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the exception of RCP8.5 under which a moderate increase is 
projected towards the end of the century. The present findings 
indicate that the anticipated increase in extreme total water 
levels due to relative sea level rise (RSLR), can be further 
enforced by an increase of the extreme SSL, which can exceed 
30 % of the RSLR, especially for the high return periods and 
pathway RCP8.5. This implies that the combined effect could 
increase even further anticipated impacts of climate change for 
certain European areas and highlights the necessity for timely 
coastal adaptation and protection measures. The dataset is 
publicly available under this link: http://data.jrc.ec.europa.eu/
collection/LISCOAST.

Keywords Climate change · Coastal hazard · Storm 
surge · Coastal inundation · Marine storms · CMIP5

1 Introduction

The coastal zone is an area of high interest, characterized 
by increased population density, hosting important com-
mercial activities and constituting habitats of high socioec-
onomic value (Costanza 1999). Sea level rise (SLR) in view 
of climate change poses a serious threat to coastal areas and 
as a consequence, much research effort has focused on this 
aspect of coastal hazard (Church and White 2011; Hinkel 
et al. 2014; Hogarth 2014; Hoggart et al. 2014; Jevrejeva 
et al. 2014; Losada et al. 2013; Tol 2009). Extreme events, 
however, determine an additional hazard component. 
Some studies report an increased intensity and frequency 
of extreme water levels along several coastal regions in the 
world (Izaguirre et al. 2013; Ullmann and Monbaliu 2010; 
Wang et al. 2014; Weisse et al. 2014). However, the major-
ity of the observed changes are related to changes in mean 
sea level (Menéndez and Woodworth 2010), while there is 
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a lack of significant trends in storminess (Dangendorf et al. 
2014a; Woodworth and Blackman 2002). The latter is in 
agreement to the conclusions of Ferreira et al. (2009), who 
found no statistically significant increasing.

Storm surges, also referred to as meteorological residu-

als or meteorological tide, constitute along with the waves 
and the tidal oscillations the main components of extreme 
water levels along the coastal zone (Losada et al. 2013; 
Lowe et al. 2010). Storm surges are forced by wind driven 
water circulation towards or away from the coast and by 
atmospheric pressure driven changes of the water level; i.e. 
the inverse barometric effect (WMO 2011). The magnitude 
of the storm surge depends on a number of factors includ-
ing the size, track, speed and intensity of the storm system, 
the nearshore local bathymetry (water depth) and the shape 
of the coastline (Arns et al. 2015).

Recently, a number of studies evaluated the poten-
tial dynamics of future extreme storm surge levels (SSL) 
in view of climate change. In particular, regional projec-
tions of SSL have been generated along the Mediterranean 
(Conte and Lionello 2013; Jordà et al. 2012; Marcos et al. 
2011), North Sea (Debernard and Røed 2008; Gaslikova 
et al. 2013; Howard et al. 2010; Woth et al. 2006), as well 
as the Atlantic coast of Europe (Lowe et al. 2001, 2009, 
2010; Marcos et al. 2012) and Baltic Sea (Gräwe and Bur-
chard 2012; Meier 2006; Meier et al. 2004) (Table 1).

Despite the urgency of preparing for the anticipated 
changes in extreme water levels along Europe, there is still 
limited, if any, information on SSL projections under the 
Representative Concentration Pathways (RCPs) (IPCC 
2013). Moreover, most previous studies are at local/regional 
scale and there has been no effort at European scale (Table 1) 
which implies that (1) there are several European regions 
for which there is no information on projected SSL in view 
of climate change; (2) the use of different greenhouse gas 
emission scenarios, climate and ocean models, as well as the 
diversity of the European coastal environments make it dif-
ficult to draw some general conclusions at a European scale.

Against the foregoing background, the present study uses 
a hydrodynamic model forced by CMIP5 climate model 
wind and pressure fields (Taylor et al. 2011) to generate 
projections of extreme storm surge levels (SSL) along the 
European coastline, for a baseline ‘historical’ period and two 
RCPs scenarios: RCP4.5 and RCP8.5 (Meinshausen et al. 
2011). The RCP4.5 and RCP8.5 scenario correspond to a 
likely global mean temperature increase of 2.0–3.6 °C and 
3.2–5.4 °C in 2081–2100 above the 1850–1900 levels (IPCC 
2013) respectively, where RCP4.5 may be viewed as a mod-
erate–emission–mitigation-policy scenario and RCP8.5 as a 
high-end, business-as-usual scenario. The authors are confi-
dent that the results of the study, including a public-access 
dataset of extreme SSL (available from this URL: http://data.
jrc.ec.europa.eu/collection/LISCOAST), can be beneficial 

for research and policy-making efforts towards the timely 
response to the climate impacts along the European coast-
line (alternative URLs: http://data.europa.eu/89h/0026aa70-
cc6d-4f6f-8c2f-554a2f9b17f2; http://data.europa.eu/89h/
deff5a62-074c-4175-bce4-f8f13e0437a3; http://data.europa.
eu/89h/a25677b7-2296-4eeb-82f2-70c78690ae10).

2  Methods

2.1  Numerical model setup

The Delft3D-Flow module of the open source model 
Delft3D (Deltares 2014) has been applied to estimate the 
propagation of the SSL due to the combined effect of the 
wind and the atmospheric pressure gradient. The model has 
been used successfully in similar applications in the past 
(Sembiring et al. 2015). The Delft3D-Flow module set-up 
that has been adopted solves the 2D non-linear shallow 
water equations on a staggered Arakawa C-grid, according 
to an implicit finite difference approximation on a vertical 
σ—coordinate system.

After extensive model optimization and validation tests, 
the numerical grid setup that was finally selected was a 
regular grid of 0.2° resolution (Table 2), including Europe 
and a large extent of the N. Atlantic (spanning from 40°W 
to 47°E and from 26°N to 73°N; Fig. 2); as it proved to be 
the best compromise in terms of data quality, model stabil-
ity and computational times. Water level model output was 
obtained every 3 h and every 25 km along the coastline.

