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Abstract. The area of leaves in the plant canopy, measured as leaf area index (LAI), modulates key land–

atmosphere interactions, including the exchange of energy, moisture, carbon dioxide (CO2), and other trace gases

and aerosols, and is therefore an essential variable in predicting terrestrial carbon, water, and energy fluxes. Here

our goal is to characterize the LAI projections from the latest generation of earth system models (ESMs) for

the Representative Concentration Pathway (RCP) 8.5 and RCP4.5 scenarios. On average, the models project

increases in LAI in both RCP8.5 and RCP4.5 over most of the globe, but also show decreases in some parts of

the tropics. Because of projected increases in variability, there are also more frequent periods of low LAI across

broad regions of the tropics. Projections of LAI changes varied greatly among models: some models project

very modest changes, while others project large changes, usually increases. Modeled LAI typically increases

with modeled warming in the high latitudes, but often decreases with increasing local warming in the tropics.

The models with the most skill in simulating current LAI in the tropics relative to satellite observations tend to

project smaller increases in LAI in the tropics in the future compared to the average of all the models. Using

LAI projections to identify regions that may be vulnerable to climate change presents a slightly different picture

than using precipitation projections, suggesting LAI may be an additional useful tool for understanding climate

change impacts. Going forward, users of LAI projections from the CMIP5 ESMs evaluated here should be aware

that model outputs do not exhibit clear-cut relationships to vegetation carbon and precipitation. Our findings

underscore the need for more attention to LAI projections, in terms of understanding the drivers of projected

changes and improvements to model skill.

1 Introduction

Providing future projections of climate change feedbacks and

impacts is one of the goals motivating the development of

earth system models (ESMs). The latest generation of ESMs

includes land models that simulate the temporal evolution

of carbon and vegetation (Friedlingstein et al., 2006). To

do so, these models predict leaf area index (LAI) and other

carbon cycle variables. LAI represents the amount of leaf

area per unit land area, and is an important land carbon at-

tribute. Many ESMs calculate leaf-level carbon and water

fluxes, which are then scaled regionally and globally based

on LAI (e.g., Oleson et al., 2013). The surface energy budget,

as well as plant-based emissions and deposition of aerosols

and chemically or radiatively important gases, are also sensi-

tive to predicted LAI (e.g., Oleson et al., 2013). Therefore,

small errors in simulated LAI can become large errors in

many ESMs’ biophysical and biogeochemical processes, and

changes in LAI alone can change climate (e.g., Bounoua et

al., 2000; Ganzeveld et al., 1998; Lawrence and Slingo, 2004;

Oleson et al., 2013; Kala et al., 2014). Unlike many biophys-

ical attributes, LAI can be observed from satellite (Zhu et

al., 2013), and thus represents one of the few land carbon

or vegetation variables that can be directly evaluated in cou-
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pled models (e.g., Randerson et al., 2009; Luo et al., 2012,

Anav et al., 2013b). Finally changes in LAI, and the related

normalized difference vegetation index (NDVI), can indicate

ecosystem health and natural resource availability. As such,

LAI is used within the famine prediction community (Funk

and Brown, 2006; Groten, 1993) and represents a variable

that is easy to use in climate impacts studies. Thus it is im-

portant to consider the 21st century projections for LAI in

earth system models.

The current generation of ESMs has prepared historical

and future scenario simulations within the Coupled Modeling

Intercomparison Project (CMIP5) (Taylor et al., 2009). There

have been extensive evaluations and comparisons of the fu-

ture projections of the land, ocean, and atmospheric carbon

cycle in the ESMs in the CMIP5 (e.g., Arora et al., 2013;

Friedlingstein et al., 2013; Jones et al., 2013). There has also

been comparison of ESM-simulated seasonal variability in

LAI against satellite-based observations for the high latitudes

(Anav et al., 2013a; Murray-Tortarolo et al., 2013), as well as

comparisons of LAI and other variables in ESMs across the

globe (Anav et al., 2013b). Additionally, Shao et al. (2013),

Mao et al. (2013), and Sitch et al. (2015) evaluated the rela-

tionship between the carbon cycle and other variables, such

as temperature, or LAI, over decadal and longer timescales.

These ESM-based comparisons build on the long history of

evaluation of model simulations of vegetation properties and

carbon balance (e.g., Cramer et al., 1999).

Here, our goal is to characterize the ESM projections of fu-

ture LAI in order to better understand how LAI is projected

to change. Most of our analysis emphasizes the Represen-

tative Concentration Pathway (RCP) 8.5, the most extreme

future scenario, and we contrast it with RCP4.5, a less ex-

treme scenario (van Vuuren et al., 2011) (Sect. 3). We char-

acterize both the model mean LAI projected change, as well

as the model mean divided by the standard deviation (e.g.,

Meehl et al., 2007; Tebaldi et al., 2011). In addition, we con-

sider whether LAI projections can help the climate impact

community anticipate regions that may experience increased

climate exposure and increased risk of food insecurity in the

future. Changes in LAI variability are also important for un-

derstanding the impact of climate change, since they can lead

to an increase in the length and frequency of low LAI events,

even as mean LAI increases. We consider, therefore, both

changes in the mean and the frequency of low LAI events,

and how this information compares to precipitation projec-

tions, which are commonly used for climate impact studies

(e.g., Field et al., 2014). We also consider what model traits

may be related to the spread in the future model projections

(Sect. 3). We use evaluations of LAI, based on satellite-based

observations (e.g., Zhu et al., 2013; Anav et al., 2013b; Sitch

et al., 2015), to characterize the relationship between model

skill and projections (e.g., Steinacher et al., 2010; Cox et

al., 2013; Flato et al., 2013; Hoffman et al., 2014) (Sect. 4).

Section 5 presents our summary and conclusions.

2 Methods and data sets

2.1 Model data sets

Coupled carbon model experiments were included as part

of the CMIP5 experiments (e.g., Arora et al., 2013; Tay-

lor et al., 2009). The historical simulations and Representa-

tive Concentration Pathway for 8.5 (RCP8.5; van Vuuren et

al., 2011; Riahi et al., 2011), using prescribed carbon dioxide

concentrations, were analyzed here (Table 1). We chose to fo-

cus on the RCP8.5 scenario as it has the largest changes in

carbon dioxide and climate. Analysis of the RCP4.5 scenario

(Wise et al., 2009; van Vuuren et al., 2011) is also included

for comparison for the models which included the RCP4.5

simulations at the CMIP5 archive (all models except BNU-

ESM and CESM-BGC).

Model variables analyzed included monthly-mean precip-

itation, near-surface air temperature, vegetation carbon stock

and LAI. Only models which had data for all these variables

for both historical and RCP8.5 scenarios were included in

this study. Some models submitted multiple versions, at dif-

ferent resolutions or with slightly different physics (Table 1).

Even though some of the models are closely related (e.g.,

CESM1-BGC and NorESM-ME), we include different con-

figurations of the same model.

