p is the number of parameters included in the model. The
non-centrality parameter of the t distribution is given by

λ =
βi/σ

√

Var(β̂i)
,

where the OLS estimate β̂i is computed for a given model. Showing that the power calculations
are independent of the set of k columns to drop from the (m+ k)-factor sDSD is equivalent to
showing that the value of Var(β̂i), and thus of λ, is the same for any subset. We show below
that λ for a given δ, only depends on the values of m and k.

A.3.1 Power for L1.

Since the all LE columns are orthogonal to the intercept, it is easy to see that the variance for
the OLS estimator of any main effect is σ2(2(m + k) − 2)−1. Since only the intercept and a
main effect are included in the model, df = N − 2 = 2(m + k)− 1, and the expression for the
power calculations follows.

A.3.2 Power for Lm.

Using the model matrix Xl and the calculations in Section A.1.2, it is easy to show that the
variance for the OLS estimator is the same as for L1. Since the number of parameters already
in the model is one plus the number of factors, the expression for the power calculations follows.

A.3.3 Power for Qm.

Consider the N × (m + 2) matrix, Xqm, including the intercept column, one QE column, and
all LE columns of the pDSD. For whatever QE column is chosen, the information matrix is

XT
qmXqm =





N 2(n− 1) 01×m

2(n− 1) 2(n− 1) 01×m

0m×1 0m×1 2(n− 1)Im×m



 ,
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where n = m+ k. Note that this matrix is a block diagonal matrix with blocks

A =

(

N 2(n− 1)
2(n− 1) 2(n− 1)

)

, and B = 2(n− 1)Im×m,

Using Harville (2011, p.p. 89), we can easily calculate the inverse of the information matrix:

(

XT
qmXqm

)

−1
=

(

A−1 02×m

0m×2 B−1

)

=





1/3 −1/3 01×m

−1/3 (2n+ 1)/(6n− 6) 01×m

0m×1 0m×1 (2n− 2)−1Im×m



 .

Therefore the variance for the OLS estimator of any QE is σ2(2n+1)/(6n− 6). Given that
the number of parameters already included in the model is m+1, the expression for the power
follows.

A.3.4 Power for Im.

Consider the N × (m + 2) matrix, Xim, including the intercept column, a single 2FI column,
and all LE columns for the pDSD. Regardless of the 2FI chosen, the information matrix is

XT
imXim =





2n+ 1 0 01×m

0 2n− 4 01×m

0m×1 0m×1 2(n− 1)Im×m



 ,

which is a diagonal matrix. Then the variance for the OLS estimate of the 2FI is σ2(2n− 4)−1.
Given that the number of parameters already included in the model is m + 1, the expression
for the power follows.

A.3.5 Power for Q2 and I2.

Consider the N × 6 matrix, Xq2, including the intercept column, the two QE columns, the two
LE columns, and the 2FI column of any two-factor projection of the pDSD. It is easy to see
that the information matrix for any two-factor projection is

XT
q2Xq2 =

















N 2n− 2 2n− 2 0 0 0
2n− 2 2n− 2 2n− 4 0 0 0
2n− 2 2n− 4 2n− 2 0 0 0

0 0 0 2n− 2 0 0
0 0 0 0 2n− 2 0
0 0 0 0 0 2n− 4

















.

Using Harville (2011, p.p. 89, 99), it is easy to show that the inverse of this information
matrix equals

(

XT
q2Xq2

)

−1
=



















2n−3
4n−7

1−n
4n−7

1−n
4n−7

0 0 0
1−n
4n−7

3(n−1)
2(4n−7)

−(n−4)
2(4n−7)

0 0 0
1−n
4n−7

−(n−4)
2(4n−7)

3(n−1)
2(4n−7)

0 0 0

0 0 0 (2n− 2)−1 0 0
0 0 0 0 (2n− 2)−1 0
0 0 0 0 0 (2n− 4)−1



















.
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So the variances for the OLS estimates of the 2FI, and of any QE equal σ2(2n − 4)−1 and
σ2(3n − 3)/(8n − 14), respectively. Since the number of parameters already included in the
model is N − 6, the power expressions for I2 and Q2 follow.

A.3.6 Power for Q3 and I3.

Schoen et al. (2017) considered pDSDs in three factors. They made a distinction between DSDs
with n ≡ 0 (mod 4) and those with n ≡ 2 (mod 4), where n = (N − 1)/2 and they showed
that for a given N all three-factor pDSDs are isomorphic or statistically equivalent.