2.2  Model validation

A hindcast run spanning from 01/01/1979 to 01/06/2014 
was forced by hindcast atmospheric pressure and wind 
fields obtained from the ERA-Interim database (Dee et al. 
2011) and the resulting storm surge values were validated 
against water level time series available from the JRC Sea 
Level Database (http://webcritech.jrc.ec.europa.eu/SeaLev-
elsDb). The temporal resolution of the measurements is 
typically in the order of few hours and the temporal extent 
of the validation dataset varies among stations (Fig. 1), 
covering the period from 2008 and on; a period character-
ized by an increased marine storm activity including high 
impact events (e.g. Bertin et al. 2014; Breilh et al. 2013; 
Met Office and Centre for Ecology and Hydrology 2014; 
Vousdoukas et al. 2012). After identifying and excluding 
gaps or periods with rogue data, a tidal harmonic analysis 
was applied with the widely used t-tide package (Pawlow-
icz et al. 2002) in order to obtain the residual storm surge 
water levels ηs. The latter were then compared directly with 
the model output and evaluated in terms of the root mean 
square error (RMSE):
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http://data.jrc.ec.europa.eu/collection/LISCOAST
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where n is the number of measurements in the storm surge 
time series at a given location. The relative RMSE error 
(%RMSE) was also estimated in order to take into account 
spatial variations in the range of the SSL:

Agreement in terms of the probability density function 
of the values was assessed after applying the Kolmogorov–
Smirnov test (K–S), considering a 5 % significance level. 
Given that the study focuses on the extreme SSL, we eval-
uated the monthly maxima SSL of the model output and 

(1)
RMSE =

√

√

√

√

∑

n

i

(

η
i

s,measured
− η

i

s,model

)2

n

(2)
%RMSE =

√

n
∑

i

(

η
i

s,measured
−η

i

s,model

)2

n

max

(

η
s,measured

) × 100

Table 2  Information about the model setup and the simulations

Model setup Information

Storm surge model used Delft3D version 5.01.00.4018

Processes simulated Wind/pressure-driven ocean circulation

Grid Regular, 0.2° (40°W–47°E; 26°N–73°N)

Atmospheric forcing ERA-INTERIM (validation), CMIP5 
(scenarios)

Climate models GFDL-ESM2 M (NOAA Geophysical 
Fluid Dynamics Laboratory USA), 
MPI-ESM-LR, MPI-ESM-MR  
(Max-Planck-Institut für Meteorologie 
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the tidal gauge measurements with the K–S test rather than 
considering the complete measured and simulated time 
series.

2.3  Climate scenarios

The period 1970–2000 was considered as baseline period, 
while 2010–2040 and 2070–2100 were considered as the 
short and long term future scenarios for RCP4.5 and RCP8.5, 
respectively. The two time slices will be mentioned as 2040 
and 2100 hereinafter for reasons of brevity (e.g. RCP8.52040).

The model was forced by the 6-h output of 8 climate 
models available at the CMIP5 database, namely the 
ACCESS1-0, ACCESS1-3, (CSIRO-BOM Australia), 
CSIRO-Mk3.6.0 (CSIRO-QCCCE, Australia), EC-EARTH 
(EC-EARTH consortium), GFDL-ESM2M (NOAA Geo-
physical Fluid Dynamics Laboratory USA), HadGEM2-
CC (Met Office Hadley Centre UK), and MPI-ESM-LR, 
MPI-ESM-MR (Max-Planck-Institut für Meteorologie 
Germany). The specific models were selected as previous 
studies have shown (Perez et al. 2014) that they have good 
skill to reproduce the synoptic climatologies and the inter-
annual variations across Europe.

In order to additionally evaluate the performance of the 
modelling strategy (i.e. combination of the CMIP5 atmos-
pheric forcing with Delft3D model) in reproducing the SSL 
conditions along the European shoreline the obtained SSL 
time series for the baseline period were compared with the 
ones of the previously validated ERA-INTERIM forced 
SSL reanalysis (see Sect. 3.1), before and after apply-
ing Bias correction following the approach proposed by 
Haerter et al. (2011) and used by later studies (e.g. see Gril-
lakis et al. 2013).

For better analysis of the model performance and the 
storm surge scenarios, the European coastal zone was 
divided into 10 regions on the grounds of the geographi-
cal and physical setting: Black Sea, East, Central and West 
Mediterranean, South- and North-North Atlantic, Bay 
of Biscay, as well as North, Baltic and Norwegian Sea 
(Fig. 2).

2.3.1  Extreme value statistical analysis

The peak-over threshold (POT) approach was applied to 
identify extreme events for each 30-year time slice, accord-
ing to a certain SSL threshold parameter u. Given that the 
peaks need to be independent observations and not the 
result of the same extreme event, it is common to apply 
de-clustering of events using a minimum time difference 
between peaks varying from 34 h to 5 days (Lowe and 
Gregory 2005). At the present study, the value selected for 
the time window was 72 h in agreement to previous studies 
(Marcos et al. 2011; Serafin and Ruggiero 2014), while the 
threshold parameter u was different for each location ensur-
ing that the average number of events per year in the base-
line period was ~5 at each studied point. Considering an 
average of 5 events per year for extreme values statistical 
analysis is also common for such studies, given that such 
analyses are sensitive to u. The selected exceedance events 
per year were pooled and modelled according to the Gener-
alized Pareto Distribution (GPD) (Coles 2001):

where y is the time-series of SSL above the threshold u 
such as y = ηs − u, σ is the scale parameter and ξ is the 
shape parameter. The scale parameter σ of the GPD is 
related with the scale parameter ψ and the location param-
eter µ of the generalized extreme value distribution accord-
ing to:

Τhe parameters of the GPD are estimated using the 
maximum likelihood method and subsequently the N-year 
return SSL is estimated as follows (Coles 2001):

where ny is the number of annual exceedances per year 
in each time slice and ζu the probability that an empirical 
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value exceeds the threshold u. Extreme SSL values were 
calculated for different return periods and Tr = [5, 10, 50, 
100] years are discussed in the present manuscript.