2.2 Model future projection analysis

This analysis examines model mean changes between the

current climate (1981–2000) and future climate time peri-

ods (2011–2030, 2041–2060 and 2081–2100). To identify

the location where models project statistically significant

changes, we analyze the ratio of the mean change to vari-

ability; this is accomplished by dividing the mean changes

over 20-year time periods by the standard deviation over the

current climate (1981–2000) and shown in terms of stan-

dard deviation units (e.g., Mahlstein et al., 2012; Tebaldi et

al., 2011). Previous studies have shown that the spatial and

temporal scale used to define these changes can determine

whether these signals are statistically significant (Lombar-

dozzi et al., 2014). We focus on three time periods through-

out the 21st century because the change in LAI can poten-

tially switch between positive and negative in these different

time periods (e.g., Lombardozzi et al., 2014), and we want to

identify whether the changes through time are gradual, or if

there is a tipping point.

Changes in LAI variability are also important for under-

standing the impact of climate change. To estimate the peri-

ods of low LAI and low precipitation, we calculate the frac-

tion of the time during which the variable is 1 standard devia-

tion (evaluated in the 1981–2000 time period) below the cur-

rent mean (1981–2000). By definition, if the variables have

a Gaussian distribution, each gridbox would be considered

having a “Low LAI” for 1/6 (16 %) of the time, and this

is approximately true at most grid points (not shown). We
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Table 1. Model simulations from the Climate Modeling Intercomparison Projection (CMIP5) included in this study. All models listed here

were available for the RCP8.5 analysis, while all models except BNU-ESM and CESM-BGC were available for the RCP4.5 analysis.

Model Land model Land N- Dynamic Citation

resolution cycle veg.

BCC-CSM1 BCC-AVIM1.0 2.8◦
× 2.8◦ N Y Wu et al. (2013)

BCC-CSM1-M BCC-AVIM1.0 1.1◦
× 1.1◦ N Y Wu et al. (2013)

BNU-ESM CoLM + BNU-DGVM 2.8◦
× 2.8◦ N Y BNU-ESM,

http://esg.bnu.edu.cn

CanESM2 CLASS2.7 + CTEM1 2.8◦
× 2.8◦ N N Arora et al. (2011)

CESM1-BGC CLM4 0.9◦
× 1.2◦ Y N Lindsay et al. (2014)

GFDL-ESM2G LM3 2.5◦
× 2.5◦ N Y Dunne et al. (2013)

GFDL-ESM2M LM3 (uses different physical ocean model) 2.5◦
× 2.5◦ N Y Dunne et al. (2013)

HadGEM2-CC JULES + TRIFFID 1.9◦
× 1.2◦ N Y Collins et al. (2011)

HadGEM2-ES JULES + TRIFFID (includes chemistry) 1.9◦
× 1.2◦ N Y Collins et al. (2011)

INM-CM4 Simple model 2◦
× 1.5◦ N N Volodin et al. (2010)

IPSL-CM5A-LR ORCHIDEE 3.7◦
× 1.9◦ N N Dufresne et al. (2013)

IPSL-CM5A-MR ORCHIDEE 2.5◦
× 1.2◦ N N Dufresne et al. (2013)

IPSL-CM5B-LR ORCHIDEE (improved parameterization) 3.7◦
× 1.9◦ N N Dufresne et al. (2013)

MIROC-ESM_ MATSIRO + SEIB-DGVM 2.8◦
× 2.8◦ N Y Watanabe et al. (2011)

MIROC-ESM-CHEM MATSIRO + SEIB-DGVM adds chemistry) 2.8◦
× 2.8◦ N Y Watanabe et al. (2011)

MPI-ESM-LR JSBACH + BETHY 1.9◦
× 1.9◦ N Y Raddatz et al. (2007)

MPI-ESM-MR JSBACH + BETHY (ocean model higher resolution) 1.9◦
× 1.9◦ N Y Raddatz et al. (2007)

NorESM1-ME CLM4 2.5◦
× 1.9◦ Y N Bentsen et al. (2013)

use this metric to estimate the fraction of the time in the fu-

ture that this condition exists, and specifically whether it in-

creases in the future.

2.3 Observational data

LAI data derived from satellite over the 30-year period 1981–

2010 are used to evaluate the CMIP5 model skill in the cur-

rent climate. This observational data set is derived using neu-

ral network algorithms using the Global Inventory Modeling

and Mapping (GIMMS) Normalized Difference Vegetation

Index (NDVI3g) and the Terra Moderate Resolution Spec-

troradiometer (MODIS) LAI (Zhu et al., 2013). The satel-

lite data are only available over regions with green vegeta-

tion, and thus are lacking over desert and arid regions. A de-

tailed description of the algorithm and comparison to ground-

truth observations are shown in Zhu et al. (2013). Compared

with field-measured LAI, mean squared errors (RMSE) in

the satellite LAI estimates are estimated to be approximately

0.68 LAI, for spanning LAI ranges from < 1 to almost 6 (Zhu

et al., 2013). Comparisons with ground-based observations

confirm that the new LAI product also seems to capture ob-

served interannual variability patterns (Zhu et al., 2013).

Gridded temperature data for the period 1981–2010 were

derived from the Global Historical Climatology Network and

Climate Anomaly Monitoring System (GHCN_CAMS) 2 m

temperature data set (Fan and van den Dool, 2008). Estimates

of the uncertainty in temperature gridded data sets suggest

that the uncertainty in temperatures at a grid box level is es-

timated to be between 0.2 and 1 ◦C (Jones et al., 1997; Fan

and van den Dool, 2008).

2.4 Methodology for evaluation of current climate LAI

simulation

Several recent studies have used the same new satellite-

derived LAI data set (GIMMS LAI3g) in land model

evaluation (e.g., Murray-Tortarolo et al., 2013; Anav et

al., 2013a, b; Mao et al., 2013; Sitch et al., 2015), includ-

ing some of the same land models used here. Thus we do

not repeat a complete evaluation of model LAI compared to

satellite LAI. We use the satellite LAI data set to consider

whether there is a relationship between the models’ ability

to simulate LAI in the current climate and the models’ cli-

mate projections. We use a few basic metrics in this study

(Table 2), which are described briefly below.

Results for the model and observations are evaluated on

a 2.5◦
× 2.5◦ grid based on the observed temperature data

grid (see Sect. 2.3). For the metric analysis here, the aver-

ages shown are grid-box means, not areal averages. This al-

lows us to use similar weighting for both the averages and the

rank correlation coefficients, and tends to weight the global

analysis towards high latitudes. However, most of the analy-

sis focuses on regional areas (tropical (< 30◦), mid-latitudes

(> 30 and < 60◦) and high-latitudes (> 60◦), where the dif-

ferences between weighting by area and weighting by grid

box are reduced.

We compare the satellite-based observed (LAI3g) and

model-simulated mean LAI for the current climate (simi-

lar to previous studies, e.g., Randerson et al., 2009; Luo et

al., 2012; Anav et al., 2013b). The period 1981–2010 is used

for this comparison. To examine regional differences in LAI

simulations, the annual mean LAI in the models and observa-
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Table 2. Table of metrics for LAI comparisons between model and observation used in the following tables. More description of these

metrics are provided in Sect. 2.4.