Consider now the second order model matrix of a three-factor projection of a DSD, Xq3.
This is an N × 10 model matrix including the intercept column, three QE columns, three LE
columns and three 2FI columns. When (N − 1) ≡ 0 (mod 8), the information matrix for one
of the isomorphic DSDs is

XT
q30

Xq30
=

























2n+ 1 2n− 2 2n− 2 2n− 2 0 0 0 0 0 0
2n− 2 2n− 2 2n− 4 2n− 4 0 0 0 0 0 −2
2n− 2 2n− 4 2n− 2 2n− 4 0 0 0 0 2 0
2n− 2 2n− 4 2n− 4 2n− 2 0 0 0 −2 0 0

0 0 0 0 2n− 2 0 0 0 0 0
0 0 0 0 0 2n− 2 0 0 0 0
0 0 0 0 0 0 2n− 2 0 0 0
0 0 0 −2 0 0 0 2n− 4 −2 2
0 0 2 0 0 0 0 −2 2n− 4 −2
0 −2 0 0 0 0 0 2 −2 2n− 4

























.

Alternatively, when (N − 1) ≡ 4 (mod 8), the information matrix for one of the isomorphic
DSDs is

XT
q32

Xq32
=

























2n+ 1 2n− 2 2n− 2 2n− 2 0 0 0 0 0 0
2n− 2 2n− 2 2n− 4 2n− 4 0 0 0 0 0 −2
2n− 2 2n− 4 2n− 2 2n− 4 0 0 0 0 −2 0
2n− 2 2n− 4 2n− 4 2n− 2 0 0 0 −2 0 0

0 0 0 0 2n− 2 0 0 0 0 0
0 0 0 0 0 2n− 2 0 0 0 0
0 0 0 0 0 0 2n− 2 0 0 0
0 0 0 −2 0 0 0 2n− 4 −2 −2
0 0 −2 0 0 0 0 −2 2n− 4 −2
0 −2 0 0 0 0 0 −2 −2 2n− 4

























.

We calculated the inverses of the information matrices using Mathematica. For both infor-
mation matrices, the output of Mathematica (not included here) showed that the variance of
the OLS estimates for any QE is the same. The output also showed that the variances of the
OLS estimates of the three 2FIs are equal. The variances in case (N − 1) ≡ 0 (mod 8) differ
from the corresponding variances when (N−1) ≡ 4 (mod 8). For n ≡ 0 (mod 4), the variances
for a QE estimate, β̂ii, and a 2FI estimate, β̂ij, are:

Var(β̂ii) =
4(m+ k)3 − 21(m+ k)2 + 24(m+ k) + 2

10(m+ k)3 − 66(m+ k)2 + 102(m+ k) + 8

Var(β̂ij) =
5(m+ k)2 − 19(m+ k) + 14

10(m+ k)3 − 66(m+ k)2 + 102(m+ k) + 8
.
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For n ≡ 2 (mod 4), the variances for a QE estimate, β̂ii, and a 2FI estimate, β̂ij, are:

Var(β̂ii) =
4(m+ k)3 − 29(m+ k)2 + 54(m+ k)− 26

10(m+ k)3 − 86(m+ k)2 + 218(m+ k)− 172

Var(β̂ij) =
5(m+ k)2 − 29(m+ k) + 36

10(m+ k)3 − 86(m+ k)2 + 218(m+ k)− 172
.

Since the number of parameters already included in the model is N − 10, the power expres-
sions for I3 and Q3 follow for the two cases.

B Table with detailed results

Table A1 shows the best and worst sets of columns to drop from sDSDs form+k ∈ {6, 8, . . . , 22, 24}
and k ≤ 8. The table includes (i) the average absolute correlations, (ii) the maximum absolute
correlations, and (iii) the sum of all squared correlations between contrast vectors for pairs of
2FI columns. Each set of columns is labeled as i.criteria, where i can be “b” for best option or
“w” for worst option. The criteria can include the letters “a”, “m”, or “s” corresponding to the
average absolute correlation, maximum absolute correlation, and sum of squared correlations
criteria, respectively. For instance, a set of columns labeled “b.ams” thus is best in terms of all
three criteria, while a design labeled “w.a” is worst in terms of the average absolute correlation
criterion.

C Sum of squared correlations between pairs of two-

factor interactions

Figures A1 shows the logarithm of the sum of squared correlations between pairs of 2FI contrast
vectors for the designs discussed in Section 5.2.
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