2.3.2  Seasonal variations

In order to assess the seasonal dynamics of SSL and 
potential changes therein, the monthly maxima SSL were 
grouped into seasons, with winter spanning from Decem-
ber to February, spring from March to May, summer from 
June to August and autumn from September to November 
and average maximum seasonal values were estimated. 
The grouped monthly maxima were averaged to obtain a 
characteristic value for each climate model, time slice and 
season in order to give insight into the seasonal variations 
of the extreme SSL; while the standard deviation σSSL of 
the monthly maxima was used as a proxy of inter-annual 
variability.

2.3.3  Projected changes, ensemble averaging 

and statistical significance

The 8-member model ensemble implies that the above 
analysis resulted, for each model output point, in a set of 
SSL values for the different simulations, return periods 
and seasons; and for each of the above cases ensemble 
means were calculated from all different climate models. 
Apart from the actual SSL values, absolute and percent-
age changes (∆ηs and %∆ηs, respectively) for each return 
period were obtained by subtracting the baseline values  
(ηs, baseline) from the RCP4.5 and RCP8.5 ones (ηs, RCP), 
from each climate model:

All the above are applied for each model output loca-
tion; while ensemble averages were estimated also for the 
absolute and relative SSL changes in order to reduce the 
uncertainty of the projections and model agreement was 
evaluated on the grounds of the coefficient of variation CV 
(Alfieri et al. 2015; Knutti and Sedlacek 2013):

The coefficient of variation CV is defined as the ratio 
between the standard deviation of the model ensemble σ 
and the ensemble mean value, and decreases as intra-model 
variability becomes a smaller fraction of the ensemble 
mean; implying stronger model agreement and statisti-
cal significance of the ensemble mean. In the present case, 

(7)�ηs = ηs,RCP − ηs,baseline

(8)%�ηs =

ηs,RCP − ηs,baseline

ηs,baseline

× 100

(9)CV =

σ�ηs

�ηs

values with |CV| > 1 were not considered, which roughly 
corresponds to an average agreement of five out of six 
models (i.e. 84 % probability), If one assumes that relative 
changes are normally distributed (Alfieri et al. 2015). Addi-
tionally, the CV was also utilized in order to evaluate model 
agreement for all the ensemble mean estimations; i.e. SSL 
for the different return periods, as well as seasonal mean.

3  Results

3.1  Model validation

Data from 184 tidal gauge stations were processed in order 
to identify data gaps or to mask periods with low-quality 
data, resulting in a set of 110 stations with periods of valid 
ground-truth residual water level data coinciding with the 
simulation period. Following the initial filtering of the 
tide gauge records, the region with the largest number of 
acceptable quality tidal gauge records was the North Atlan-
tic (36), followed by Central Mediterranean (21), the North 
Sea (14) and East/West Mediterranean (9); while only one 
station was found in the West Iberia and 2 in the Black Sea 
(Table 3). It is also important to underline that the tempo-
ral availability (Fig. 1) and data quality was poorer along 
the Black Sea and East Mediterranean. Overall, the model 
showed to reproduce satisfactory the measurements (Fig. 3) 
and spatial variations in the model performance were 
observed (Fig. 4), with RMSE values ranging from 0.06 
to 0.29 m, while  %RMSE varied between 10 and 29 % 
(Table 3).

Most of the Mediterranean, the Atlantic coast and the 
Norwegian Sea were characterized by absolute RMSE val-
ues below 0.1 m, while RMSE > 0.15 m were observed 
along the North Adriatic and the North Sea (Fig. 4a). The 
latter high RMSE values appeared to be related to the 
higher ηs range, as implied by the relatively low %RMSE 
values in the same areas (Fig. 4b). The highest %RMSE val-
ues were observed along the Aegean Sea (%RMSE > 0.2), 
while overall model performance was poorer along the 
Black and Mediterranean Sea (mean %RMSE ranging from 
18 to 25 %). On the contrary, the lowest  %RMSE was 
observed in the Norwegian Sea (mean  %RMSE = 13 %, 
see Table 3).

Q–Q plots indicate that the model was capable of repro-
ducing the probability distribution function of the meas-
ured SSL (Fig. 5), which was the crucial skill given the 
extreme value statistical analysis to follow. The model 
overestimated the lower values at some locations in S. 
Europe (e.g. Fig. 5a–f), while the opposite was observed 
in the North, Baltic and Norwegian Sea (e.g. Fig. 5g–j); 
however the lower values are of minor interest for the 
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scope of the present study. On the other hand, the extremes 
were underestimated at some stations (see Fig. 5a–c, e, f), 
a possible artifact of the coarse atmospheric forcing and 
numerical grid. However, the model’s capacity to simulate 
SSL is considered satisfactory given that the scope of the 
study is to project trends under climate change scenarios 
and not to provide accurate operational forecasts. This is 
also confirmed by the results of the Kolmogorov–Smirnov 
test (Table 3), which showed agreement in the monthly 
maxima distributions for almost all validation points along 
North Europe, and at least for 80 % of the points along 
South Europe.