Metrics Description

Mean
Model/obs Ratio of mean LAI from the model and observations

Corr. Spatial correlation of mean LAI

SD seasonal

Model/obs Ratio of seasonal cycle strength: ratio of standard deviation of the climatological

monthly mean LAI from the model and observations

Avg. Corr. Avg. Corr. of the temporal evolution of the climatological seasonal cycle

in the model vs. observations at each grid box

SD IAV Model/obs Ratio of IAV strength: ratio of standard deviation of the annual mean LAI from the model and observations

IAV LAI vs. T Avg. Corr. Avg. Corr. between LAI and temperature in IAV

IAV LAI vs date Avg. Corr. Avg. Corr. between LAI and date in IAV

tions are averaged and compared over different areas: global,

tropical (< 30◦), mid-latitudes (> 30 and < 60◦) and high-

latitudes (> 60◦) (Table 2: mean LAI: model/obs.). A second

metric evaluates the models’ ability to capture spatial vari-

ations in LAI, using the spatial correlation across the grid-

boxes of the annual mean LAI in the model compared to the

observations (e.g., Anav et al., 2013b; Table 2: Mean: Corr.).

Important for this study is the consideration of the tempo-

ral variability simulated in the model. The magnitude of the

seasonal cycle is calculated as the standard deviation of the

climatological monthly means at each grid box. This met-

ric is slightly different than how LAI has previously been

evaluated in some studies (e.g., Anav et al., 2013a; Murray-

Tortarolo et al., 2013; Sitch et al., 2015), but is more similar

to analyses of other climate variables (Gleckler et al., 2008),

facilitating inclusion of LAI within climate model evalu-

ations. Metrics for the seasonal cycle were computed us-

ing a spatial average over each region (Table 2: SD Sea-

sonal: Model/obs). For the seasonal cycle, the ability to cap-

ture the timing of phenology can be important (e.g., Anav

et al., 2013a; Zhu et al., 2013). To analyze this ability, we

computed the temporal correlation of observed and model-

simulated monthly means at every grid box, and then aver-

aged over each region (Table 2: Seasonal Avg. Corr.).

To evaluate the models’ ability to simulate LAI interannual

variability (IAV), we consider the magnitude of the interan-

nual variability, which is calculated as the standard deviation

of annual mean LAI across years at each grid box (e.g., Zhu

et al., 2013). The IAV is then spatially averaged and com-

pared between the model and satellite observations (Table 2:

SD IAV: Model/obs.). We focus our study on IAV, based on

the inter-annual means, but there may be important changes

in the seasonal cycle or length of growing season on an inter-

annual time basis, which our simple approach does not con-

sider (e.g., Murray-Tortarolo et al., 2013).

Previous studies have examined correlations between tem-

perature and satellite-derived LAI (e.g., Anav et al., 2013a, b;

Zhu et al., 2013) or the closely related normalized differ-

ence vegetation index (NDVI; Zeng et al., 2013). Observed

variations of LAI at high latitudes tend to be dominated by

changes in temperature, while the tropics are more domi-

nated by moisture (Anav et al., 2013a, b; Zeng et al., 2013),

which is also seen in coupled carbon climate models for car-

bon cycle variables (e.g., Fung et al., 2005). In order to un-

derstand what may be driving the IAV in the LAI, we calcu-

late metrics to examine the rank correlation between anoma-

lies in LAI and anomalies in temperature and trends with

time. Although correlations do not identify causation, they

can help identify the strength of relationships among various

driving factors.

This analysis focuses on the relationship between temper-

ature and LAI for comparing interannual variability in the

modeled and observed data sets. Sensitivity studies have in-

dicated that the grid-box level relationship between temper-

ature and LAI is a good indicator of features intrinsic to

the model, rather than to the meteorology forcing the model

(Fig. S1 in the Supplement; as seen also in Anav et al., 2013a;

Murray-Tortarolo et al., 2013). This was not the case for

the relationship between precipitation and LAI. In sensitiv-

ity studies conducted as part of this study, we forced the

Community Land Model (Lawrence et al., 2012; Lindsay et

al., 2014), which is the land model used in the CESM (Ta-

ble 1), with reanalysis-derived data combined with observed

precipitation (Qian et al., 2006; Harris et al., 2013) instead of

model derived meteorology. The LAI-precipitation relation-

ship across IAV was very sensitive to the meteorology used,

and thus is not shown or used to evaluate the current climate

simulations of LAI (Fig. S1). This implies that errors in the

simulations of the mean and variability in precipitation in the

current climate, which are very difficult for ESMs to simu-

late well (e.g., Flato et al., 2014), are very important for the

simulation of IAV in LAI.

Land use, especially the conversion from natural vegeta-

tion to agricultural use, can heavily perturb the mean and

evolution of the seasonal cycle and interannual variability

in current climate LAI. To determine whether this changes
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our model evaluation, we exclude grid boxes with more

than 50 % of agricultural land use based on Ramankutty et

al. (2008). Results of the model evaluation with and without

agricultural grid-box were quantitatively and qualitatively

similar to those presented here, and thus we include all grid-

boxes in this analysis. Future simulations are unlikely to be

more sensitive than the historical simulations to land use and

land cover change, because the scenarios include less future

land cover change than that which has occurred historically

(Hurtt et al., 2011; Van Vuuren et al., 2011).

For ease of interpretation, we present the metrics described

above in Fig. 9, in which higher numbers represent a better

simulation. For correlations, this representation is straight-

forward: 1 is a perfect correlation and lower values repre-

sent a worse simulation. For the other metrics that are not

correlations, we convert the statistics to values with similar

ranges to facilitate ease of display. The mean model bias met-

ric (model/obs) is normalized to a value that varies between 0

and 1, with 1 being close to the observed data. This approach

penalizes models which have too high of a mean equally with

model that have too low of a mean, using the following for-

mula (Fig. 9):

Model Evaluation Value =
2

{

Model Mean
Observed Mean +

Observed Mean
Model Mean

} . (1)

We use this method to convert mean biases and standard

deviation biases to a model evaluation value (MEV). This is

a slightly different method than used in previous studies (e.g.,

Gleckler et al., 2008), as the MEV does not square the stan-

dard deviations. Since we use ranks and rank correlations,

the difference between these methods is unlikely to be im-

portant, and allows us to use a similar ranking method for

mean and standard deviation comparisons.

3 Results

3.1 Future projections

First we consider the model mean projections of change in

LAI for RCP8.5, similar to analyses for other standard model

variables, and show their evolution through the 21st century

(e.g., Meehl et al., 2007). Across most of the globe, LAI

is projected to increase through 2081–2100, with small de-

creases projected for parts of Central and South America and

Southern Africa (Fig. 1). The increases in LAI are largest

in high latitudes, mountainous regions (e.g., Tibetan plateau)

and some parts of the mid-latitudes and tropics (Fig. 1; for

reference, mean satellite observed LAIs in the current cli-

mate are presented in Fig. S2). Notice that in this study we

use projections of human land use based on the RCP8.5 or

RCP4.5, and thus an important human role in future land

cover change is driven by the assumptions of the scenario

chosen for these studies. Generally, for all the RCPs, there

is less land use and land cover change projected in the fu-

Figure 1. Mean of all models for the annual mean change in

LAI (m2 m−2) over time relative to current (1981–2000) for 2011–

2030 (a), 2041–2060 (b) and 2081–2100 (c) for RCP8.5.

ture than what has occurred in the past (e.g., van Vuuren et

al., 2011; Ward et al., 2014).