The monthly maxima SSL values from the ERA-
INTERIM forced reanalysis run were compared with 

the values obtained from the baseline period runs forced 
by the 8-member ensemble and the estimated aver-
age  %RMSE values per model varied from 28.1 % 
(EC-EARTH; see also Table 4) to 33.6 % (GFDL-
ESM2M) around a mean of 30.4 %, before applying the 
Bias correction. As expected, the coarser CMIP5 mod-
els resulted in lower SSL values with mean normalized 
Bias around −12 % and the biggest deviations observed 

Table 3  Overview of model performance along the 10 defined Euro-
pean regions: number of tidal gauge stations, percentage of stations 
with the same distribution of monthly maxima according to the Kol-

mogorov–Smirnov test, as well as mean, maximum and minimum 
values of the RMS error in m and as a percentage of the SSL range

Region name No stations KS % RMSE mean RMSE min RMSE max %RMSE mean %RMSE min %RMSE max

Black Sea 2 100 0.14 0.12 0.16 25 22 28

East Mediterranean 9 96 0.11 0.06 0.29 24 13 29

Central Mediterranean 21 82 0.14 0.09 0.28 18 16 20

West Mediterranean 9 95 0.10 0.09 0.13 19 15 21

West Iberia 1 98 0.10 0.10 0.10 17 17 17

Bay of Biscay 7 100 0.10 0.07 0.12 16 15 17

North Atlantic 36 97 0.12 0.08 0.23 14 10 20

North Sea 14 100 0.17 0.11 0.22 16 12 19

Baltic Sea 7 100 0.15 0.09 0.21 14 11 18

Norwegian Sea 4 100 0.09 0.07 0.10 13 11 15
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for ACCESS1-3, CSIRO-Mk3-6-0, and HadGEM2-
CC (Table 4). After applying the BIAS correction and 
repeating the extreme value analysis, the agreement with 
the reanalysis values improved substantially to a mean 
%RMSE of 10.8 % (Table 4), with Kolmogorov–Smirnov 
test results indicating the same probability distributions 
between the Bias corrected CMIP5 and ERA-INTERIM 
runs. Overall, the monthly maxima values were similar 
among models and the biggest deviations from the reanal-
ysis were found along the North and Baltic Sea (Fig. 6). 
The reported accuracy is considered satisfactory given 
that %RMSE was estimated from monthly maxima and 
the CMIP5 models are reproducing climate in a stochas-
tic manner and thus the time domains are approximately 
matching with the reanalysis.
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Fig. 5  Model validation performance: scatter plots comparing meas-
ured and simulated SSL for each tidal gauge location. The colors 
express point density (increasing from blue to red), the red dashed 

line expresses the perfect fit, while the black dots show the q–q plots 

of the two time series. The inset map (k) shows the location of the 
displayed tide gauge records, one from each of the 10 European 
regions; while the RMSE and Kolmogorov–Smirnov test results are 
shown, with 0 indicating same monthly maxima distributions

Table 4  Results from the baseline runs validation using the 8-mem-
ber climate model ensemble vs the ERA-INTERIM forced reanalysis: 
normalized RMSE (%RMSE), Normalized Bias (NBI) before Bias 
correction and  %RMSE after Bias correction (%RMSE-BC)

All values were estimated considering the monthly maxima

Model %RMSE NBI (%) %RMSE-BC

ACCESS1-0 28.3 −14.7 10.2

ACCESS1-3 28.7 −17.1 9.8

CSIRO-Mk3-6-0 28.7 −16.0 11.4

EC-EARTH 28.1 −14.3 10.4

GFDL-ESM2 M 33.6 −7.3 11.0

HadGEM2-CC 28.2 −14.8 10.5

MPI-ESM-LR 33.9 0.4 11.5

MPI-ESM-MR 33.9 0.4 11.4
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3.2  Storm surge projections

The estimated extreme SSL obtained by the 8-member 
model ensemble appeared to follow similar spatial patterns 
among the different scenarios and return periods (Fig. 7); 
with SSL values along the North Sea increasing east-
wards, and being substantially higher than the ones along 
the rest of Europe. Another area characterized by higher 
SSL values was the UK coastline of the Irish Sea, followed 
by marginal areas of the Baltic Sea (e.g. Kattegat, Gulf 
of Finland and the North Gulf of Bothnia; see Fig. 7) and 
the Norwegian Sea. Anticipated extreme SSL appeared 
to be ηs < 2 m for most of South Europe with higher val-
ues observed along parts of the North Adriatic and of the 
North Black Sea.

The spatial variations of the relative changes in extreme 
SSL for all the studied RCPs are shown in Fig. 7, while an 
overview of the general tendencies per European region is 
provided by the mean frequency curves (Fig. 8). The reader 
should note that hereinafter changes which are shown and 
discussed concern only the ones for which strong model 
agreement has been found among the 8-member ensemble 
(CV < 1).

An increasing tendency was shown for the Black Sea, 
especially under RCP8.5 (Fig. 8a), with the current 100-
year event expected to occur every 90.2 and 85 years under 
RCP8.52040 and RCP8.52100, respectively. While the pro-
jected increase of the extreme ηs is estimated especially at 
the east part of the Black Sea, the overall values are small 
and the changes are not significant in terms of absolute val-
ues (Fig. 7; see also “Appendix”).

Minor changes are projected for the extreme SSL pro-
jections at the Mediterranean Sea, with the most prominent 
increase projected along the West Mediterranean under 
RCP8.52100 indicating a 29 year reduction in the return 
period of the present 100-year event (Fig. 8d). Projected 
increase in SSL was also found along the East Mediterra-
nean; indicatively the present 100-year event was projected 
to occur every 75, 95.2 and 95.3 years under RCP8.52040, 
RCP4.52100 and RCP8.52100, respectively (Fig. 8b). Along 
the Central and West Mediterranean the frequency of the 
present-day 100-year event was shown decrease in 2040 
and to decrease towards the end of the century (Fig. 8c,d).

Projected SSL change along the South Atlantic coast of 
Europe and the Bay of Biscay was small (Figs. 7, 8e, f), as 
changes became more prominent at latitudes above 50°N. 

Fig. 6  Normalized RMSE (%RMSE) comparing monthly maxima from the baseline runs validation using the ERA-INTERIM forced reanalysis 
vs the 8-member climate model ensemble after Bias correction (%RMSE-BC)
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The present 100-year event at the South Atlantic coast 
was projected to occur every 143.5 and 130.8 years under 
RCP4.52100 and RCP8.52100, respectively (Fig. 8e), while a 
mild increase was projected for the Bay of Biscay for most 
scenarios (Fig. 8f). An increase was projected under all 
the studied RCPs along the Atlantic coast of North Europe 
(Figs. 7, 8g), with the present 100-year event projected to 
occur every Tr = 82.4, 89.5, 89.2 and 83.8 under RCP4.52040, 
RCP8.52040, RCP4.52100, and RCP8.52100, respectively 
(Fig. 8g); even though the projected frequency of the 10-year 
event remained relatively stable for all RCPs but RCP8.52100.

The North Sea was projected to experience increased 
storm surge activity (Fig. 8h), especially towards the end 
of the century, i.e. the present 100-year event was projected 
to occur every 80.2 and 81.3 years under RCP4.52100 and 
RCP8.52100, respectively. The relative change in extreme SSL 
was shown to increase eastwards, as most of the UK east 
coast showed small decrease or no change (Fig. 7). Strong 
projected increase in frequency was also observed for the Bal-
tic Sea, for all scenarios apart from RCP4.52040; with the pre-
sent day 100-year event projected to take place every 44, 72, 
and 51 years under RCP8.52040, RCP4.52100, and RCP8.52100, 

Fig. 7  Ensemble mean of extreme SSL (m) along the European 
coastline obtained for 5, 10, 50, and 100 years return periods (shown 
in different columns), for the baseline period (a–d), as well as their 
projected relative changes under RCP4.52040 (e–h), RCP8.52040 (i–l), 

RCP4.52100 (m–p), RCP8.52100 (q–t) scenarios (shown in different 

lines). Warm/cold colors express increase/decrease, respectively; 
while points with high model disagreement are shown with gray 
(|CV| > 1)
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respectively (Fig. 8i). Finally an increase in storm surge inten-
sity was projected for the Norwegian Sea for all RCPs, with 
the present day 100-year event projected to take place every 
79.4, 51, 63.5, and 47.7 years under RCP4.52040,RCP8.52040, 
RCP4.52100, and RCP8.52100, respectively (Fig. 8j).

3.3  Seasonal analysis

Monthly maxima were grouped into seasons and were aver-
aged in order to give insight to the seasonal variations of 
the extreme SSL (Fig. 9); as expected, the spatial varia-
tions were similar to the ones of the extreme values. For all 
scenarios the season with the highest SSL was winter, fol-
lowed by autumn; while summer was typically the season 
characterized by the lowest SSL extremes. The standard 
deviation σSSL was used as a proxy of inter-annual variabil-
ity and its spatial variations followed the ones of the actual 
values; e.g. areas like the North and the Baltic Sea where 
the higher SSL occur, were also characterized by high 
standard deviation values (Fig. 9).

The projected relative changes of the mean seasonal 
SSL maxima were grouped and averaged for each studied 

region along with the corresponding inter-annual variabil-
ity, standard deviation σSSL (Fig. 10). Overall the seasonal 
SSL values appeared intensified towards the end of the cen-
tury, which was also relevant for the inter-annual variabil-
ity. The Baltic Sea was the area with the highest increase 
in the seasonal maxima %∆ηs, with an increasing tendency 
for all seasons especially towards the end of the century, 
and under RCP8.5 (Fig. 10d). The second highest increase 
was shown along the North Sea, and especially towards the 
end of the century, with the projected increase exceeding 
2 % in most cases. The general trend for the Norwegian 
Sea shows a decrease in the inter-annual variability, driven 
by decreasing or stable winter and spring SSL values and 
increase summer and autumn ones, especially towards the 
end of the century.

On the contrary, for both RCPs and more significantly 
for the last period of the century, the seasonal mean 
maximum SSL at the European Atlantic coast appeared 
to decrease; a pattern that was more obvious along the 
Bay of Biscay (up to 3 %); while the projected changes 
in the remaining areas were very limited. The projected 
decrease of the seasonal maxima does not appear to be 
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RCP8.52100 (orange). The inset map (k) shows the limits of the 10 
European regions



3182 M. I. Vousdoukas et al.

1 3

of similar intensity on a year-long basis, and as a result 
the inter-annual variability is projected to increase along 
all the areas found south of 50°N, except from the East 
Mediterranean.

4  Discussion

4.1  General remarks

Previous studies have shown that the uncertainties intro-
duced by the ocean models are small compared to the ones 
related to the accuracy and resolution of the atmospheric 
forcing (e.g. Jordà et al. 2012). Moreover, in the case of 
SSL projections in view of climate change additional 
uncertainty is introduced by: (A) the future socio-economic 
development and policy actions (manifested as RCPs); (B) 
knowledge gaps in understanding and predicting the climate 

system, expressed as differences among climate models; 
(C) the skill of the hydrodynamic model to reproduce short 
duration/high energy, extreme events over large spatial 
domains (Calafat et al. 2014; Conte and Lionello 2013), 
especially given the limitations in the spatial resolution of 
both the meteorological forcing and ocean model, which 
are inevitable due to the spatial and temporal extent of the 
projections; and (D) the extreme value statistical analysis, 
affected by the selected frequency analysis approach and 
distribution shape, as well as the return period curve fitting 
(Hamdi et al. 2014). All the above points are discussed in 
the following paragraphs, apart from point A which is con-
sidered beyond the scope of the present study.

Climate model uncertainties (point B) were reduced 
to the greatest possible extent by (1) ensuring the skill of 
the circulation model to reproduce extreme SSL values 
along Europe through validation against tidal gauge data 
(Sect. 3.1); (2) selecting the CMIP5 climate models which 

Fig. 9  Mean seasonal maxima along the European coastline and their 
relative changes; columns correspond to the Winter, Spring, Summer, 
Autumn, and the standard deviation (σ) while lines different runs: 
values for the baseline run (a, e); and their relative changes under 

RCP4.52040 (f–j), RCP8.52040 (k–o), RCP4.52100 (p–t), RCP8.52100 
(u–y). Warm/cold colors express increase/decrease, respectively; 
while points with high model disagreement are shown with gray 
(|CV| > 1)
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according to Perez et al. (2014) are ranked with high skill 
in reproducing the synoptic climatologies and inter-annual 
variations along Europe; (3) using the validated SSL rea-
nalysis, forced by more detailed atmospheric forcing, to 
apply BIAS correction on the SSL values generated from 
the atmospheric forcing of each climate model, in order 
to further ensure that the validity of the SSL projections; 
and (4) using a 8-member climate model ensemble and 
considering the ensemble mean only when model agree-
ment is acceptable through a threshold in the coefficient of 
variation.