In order to isolate the changes that are statistically sig-

nificant, for each model we divided the change in LAI by

the IAV standard deviation. Values over 1 are considered

statistically significant (e.g., following Tebaldi et al., 2011;

Mahlstein et al., 2012). Using this approach, statistically sig-

nificant changes in LAI start over the high latitudes, and

spread over much of the globe with time (Fig. 2). By 2081–

2100, the increases in LAI are 8 times as large as IAV over

large parts of high-latitude regions, as well as the Tibetan

plateau and some desert regions, indicating large changes

(Fig. 2c). Part of the reason for these very large normalized

LAI values is that they have low IAV in the current climate.

A few isolated tropical regions are projected to have statisti-

cally significant reductions in mean LAI, such as in Central

America and the Amazon basin.

Examination of the RCP4.5 shows a similar pattern of an

increase in LAI over most of the globe, although lower in

magnitude, based on either the mean change in LAI, or the

normalized LAI change (Fig. S3a, b). This result suggests

that the pattern of change in LAI, as seen in the literature

for temperature or even to a lesser extent for precipitation,

is similar across different climate change scenarios, with the

magnitude dependent on the magnitude of the forcing (e.g.,

www.earth-syst-dynam.net/7/211/2016/ Earth Syst. Dynam., 7, 211–229, 2016
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Figure 2. Mean of all models for the annual mean change in

LAI over time relative to current (1981–2000), normalized by each

model’s current (1981–2000) standard deviation at each grid point,

for 2011–2030 (a), 2041–2060 (b) and 2081–2100 (c) for RCP8.5.

Mitchell, 2003; Moss et al., 2010). There is a consistent rela-

tionship between changes in LAI and temperature across the

different time periods for each model; that is, most models

and regions show a constant slope between changes in LAI

and temperature (Fig. 3). Most models even show a similar

slope between LAI and temperature for the RCP4.5 as the

RCP8.5 (Fig. S4). Recognize that the change in temperature

scales with the change in CO2 forcing from carbon dioxide

fertilization as well as other physical variables such as pre-

cipitation (e.g., Mitchell, 2003; Moss et al., 2010). This sim-

ilarity in slope for each model across RCPs and time periods

breaks down in the tropics for a few of the models, as some

show steeper increases in LAI at warmer temperatures and

others shift from LAI increases to declines as warming con-

tinues (GFDL, IPSL, MIROC and MPI models) (Fig. 3b).

Across the tropics, LAI is projected to increase in some re-

gions and decrease in others, so small changes in the rela-

tive area of these changes can lead to large shifts in the re-

gional net mean LAI change. The value of spatial correla-

tions between the RCP4.5 and RCP8.5 mean LAI change at

each gridbox for the 2081–2100 time period is 0.81, 0.70,

0.79 and 0.89, for the globe, tropics, mid-latitudes and high-

latitudes, respectively (averaged across the models), showing

the spatial coherence in the LAI projections between these

two RCPs. Even the models with the lowest spatial corre-

lations between the two RCPs (GFDL, IPSL, MIROC and

MPI) have statistically significant correlation coefficients of

0.45 or higher in the tropics, where correlations are the low-

est.

The models project a wide range of future changes in

LAI (Fig. 3). One model (BNU-ESM) projects a large global

mean increase of over 1 m2 m−2 by 2081–2100. For the other

models, projected global mean increases in LAI amounted to

0.5 m2 m−2 or less. Some models (inmcm4, IPSL, MIROC

and MPI model versions) projected small net decreases in

LAI in the tropics (Fig. 3). Inter-model differences become

even more apparent at the grid-box level, with very different

changes in LAI projected by the different models (Fig. S5).

The spread in model projections is discussed further below

(Sect. 4) in relation to whether there is a relationship between

model skill at predicting LAI in the current climate and fu-

ture model projections (e.g., Steinacher et al., 2010; Flato et

al., 2013; Cox et al., 2013; Hoffman et al., 2014).

3.2 Identifying regions at risk due to climate change

In addition to being important for land–atmosphere biophys-

ical and biogeochemical interactions, LAI is also one of the

few ESM model variables that is directly usable by the cli-

mate impacts community, along with temperature and precip-

itation. This is because LAI and the closely related variable,

NDVI, are used for identification and forecasting of drought

and famine (e.g Funk and Brown, 2006; Groten, 1993) as

well as a general indicator of ecosystem health (e.g., Field et

al., 1998). Thus LAI projections that identify the regions that

are most at risk can help guide and motivate climate adap-

tation by identifying emergent areas of vulnerability. The

model mean view of the future projections of LAI is quite op-

timistic (Figs. 1, 2, 3), however, if variability also increases,

some regions may experience years with lower LAI more fre-

quently than in current climate, despite having a constant or

higher mean LAI. In fact, many regions, especially in the

tropics, are at risk for more low LAI years (Fig. 4). Here we

define % LAI as the percent of years when the annual average

is 1 standard deviation below the current mean (Sect. 2.2).

If the variability and mean stayed constant, the % low LAI

would remain at 16 %. More low LAI years are projected for

large areas of the tropics and subtropics where projected in-

creases to mean LAI are small in magnitude or negligible

(Fig. 1c vs 4c, for example). Model mean changes between

the current climate (1981–2000) and future climate time pe-

riods indicate substantial (> 2×) increases in the frequency

of low LAI in important agricultural areas (South Amer-

ica, Australia, Southeast Asia, and parts of Southern Africa)

(Fig. 4). Increased risk areas in Fig. 4 also coincide, in some

cases, with some of the most food insecure regions of the

world (e.g., Brown and Funk, 2008; Field et al., 2014). Sim-

ilar to mean changes in LAI, the % low LAI for the RCP4.5

at 2081–2100 is similar in pattern and magnitude to that seen
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Figure 3. Scatter plot of the change in annual average surface temperature (Ts, C) (x axis) against the change in annual average LAI

(m2 m−2) (y axis) for the global (a), tropics (b), mid-latitudes (c) and high latitudes (d). Averages over four time periods are shown: 1981–

2000 (with 0 changes), 2011–2030, 2041–2060 and 2081–2100, connected by a line. The final point (2081–2100) for RCP8.5 is a triangle.

The temperatures increase in all simulations with time, so increases in the x axis indicate an increase in time. Note that there are four points

along each line, and thus if there is no inflection point, the slope of the line is constant across the 21st century. A similar plot including

RCP4.5 is included in Fig. S4.

earlier in the century for the RCP8.5 scenarios (Fig. S3c vs.

Fig. 4).

Next we consider whether using LAI adds information

compared to precipitation, which is more traditionally used

in climate change impacts assessments (e.g., Stocker et

al., 2013; Field et al., 2014). General correlations between

precipitation and LAI will be discussed in the next few sec-

tions, but here we consider the spatial distribution of at-risk

regions as defined by LAI or precipitation changes. To do

this, we first consider the mean change in normalized precip-

itation (Fig. 5a) and the % low precipitation (Fig. 5b), both

defined equivalently to the LAI values (Sect. 2.2; Figs. 2c

and 4c, respectively) for the model simulations considered

here. Broadly speaking, the changes in precipitation seem to

occur in similar regions as the changes in LAI, with large in-

creases in precipitation over the high latitudes, and decreases

over the subsidence zones of the tropics, as seen previously

(e.g., Meehl et al., 2007; Tebaldi et al., 2011). Note that re-

quiring the mean change to be statistically significant is a

much stricter criteria than just an increase in low LAI, and

thus the area identified in the two methods is quite differ-

ent (Fig. 5a vs. Fig. 5b). Overlaying the regions from LAI

and precipitation which are either one standard deviation be-

low the mean on average in the models (Fig. 5c) or see an

increase in % Low values (Fig. 5d) suggests that LAI and

precipitation largely show similar areas being at risk due to

climate change, but there are significant regions which do not

overlap. This suggests that there is potentially additional in-

formation for climate impact studies using LAI projections

rather than using precipitation alone (Fig. 5c, d). One of the

most noticeable differences between LAI and precipitation

projections is in the Mediterranean region where precipita-

tion is projected to decrease, but LAI is not. Conversely, LAI

projections suggest that some parts of South America and

southern Africa are likely to experience more stress, which

are not identified using precipitation. Future studies should

consider whether the results of the LAI projections are use-

ful for impact studies specifically in these regions.