Regarding point C, recent efforts to simulate extreme 
storm surge events along large domains, such as the Medi-
terranean Sea, have shown that models often underestimate 
the extremes and in particular the ones related to short 
duration/high energy events (Calafat et al. 2014; Conte and 
Lionello 2013); something that could also apply for some 
locations at the present study. The latter might be related 
to processes which take place in finer temporal and spatial 

scales than the ones presently considered, where the qual-
ity of the output is directly affected by the resolution of 
both the meteorological (Cavaleri and Bertotti 2004) and 
ocean model (Cid et al. 2014). For example, it has been 
shown that along shallow areas storm surge is practically 
wind driven and detailed representation of the wind field is 
important; for that reason many regional/local scale stud-
ies apply a downscaling of the wind/pressure input using 
a finer atmospheric model (see Table 1 and references 
therein); which was not feasible in the present case due to 
the size of the computational domain and the related com-
putational cost. Overall the approach followed appears 
to be valid since model validation showed that the model 
could reproduce satisfactorily the measured SSL, and the 
RMSE errors were at similar levels with previous efforts 
(Cid et al. 2014). This is also in agreement to previous 
studies which have demonstrated that global driven simu-
lations are capable of predicting changes in extreme SSL 
without previous downscaling (Howard et al. 2010).
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Fig. 10  Projected changes in the inter-annual variability of extreme 
SSL averaged for each of the 10 European regions expressed as per-
centage of change of the mean seasonal maxima from the baseline 

run values and of their stand deviation for the different RCP scenar-
ios and time slices: RCP4.52040 (a), RCP8.52040 (b), RCP4.52100 (c), 
RCP8.52100 (d)
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Water level variations are important for SSL, as the 
depth modulates the bottom friction, and thus the cir-
culation patterns (Arns et al. 2015); while tidal cur-
rents interact with the wind-driven circulation applying 
an additional non-linear effect on the extreme ηs lev-
els (Bernier and Thompson 2007; Zijl et al. 2013). As 
also shown by the validation results, the errors related 
to omitting the tidal circulation in the simulations are 
low and well below the uncertainty introduced by other 
components such as the atmospheric forcing. Moreo-
ver, tidal contributions on total water levels have their 
own probability density functions and thus they would 
affect also the SSL ones, therefore it was decided to run 
storm surge simulations without a tidal sea level signal; 
since the increased complexity and computational times 
from considering the tidal component in the simulations 
outweigh the potential gains in data quality. The same 
applies to the benefits of considering projections of rela-
tive sea level rise (RSLR) instead of running all simula-
tions at the present day sea levels, since there is consen-
sus in previous studies that to a first order approximation 
changes in mean sea level and SSL can be added line-
arly (Howard et al. 2010; Lowe and Gregory 2005; Sterl 
et al. 2009; Weisse et al. 2012).

Finally, an important factor of uncertainty in generat-
ing SSL projections is the extreme value statistical analy-
sis, mainly related to (1) the selected frequency analysis 
approach; (2) the selected distribution shape; and (3) the 
fact that sometimes the return period considered can be 
even 2 orders of magnitude higher than the duration of the 
analyzed time series. The latter is a common limitation in 
similar studies and it has be to highlighted that while pro-
jected SSL changes for higher return periods >100 years 
carry an increased level of uncertainty and therefore 
should be considered without caution; despite compensa-
tion efforts compensated by the use of the model ensem-
ble, and the coefficient of variation as proxy of model 
agreement. The frequency analysis approach along with 
the distribution shape have been shown to affect the pro-
jected SSL values (Hamdi et al. 2014), and there is certain 
variety in the approach selected in previous similar stud-
ies; i.e. r-largest (Marcos et al. 2011), GEV (Gaslikova 
et al. 2013) and non-stationary methods (Méndez et al. 
2007; Serafin and Ruggiero 2014).

Regarding this study, several extreme value statis-
tical approaches were tested and the extreme SSL val-
ues estimated for the baseline run were compared with 
values available in the literature; and the present imple-
mentation of the GPD was chosen as the most reliable 
approach. Overall, the effect of all the discussed poten-
tial limitations on data quality becomes even less criti-
cal since the present study focuses on assessing relative 
changes in extreme SSL, rather than presenting accurate 

ηs predictions or operational forecasts. Still, it is impor-
tant to remind the reader and potential user of the data-
set that the relative accuracy of the absolute SSL values 
should be considered in the 10–20 % range. Moreo-
ver, the subtraction between baseline and scenario val-
ues cancels out most possible shortcomings in the SSL 
simulations.

4.2  Storm surge projections

Given that, according to the authors’ knowledge, there are 
no previous studies on projected SSL values at European 
scale, the obtained results will be discussed against find-
ings from existing regional studies. For the case of the 
Baltic Sea, earlier studies in historical storm surge trends 
have reported no statistically significant increasing trend 
(Baerens and Hupfer 1999; Menéndez and Woodworth 
2010; Suursaar et al. 2015), while previous studies report 
a projected increase under SRES scenarios (Debernard 
and Røed 2008; Gräwe and Burchard 2012; Meier 2006; 
Weisse et al. 2009; Woth et al. 2006); in agreement with 
the present findings. The area shows some of the highest 
increases in projected extreme SSL in Europe and the sea-
sonal values (Fig. 10) indicate increased storm surge activ-
ity during all the seasons of the year, but especially during 
spring and summer.

At the same time while some studies on SLR trends 
along the Baltic Sea have indicated a decreasing trend, 
also shown in the dataset produced by Pardaens et al. 
(2011); Johansson et al. (2014) concluded that the past 
negative trend in mean sea level in the Gulf of Finland 
will not continue in the future, because an accelerated 
global average SLR will offset the land uplift. Therefore, 
the presently projected increase in SSL could balance a 
potential decrease in future sea levels, resulting in com-
parable levels of coastal hazard in the future. However, 
in the case of positive RSLR supported by several stud-
ies (Johansson et al. 2014; Meier 2006) the Baltic Sea 
will experience even higher pressure by extreme coastal 
events, in agreement to results from Gräwe and Burchard 
(2012) for the West Baltic Sea.

Given that there are limited, if any, sources of informa-
tion on storm surge projections along the Norwegian Sea, 
the present projections can be compared mostly with obser-
vations based on historical data. The results obtained project 
small or no increase in SSL, and when there is it is mostly 
restricted to the summer and autumn values for most scenar-
ios (Fig. 10). This is partially contradicting with the findings 
of Menéndez and Woodworth (2010) who found a statisti-
cally significant increase for the historical data for both the 
total water level and the SSL. Overall the Norwegian coast-
line appears to be at low-risk in terms of coastal inundation 
as it is characterized by (1) a steep topography, providing 
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a natural protection against increased water levels; and (2) 
sophisticated coastal protection schemes for low-lying areas 
of high socio-economic value; e.g. port facilities.

The North Sea is an area subject to some of the high-
est SSL in Europe (Fig. 7), with the projections indicat-
ing a future increase in the extremes, especially along the 
eastern part. The latter is in agreement with previous pro-
jections based on SRES scenarios (Debernard and Røed 
2008; Woth et al. 2006), which also indicated an increase 
in strong westerly winds (Gaslikova et al. 2013), but also 
of the inter-annual variability (Dangendorf et al. 2014b). 
Furthermore, previous studies report results relatively 
similar to the present patterns along the south east coast 
of UK, i.e. small, or no projected storm surge change 
(Debernard and Røed 2008; Gaslikova et al. 2013; How-
ard et al. 2014; Lowe et al. 2009; Woth et al. 2006); as 
well as along the Dutch coast (Howard et al. 2014; Sterl 
et al. 2009).

The storm surge projections showed an increase along 
the Atlantic coast of the UK and Ireland, which was 
related to a consistent increase of the winter extremes, as 
well as of the inter-annual variability among the scenarios 
studied (Fig. 10); in line with previous studies predicting 
that the projected RSLR in the area will be combined with 
an increase in wind speeds and consequently in extreme 
SSL (Brown et al. 2010, 2012; Debernard and Røed 2008; 
Lowe et al. 2009). Lowe et al. (2009) found the highest 
projected increase in ηs values along the Bristol Channel 
and the Severn Estuary, which was also shown by the pre-
sent dataset for some scenarios.

The Atlantic coast of France, Spain and Portugal is 
exposed to very energetic waves generated along the North 
Atlantic (Pérez et al. 2014), which constitute the dominant 
coastal hazard component (Almeida et al. 2012; Ciavola 
et al. 2011); with the latter potentially justifying the lim-
ited number of previous efforts to generate regional storm 
surge projections. The present findings indicate relatively 
stable or even decreasing ηs levels along most of the Bay of 
Biscay, being in agreement with the results of Marcos et al. 
(2012), who also reported a decrease towards the end of the 
century for both A1B and A2 SRES scenarios. The above 
are also in agreement with the observations of Menéndez 
and Woodworth (2010) on historical data.

The Mediterranean Sea has been studied extensively 
in terms of projected storm surge dynamics and there is 
consensus among studies based on SRES scenarios for no 
changes, or even a decrease in the frequency and intensity 
of extreme events (Androulidakis et al. 2015; Conte and 
Lionello 2013; Jordà et al. 2012; Marcos et al. 2011). This 
comes in agreement with the reported historical trends 
(Menéndez and Woodworth 2010), as well as with the pre-
sent findings, projecting changes mostly in the ±5 % band, 
either positive or negative.

The North Adriatic is a region which has been studied 
more thoroughly due to the highly vulnerable, and socio-
economically important Venice area, with most previous 
projections reporting no statistically significant change, or 
even decrease (Mel et al. 2013; Troccoli et al. 2012), even 
though Lionello et al. (2012) report a projected increase 
in frequency of extreme events around Venice, under a B2 
SRES scenario. The latter is in agreement with the present 
projections which indicate weakly increasing extreme ηs 
values for certain RCPs along parts of the North Adriatic, 
with the latter not always including the Venice area (Fig. 7).

The present dataset presents projections of changes in 
extreme SLL values during this century, as well as of their 
seasonal variations; while previous studies have provided 
evidence of variability also on intermediate time scales, 
e.g. controlled by the North Atlantic Oscillation (NAO) 
(Dangendorf et al. 2014b; Marcos et al. 2011). Gillett and 
Fyfe (2013) report no significant increase in the NAO under 
RCP4.5 projected by CMIP5 models, which is contradict-
ing to the projected increase in SSL values; on the other 
hand could be justified by the inability of some climate 
models to correctly simulate the physical processes con-
nected to the NAO (Davini and Cagnazzo 2014). Therefore, 
analyzing further the patterns and controls of SLL variabil-
ity is a very interesting direction for further research.

4.3  Implications for coastal management 

and adaptation in view of climate change

The projections presented here only concern the storm surge 
(atmospheric) contribution to sea level, which is one of the 
main components of extreme water levels along the coast and 
therefore, they are complementary to other studies focusing 
on RSLR attributed to other causes, such as thermal expan-
sion or ocean mass variations (Nicholls et al. 2014; Pardaens 
et al. 2011). The mean projected increase in extreme SSL 
along Europe in 2100 and for a moderate ice-sheet behavior 
scenario is around 46 and 67 cm for RCP4.5 and RCP 8.5, 
respectively (based on data available by Hinkel et al. 2014). 
Even though, some storm surge attenuation is likely to hap-
pen due to the increased sea levels (e.g. Arns et al. 2015), the 
projected increase in SSL reaches 30 cm at certain locations 
and especially for the high return period events.