3.3 Drivers of LAI projections

Next we consider what drives the differences in model pro-

jections for LAI, using the example of RCP8.5 at 2080–2100.

Here we use different model output attributes to characterize

the future projections, and focus on the following variables:

temperature, precipitation, and vegetation carbon. We also

characterize the relationship of carbon dioxide fertilization
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Figure 4. Mean of the models for the fraction of the time during

which the annual mean LAI is considered “Low” (model projected

annual mean LAI is less than 1 standard deviation of the current

mean at each gridbox) is shown for 2011–2030 (a), 2041–2060 (b)

and 2081–2100 (c) for RCP85, where the current mean and stan-

dard deviation are defined for each grid box for 1981–2000. For the

current climate, the fraction of time below 1 standard deviation will

be 0.16, which is colored in gray, so all colors represent an increase

in low LAI.

as simulated in the models to the model projections. Note

that there are many other potential drivers of the projected

LAI changes that are likely to be important, and thus our

study only seeks to consider the most obvious interactions,

and highlights the uncertainties in the model-specific drivers

of LAI projections.

By correlating temperature and LAI projections at each

grid box for each model we can look for potentially causal

relationships between model projections of temperature and

LAI (Fig. 6). This is analogous to using a ranked correla-

tion coefficient to summarize the scatter in RCP8.5 points in

Fig. 3, but at each grid box instead of the regional average.

There are strong positive correlations between model simu-

lated changes in temperature and LAI in some regions, es-

pecially in parts of the northern high latitudes (Fig. 6a), sug-

gesting that models with a projected larger warming in the

high latitudes also simulate larger increases in LAI. Higher

temperatures may drive higher LAI, however it is important

to recall that correlation does not necessary imply causa-

tion. For example, higher LAIs could also be driving higher

temperatures through LAI influence on surface albedo and

changing surface energy fluxes (e.g., Lawrence and Slingo,

2004; Kala et al., 2014). In contrast to high latitudes, there

are strong negative correlations across most of the tropics

and subtropics (Fig. 6a).

The projected changes in precipitation are strongly corre-

lated with projected changes in LAI across different models

in many locations (Fig. 6b). This is consistent with the model

mean analysis (Sect. 3.2) that showed that for most locations

changes in LAI occur in the same locations as changes in

precipitation (Fig. 5). The correlations seen in this analysis

for RCP 8.5 are similar for the RCP4.5 (Fig. S6).

Next, we examine the correlation across models between

the modeled changes in vegetation carbon stocks and change

in LAI between current conditions and 2081–2100 (Fig. 6c).

The relationship between LAI and vegetation carbon is not

straightforward, and depends on the specific biophysics and

biogeochemistry algorithms used in the models. Many ESMs

calculate photosynthetic rates per unit leaf area; these rates

are then extrapolated to canopy-level gross primary produc-

tion using LAI and other variables (e.g., light, nitrogen and

CO2 availability and leaf physiological parameters) (e.g., see

Bonan et al., 2011; Piao et al., 2008). The simulated in-

creases in LAI are correlated across models with simulated

increases in plant carbon stocks in many low-LAI regions,

including many deserts, grasslands, and tundra ecosystems

(Fig. 6c). Leaves compose most or all of the aboveground

plant biomass in these ecosystems (e.g., Friedlingstein et

al., 1999), such that increases in LAI relate directly to in-

creases in plant carbon stocks. Changes in LAI correlate

more poorly with simulated changes in plant carbon stocks

in other regions, with small or negative correlations in many

boreal, temperate, and tropical forested regions (Fig. 6c).

Leaves typically compose only 3–5 % of aboveground plant

biomass in forests (Friedlingstein et al., 1999), and closed-

canopy forests can contain widely variable stocks of woody

biomass that typically depend more on successional status

than LAI or growth rate. Differences in the fractional com-

position and turnover of these leaf- and woody tissues should

decouple changes in LAI from changes in carbon stocks

in woody biomass. As an example, in the CLM (the land

model for the CESM-BGC) CO2 fertilization causes a larger

increase to wood allocation (62 %) than to leaf allocation

(21 %) in the Southeastern US (D. Lombardozzi, personal

communication, 2015). Thus, the issue of how LAI responds

in different models is interesting and should be considered in

future studies.

Another important potential contributor to the future pro-

jections of LAI is the effectiveness of carbon fertilization in

the models (e.g., Arora et al., 2013). Using the carbon diox-

ide fertilization factor (β land) from the Arora et al. (2013)

study we use a rank correlation to explore the importance

of the carbon dioxide fertilization strength for predicting fu-

ture vegetation carbon and LAI across the models. Naively,
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Figure 5. Mean of all models for the change in annual mean precipitation for 2081–2100 compared to current (1981–2000), normalized by

the model standard deviation for RCP8.5 (similar to Fig. 2c, but for precipitation) (a). Mean of the models percent of the time during which

the annual mean precipitation is 1 standard deviation below current values (similar to (c), but for precipitation) for 2081–2100 in RCP8.5 (b).

Grid-boxes identified as statistically significantly decreasing in LAI (green) or precipitation (blue) or both (red) (i.e., the blue regions in

Figs. 2a and 6a contrasted) (c). Grid-boxes identified as having an increase in the amount of time with low LAI (green) or precipitation (blue)

or both (red) (i.e., the blue regions in Figs. 5c and 6b contrasted) (c).

we might expect models that respond more strongly with

increased carbon uptake under higher CO2 conditions (i.e.,

larger β land) to have greater vegetation carbon and LAI in

the future. Globally the correlation with β land is 0.46 for

vegetation carbon and −0.21 for LAI, suggesting that while

some of the differences in future vegetation carbon projec-

tions across models are due to differences in the model sim-

ulation of CO2 fertilization, LAI changes are not necessarily

related to CO2 fertilization. At a regional extent there are

interesting differences. For tropical, mid-latitude and high-

latitude regions, respectively, the β-land correlation for veg-

etation carbon is 0.29, 0.47 and 0.60, and for β land and LAI

these values are −0.18, −0.09 and 0.21. Thus for high lat-

itudes, especially, the projections of LAI appear to be de-

pendent on the way the models’ simulate the carbon dioxide

fertilization.

It should be noted that it is difficult to identify from the

correlations whether relationships are due to modeled CO2

fertilization effect or modeled simulation of LAI in the cur-

rent climate. There are only two models with a low carbon

dioxide fertilization effect (CESM-BGC and NOR-ESM).