For example, the mean contribution of the projected 
increase in the 100 year storm surge event to the pro-
jected increase in the corresponding TWL for the entire 
European coastline, under RCP8.5 and towards the end of 
the century was shown to be around 18 %; with the latter 
exceeding 30 % for 14 % of the studied coastal location. 
As a result the contribution of extreme SSL to anticipated 
increasing total water levels is not negligible and implies 
an additional stress to several coastal locations in Europe 
due the combined effect of the intensified extreme events 
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and RSLR. At the same time, increasing extreme SSL val-
ues could even result in similar risk levels even under neg-
ative projections of RSLR; e,g. in areas with anticipated 
uplift (Johansson et al. 2014).

An additional coastal hazard component are the waves, 
which during extreme events result in an increase in 
water level and energy flux towards the coast, accelerat-
ing sediment transport processes and thus driving coastal 
erosion, dune breaching and inundation (Bertin et al. 
2012; Ciavola et al. 2011; Roelvink et al. 2009). Wave 
heights can exceed 10 m along exposed coasts, such as 
the Atlantic ones, and in order to obtain a complete idea 
of future coastal hazards it is essential to include projec-
tions of extreme wave events; a work currently in pro-
gress. There is no doubt that waves are drivers of long 
term morphological changes on the coast which should 
not be underestimated, however the waves have the 
smallest temporal scales and coastal morphology tends 
to be in a state of dynamic equilibrium with wave-driven 
processes (Dean 1991; Yates et al. 2009). Therefore, the 
water level remains a very critical parameter for coastal 
erosion and impact, since even a small increase in SSL 
could enhance the consequences of extreme events, 
despite the fact that the SSL amplitude could be even 
an order of magnitude lower than the wave height (e.g. 
Vousdoukas et al. 2012).

Finally, significant increase of extreme ηs was projected 
for both RCP4.5 and RCP8.5 scenarios towards the end of 
the century and for both time slices under RCP8.5. The 
latter implies that even if moderate emission mitigation 
policies will be enacted, coastal adaptation and protec-
tion measures should appear as high priority in the Euro-
pean policy agenda, since for many regions the increase 
in total water levels from the combined effect of RSLR 
and SSL, by the end of the century, is projected to exceed 
1 m with respect to the actual water levels. This increase 
can be above the limits of most present coastal protec-
tion measures (Burcharth et al. 2014; Hunter et al. 2013; 
Weisse et al. 2014). The indications are even stronger for 
the business-as-usual RCP8.5 scenario, under which most 
Northern Europe coasts were projected to experience a 
significant increase in storm surge extremes.

5  Conclusions

The effect of climate change on extreme SSL along the 
European coastline has been studied by forcing a hydro-
dynamic model with meteorological wind and atmospheric 
pressure fields derived from a 8-member model ensemble 
and covering the baseline 1970–2000 period, as well as the 
2010–2040 and 2070–2100 periods under the RCP4.5 and 
RCP8.5 emission scenarios.

Model simulations have been validated comparing out-
put from a hindcast run forced by ERA-INTERIM wind 
and pressure fields, with data from 110 tide gauges. Spa-
tial variations of SSL were well reproduced by the model, 
with the relative RMSEs being <20 % for more than 105 
stations and <15 % for more than 60 stations. In some 
cases extreme SSL were underestimated, but the overall 
model performance was satisfactory given that the scope 
of the study is to project relative changes under climate 
change scenarios and not to result in accurate operational 
forecasts.

The estimated extreme SSL along the North Sea was 
the highest along Europe and increased eastwards, while 
higher SSL values were also projected along the west-fac-
ing coastline of the Irish Sea, followed by marginal areas of 
the Baltic Sea and the Norwegian Sea. Anticipated extreme 
SSL values were substantially lower for most of the South 
Europe with the exception of the North Adriatic and some 
parts of the North Black Sea.

Ensemble mean changes of future SSL were estimated 
after comparing the baseline with the RCP runs and for 
most scenarios and return periods the projections indi-
cated an increase in SSL along the North European coast-
line, which was more prominent under RCP8.5 pointing 
to an increasing tendency towards the end of the century 
for both RCPs. Projected changes in extreme SSL along 
the European coastal regions below 50°N showed mini-
mal change or even a small decrease, with the exception 
of RCP8.52100 for which a moderate increase was often 
projected.

Seasonal mean monthly maxima along North Europe 
showed a projected increasing tendency overall and an 
increase in the inter-annual variability especially under 
RCP8.52100, while projected SSL changes along South 
Europe being in most cases one order of magnitude 
lower.

The present findings indicate that for many European 
coastal locations the projected increase in extreme SSL can 
be around 15 %, but can even reach 40 % of the projected 
RSLR, implying that the combined effect could have seri-
ous consequences. The significant increase of extreme SSL 
projected for both RCPs towards the end of the century 
implies that even if moderate emission mitigation policies 
will be enacted, coastal adaptation and protection meas-
ures should appear as high priorities in the European policy 
agenda. The indications are even stronger for in the case 
of the business-as-usual RCP8.5, under which most of the 
Northern Europe coastline is projected to experience a sig-
nificant increase in storm surge extremes.
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Appendix

See Figs. 11 and 12.

Fig. 11  Ensemble mean of extreme SSL (m) along the Euro-
pean coastline obtained for 5, 10, 50, and 100 years return periods 
(shown in different columns), for the baseline period (a–d), as well 
as their projected changes under RCP4.52040 (e–h), RCP8.52040 (i–l), 

RCP4.52100 (m–p), RCP8.52100 (q–t) scenarios (shown in different 

lines). Warm/cold colors express increase/decrease, respectively; 
while points with high model disagreement are shown with gray 
(|CV| > 1)
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Fig. 12  Mean seasonal maxima along the European coastline and 
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