For high latitudes both models simulate low LAI for present

day and small increases to future LAI. Thus either, or both

factors could be important. These similarities likely come

from both models using the same land carbon model (Thorn-

ton et al., 2009) which includes nitrogen limitation. In the

tropics the carbon dioxide fertilization is negatively corre-

lated to future LAI changes, and only slightly correlated with

vegetation carbon. The negative correlation in the tropics be-

tween LAI projections and CO2 fertilization could be due

to the smaller temperature impact on carbon cycle (γ land

Figure 6. Rank correlation across models at every grid box of

the mean model change in LAI (2081–2100 minus 1981–2000) for

RCP8.5 against the model change over the same time period of tem-

perature (a), precipitation (b) and vegetation carbon stock (c).
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Figure 7. Mean of all models for the annual mean change in LAI over time (2081–2100) relative to current (1981–2000), normalized by each

model’s current (1981–2000) standard deviation at each grid point (a) for all models (same as Fig. 1c) and (b) for the top models, defined as

the models performing in the top half (Table 4) for each region, tropical, mid-latitude or high-latitude. Because different models are included

in different regions, there can be discontinuities at the boundaries in Fig. 8b (e.g., 30 and 60◦ latitude). The standard deviation in the mean

future projection at 2081–2100 across the models at each grid point are shown for (c) all models and (d) top models. Indication of “Low”

LAI is the model mean fraction of the time that LAI is more than 1 standard deviation below the current mean LAI and is shown for (e) all

models (same as Fig. 5c) and (f), top models for the period 2081–2100, where the current mean and standard deviation are defined for each

grid box for 1981–2000. For the current climate, the fraction of the time below 1 standard deviation will be 0.16, which is colored in gray, so

all colors represent an increase in drought.

from Arora et al., 2013) in the nitrogen-limited models (i.e.,

the β land and γ land are negatively correlated in Table 2

of Arora et al., 2013). These models see a strong increase in

nitrogen mineralization in the tropics in a warming climate,

which allows an increase in productivity in the future tropics

(Thornton et al., 2009). Across these simulations, whether or

not the model includes dynamic vegetation does not signifi-

cantly correlate with changes in LAI in any of the regions.

Overall, the relationship of land model characteristics and

LAI is not straightforward, which argues that more analy-

sis of the complicated interactions between the details of the

land biophysics and biogeochemistry, as well as biogeogra-

phy changes is required in order to better understand and im-

prove model projections of LAI.

4 The relationship between model skill and future

projections

There are large differences between the different models’

projections of future LAI (e.g., Figs. 3, S5, 7b). Previous

studies have hypothesized that they could reduce the uncer-

tainty in future projections by looking for relationships be-

tween model metrics and future projections of climate, and

then choosing the models which best match the observations

in the current climate (e.g., Cox et al., 2013; Hoffman et

al., 2014) or by subsampling models for different regions by

their performance (e.g., Steinacher et al., 2010). In this sec-

tion we explore both approaches. In essence, we are looking

for a correlation between current model performance and fu-

ture projections; this correlation has been used in some stud-

ies to argue for a more accurate projection, and to reduce

the uncertainty in the future projections. In many cases in

climate modeling and projections, there is no correlation be-

tween model skill in current climate conditions and projec-

tions (e.g., Cook and Vizy, 2006), however in some limited

cases there is a correlation between metric score and a pro-

jection, and one is able to constrain future projections (e.g.,

Cox et al., 2013; Steinacher et al., 2010). Here we consider

whether such a case applies. In doing this type of analysis, we

are making an assumption that model skill in the current cli-

mate translates into better model projections, which may be

a product of real model differences or a statistical error. The
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Figure 8. Comparison of model metrics for the LAI comparisons from Table 2 across the models, for each region (global, tropical, mid-

latitude and high latitude) for (a) mean of the model divided by mean of the observations, (b) seasonal SD mean of the model divided by

mean of the observations, (c) IAV SD mean of the model divided by mean of the observations, (d) spatial correlation of model to observed

LAI, (e) average temporal correlation for seasonal variability, (f) average IAV LAI correlation with temperature (∗ indicates observed value),

(g) average IAV LAI correlation with time (∗ indicates observed value).

advantages and disadvantages of using this type of approach

are discussed in more detail in Flato et al. (2013). Here we do

not advocate that such an approach leads to a better projec-

tion, but rather simply use this approach to characterize the

future model projections.

4.1 Evaluation of model LAI

Several recent studies have evaluated the land models

in ESMs using the LAI satellite records (e.g., Anav et

al., 2013a, b; Mao et al., 2013; Sitch et al., 2015). Thus we

do not repeat those assessments, but rather briefly summarize

the results of the comparisons here.

Most models tend to overestimate the mean LAI compared

to the observations (Fig. 8a), and this is true at all latitudes

(Fig. 8a, Table S2 in the Supplement). Several models have

large overestimates (> 50 % too high), including bcc-csm1,

bcc-csm1-1, BNU-ESM, GFDL-ESM2G, GFDL-ESM2M,

MIROC-ESM. The over-prediction relative to the satellite

data tend to be larger in tropical regions for most models,

but the GFDL model estimates are also larger in the high lati-

tudes (Fig. 8a, Table S2). However, the satellite-derived LAIs

have biases; for example, they underestimate high LAIs due

to being unable to see all the leaf layers in closed canopies or

with high frequency of cloud cover or overestimate LAIs in

more arid regions, and thus there may also be an error in the

observational data set (see discussion in Vrieling et al., 2013;

Anav et al., 2013b; Jong et al., 2013; Pfeifer et al., 2014 or

Forkel et al., 2013, 2015, for example).

Some models also tend to over predict the strength of the

seasonal cycle (e.g., bcc-csm1, BNU-ESM, MIROC-ESM)

(Fig. 9b; Table S1 in the Supplement), where the strength of

the seasonal cycle is measured by the globally averaged stan-

dard deviations of the monthly mean climatology. But the re-
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Figure 9. Comparison of model metrics for the annual mean and

seasonal metrics from Table 2 across the models for (a) global,

(b) tropical, (c) mid-latitude and (d) high-latitude regions. Simi-

lar information is shown in Tables S1 and S2, but here converted

to the model evaluation value (Eq. 1) so that 1 is a perfect model

simulation and lower values indicate worse simulations. Models are

shown in Table 1, and listed in the figure. Metrics are mean annual

(+), spatial correlation of mean annual (∗), seasonal cycle standard

deviation(diamond), mean seasonal cycle correlation (triangle) and

interannual variability (IAV) standard deviation (square).

gion in which they over-predict the strength of the seasonal

cycle differs between models. Of course, there is not a strong

seasonal cycle in the tropics, where the lowest standard de-

viations tend to occur (Fig. 8e; Table S2a). Again, because

of the difficulties of retrieving accurate LAI from satellites

in closed canopies, the observations may underestimate the

seasonal cycle in tropical forests.

Interannual variability tends to be over-predicted in some

of the models (e.g., bcc-csm1, bcc-csm1_1, BNU-ESM,

CESM1-BGC, GFDL-ESM2G, GFDL-ESM2M, MIROC-

ESM, MIROC-ESM_CHEM) (Fig. 8c, Table S1). For this

calculation, the interannual variability (IAV) is calculated as

the standard deviation of the annual average across multi-

ple years. Generally, the models do a decent job simulating

the spatial variability in the annual mean LAI (Fig. 8d; Ta-

ble S1), with the correlations being strongest in the tropics,

and weakest in the high latitudes (Fig. 8d; Table S2). This

is likely partly due to the strength of the LAI differences

in tropics and the limitation of LAI primarily by moisture

alone (with low LAI in arid regions and high LAI in tropical

forests). The timing of the seasonal cycle (Fig. 8e; Table S1)

is less well simulated in the models, with several models not

having an average statistically significant correlation (∼ 0.5

for 95 % significance for a 12-month seasonal cycle) on the

global scale, or in the mid- and high latitudes (e.g., GFDL,

MPI-ESM-MR on global scale, GFDL, inmcm4 and MPI-

ESM-MR for various regions).

Next we explore the observed and modeled relationship

between LAI and temperature, and the observed and modeled

trend in LAI (e.g., Anav et al., 2013a, b; Ichii et al., 2002;

Zeng et al., 2013; Mao et al., 2013; Zhu et al., 2013). As

previously shown, there are positive relationships between

modeled and measured LAI and temperature in high lati-

tudes (Figs. 6a, S5; e.g., Anav et al., 2013a; Ichii et al., 2002;

Zeng et al., 2013; Zhu et al., 2013). In the tropics (< 30◦),

the relationship can be positive or negative but some regions

tend towards a negative relationship (Figs. S5, 6a). This is

consistent with our understanding that many places in the

tropics are close to the optimal growing temperature already,

and increases may lead to reduced productivity (Lobell et

al., 2011), although this also could be related to moisture

stress (Fung et al., 2005). Compared to the observed cor-

relations, most models have too strong of a negative rela-

tionship between LAI and temperature in the tropics, and too

strong of a positive relationship in the high latitudes (Fig. 8f,

Table S2a–c). In the tropics, the BNU-ESM model has a

weakly positive impact of temperature, while in the high lati-

tudes, especially the CanESM2, HadGEM2-CC, HadGEM2-

ES, MPI-ESM-MR models have a much stronger correlation

than observed. The model and observations show similarly

weak correlations between the temperature and LAI in the

mid-latitudes.

Some regions show substantial trends over time (1981–

2010) in measured LAI (Fig. S7b), especially in high lati-

tudes in the Northern Hemisphere (e.g., Zhu et al., 2013; Mao

et al., 2013). This could be associated with the longer grow-

ing season due to warming (e.g., Lucht et al., 2002; Zeng et

al., 2013). It is also possible that this trend is due to CO2 fer-

tilization effects (e.g., Friedlingstein and Prentice, 2010). For

high latitudes, we find a rank correlation of 0.58 across the

models between the CO2 fertilization factor on land for the

earth system models (called the β land in Arora et al., 2013,

as discussed above) and the average correlation of observed

LAI with time, suggesting that there may be a component of

carbon dioxide fertilization in the models’ temporal trends.

These trends are stronger in the models than the observations,

which may be related to an overestimate of the fertilization

effect.

With regard to LAI interannual variability correlations

with temperature or time, there are also strong correlations

among temperature, precipitation and time themselves (e.g.,

IPCC, 2007). Here we do not attempt to differentiate these

signals because of the statistical complexity and the short-

ness of the time record. The shortness of the record consid-
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ered could also lead to aliasing of the real variability, espe-

cially in regions like the Sahel that have strong decadal scale

variations (e.g., Loew, 2014). The observational data sets also

contain measurement noise, while the model values do not.

We expect the measurement noise to reduce the correlations

of LAI with the environmental variables in the observations

relative to the true values, as seen compared to many mod-

els (Fig. 8f). Thus, our metrics for interannual variability are

likely to be more impacted by uncertainty in the observations

than for the annual mean or seasonal cycle, and thus they

may be less useful for evaluation of the models, although

potentially interesting. For this study, we consider the IAV

in the annual mean, but there may be important changes in

the seasonal cycle or length of growing season on an inter-

annual time basis, which our simple approach does not con-

sider (e.g., Murray-Tortarolo et al., 2013). In addition, the re-

gional or global average of some of these correlations may be

difficult to interpret, as it is not statistically significant (e.g.,

Fig. 8f), thus making the LAI IAV correlations less helpful.

Figure 9 summarizes our comparisons of the models with

the observations for LAI for the different metrics in Table 2

(Tables S1, S2). In order to show both correlations and model

mean biases in the same figure, we have converted the model-

data comparisons into model evaluation values using Eq. (1)

in Sect. 2.4, where 1 is a perfect model simulation and lower

values represent worse model simulations. Overall, none of

the models does a perfect job, and improving simulation of

LAI for all models will be important. In addition, as dis-

cussed above, some models perform better in some regions

than others. In order to more easily see how the models com-

pare, we also show the ranking of the different models in

each region (Table 3). For this comparison, we exclude the

magnitude and correlations in the IAV, because the observa-

tional estimates for this are more likely to be in error than for

the annual mean and seasonal analysis, as discussed above.

Thus our overall evaluation of LAI in the models includes the

following metrics: annual mean LAI, spatial correlation of

annual mean, standard deviation of seasonal cycle and tem-

poral correlation of the seasonal cycle. In the tropics the top

three models are the INMCM4, the IPSL-CM5A-LR and the

IPSL-CM5B-LR. For the mid-latitudes the top models are

the CanESM2, IPSL-CM5A-MR and the HADGEM2-ES.

For high-latitudes the top models are the BNU-ESM, bcc-

csm1 and the MIROC-ESM_CHEM (Table 3; Fig. 9).

4.2 Future projections constrained by current model

performance

Across broad regions, we evaluate which metrics are the most

useful for potentially constraining future climate projections

by considering how the metric is correlated with the projec-

tions (Figs. 8, 9; Tables S1, S2). We consider four regions:

the globe, tropics (latitudes < 30◦), mid-latitudes (latitudes

between 30 and 60◦), and high latitudes (latitudes > 60◦). For

the first approach, we look for the metrics that have the high-

Table 3. Model ranking based on performance on mean annual and

seasonal cycle metrics for each region (see description in Sect. 2.1).

Tropical Mid-latitude High

latitude

bcc-csm1 10 10 2

bcc-csm1-1 9 8 11

BNU-ESM 18 18 1

CanESM2 17 1 16

CESM1-BGC 6 11 17

GFDL-ESM2G 14 15 17

GFDL-ESM2M 16 17 6

HadGEM2-CC 10 5 7

HadGEM2-ES 14 3 11

inmcm4 1 8 13

IPSL-CM5A-LR 2 5 13

IPSL-CM5A-MR 4 1 9

IPSL-CM5B-LR 3 4 5

MIROC-ESM 12 15 4

MIROC-ESM_CHEM 13 14 2

MPI-ESM-LR 5 7 9

MPI-ESM-MR 7 12 15

NorESM1-ME 8 13 7

est correlation coefficient to constrain the future estimate of

change in LAI (similar to Cox et al., 2013) (Fig. 10a, b). Us-

ing this approach, we look for the model metrics (from Ta-

ble 2) which have the highest correlations with future projec-

tions across the models, for each of the regions. If we choose

the models which do the best job with the metrics, this re-

duces the number of models included in the projections, and

may reduce model spread in projections.

As an example, for the globe, there are two metrics that

correlate the highest with future projections: the average cor-

relation of IAV in LAI with date (i.e., the trend), and the

global mean LAI ratio of model to observation. This anal-

ysis suggests that models with the largest relative change in

LAI over the last 30 years (1980–2010) will have the largest

change in LAI in the future (Fig. 10a). It also suggests that

models with higher LAI in the current climate will have a

larger change in the future (Fig. 10b). In Fig. 10a and b, the

observation-based estimates are indicated by the gray vertical

bar. Notice that the projected change in LAI given by mod-

els that match best with the observations differs for different

metrics, and thus it does not allow us to uniquely constrain

the future projections (although it does suggest that the high-

est values are the least likely). There is one model with a

very large change in LAI in the future (BNU-ESM). We use

Spearman rank correlations instead of Pearson correlations,

so that these results are largely insensitive to the removal of

one model.

For both the tropical region and in the global analysis, the

change with time (LAI IAV correlation with date) and the

mean of the model divided by mean of the observations have

the largest correlations (Fig. 10c, d). Thus models that predict
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Figure 10. Scatterplot of the metrics with the highest absolute value of the correlation between the metric and future LAI changes across

the globe (LAI IAV correlated with date (a) and mean LAI model/obs (b) tropics (< 30◦) (LAI IAV correlated with date (c) and mean LAI

model/obs d), mid-latitudes (between 30◦and 50◦) projected change in precipitation (e) and high-latitudes (> 50◦) seasonal cycle average

correlation (f), strength of IAV model/obs (g), and seasonal cycle strength model/obs (h). The symbols are in the shown colors for each

model. The gray represents the value an ideal model would have based on the observations. The black line is the line that results from a linear

regression of the x and y axis.

high LAIs in the current climate and/or currently have large

trends with time, tend to project higher LAI changes in the

future. Again, these two metrics would constrain our future

projections to two different LAI values, as the gray lines in-

tersect with the slope at different LAI changes (Fig. 10c, d).

For mid-latitudes, the highest correlation (and only statisti-

cally significant correlation) is between the model predicted

change in precipitation and LAI (Fig. 10e). Thus mid-latitude

projections of LAI are difficult to constrain based on model

metrics, but are sensitive to modeled changes in precipita-

tion (as seen also in Fig. 5). For high latitudes there are three

metrics with similar correlation coefficients: the average tem-

poral correlation in the seasonal cycle, the size of the inter-

annual variability and the size of the seasonal cycle in LAI

(Fig. 10f, g, h). Unfortunately again, these three metrics sug-

gest a different projected change in LAI when the observed

value is used to identify the models that are most realistic

(gray line in Fig. 10f, g and h).

Overall, this analysis of multiple metrics suggests that

there is no single metric available that is the most impor-

tant in all circumstances for improving our estimates for the

changes in LAI. Thus, deduction of a more probable future

LAI projection is not available to us in this case (as opposed

to Cox et al., 2013, where only one metric is presented).
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The second approach for characterizing the relationship

between model simulations in the current climate and fu-

ture climate projections, and potentially for reducing spread

in the future projections follows the ideas of Steinacher et

al. (2010). Here for each region, we chose the models that

performed the best for several metrics (i.e., using the rank-

ings in Table 3), instead of just one metric at a time (as

above). For this study, we chose to use the top half of the

models, based on their performance for each region (Table 3),

so we include nine models out of the available 18 models

for each region. Using this approach does change the mean

future projections, especially for the tropics and high lati-

tudes (Table 4; Fig. 7a vs. b), and does reduce the spread in

the model values in the tropical region, but does not reduce

the mean spread in mid-latitudes or high latitudes (Table 4;

Fig. 7c vs. d). In the tropics, the top models tend to have

lower future projections of changes in LAI than the average

of all the models (0.07 m2 m−2 instead of 0.16 m2 m−2). This

is actually consistent with the analysis in Figure 10, since

the models with the higher skill (close to gray line) would

tend to have lower or middle values of future LAI projec-

tions (Fig. 10a, b). For the mid-latitudes, there is not as much

difference between using all models or the top performing

models (Table 6), while for high latitudes, the top models

tend to project slightly higher LAI in the future, also con-

sistent with Fig. 10 f, g, h, where the projections from the

models with more consistency with the observations tend to

suggest higher LAI projections compared to including all the

models.

The spatial distribution of the change in the future pro-

jections using all models in comparison to the top models

is consistent with the mean over the regions, with the largest

change being seen across the tropics, with a reduction in both

the mean LAI projection (Fig. 7a vs. b) as well as the stan-

dard deviation (Fig. 7c vs. d). The changes from subsampling

only the top performing models are not very large in most lo-

cations in the mid- and high latitudes (Fig. 7a vs. b). Only

in the tropics is the spread in the models reduced in the fu-

ture projections (Fig. 7c vs. d). The fraction of the time that

is considered to have low LAI in the future is increased in

the tropics, if we only consider the top models compared to

including all models (Fig. 7e vs. f).

Our results suggest that the better performing models tend

to project lower LAIs in the future in the tropics in contrast

to Cox et al. (2013), which focused on carbon–temperature

relationships in the Amazon and which showed that obser-

vational constraints on the models tend to suggest less loss

in carbon under higher temperatures. However these results

may not be inconsistent as they consider different metrics in

different regions, and LAI is not necessarily linearly related

to vegetative carbon or carbon uptake in the models (see dis-

cussion in Sect. 3.4), suggesting that more analysis of how

allocation is parameterized in the land carbon models is war-

ranted.

Table 4. Mean and standard deviation across models for future pro-

jections (LAI change in m2 m−2) (2081–2100) for all models and

for the top half of the models.

Tropics Mid-latitude High-latitude

Mean change

(all models) 0.16 0.35 0.31

(top models) 0.07 0.31 0.37

Standard deviation across models

(all models) 0.35 0.23 0.20

(top models) 0.25 0.24 0.24

Our analysis suggests that using multiple metrics does pro-

vide information that allows us in some cases (especially the

tropics) to change our mean future projection, and potentially

reduce the spread between model predictions. Overall, in-

cluding only the top models in the tropics projects a future

with a smaller increase in mean LAI and an expansion in the

regions at risk for a low LAI compared to including all mod-

els. At high latitudes, focusing on the top models tends to

increase the already large increase in mean in LAI compared

to including all models.

5 Summary and conclusions

LAI is an important term for scaling leaf-level biogeophysi-

cal and biogeochemical processes to regional and global ar-

eas, and thus it is vital to consider its change in future pro-

jections. Here for the first time we consider LAI projections

across the CMIP5 models and find that over much of the

globe in the future, the models project an increase in mean

LAI in the RCP8.5 scenario over the 21st century. Decreases

are projected in the limited regions where there is also a

projected decrease in mean precipitation; these regions are

constrained primarily to the tropics. The change in LAI ap-

pears to grow with carbon dioxide and temperature increases

across regions over the 21st century (Fig. 3). Changes in LAI

projected in the RCP4.5 are largely consistent with changes

in RCP8.5, but have a reduced amplitude due to the smaller

carbon dioxide and climate forcing.

For assessing climate change impacts, we propose that

both mean LAI and LAI variability are important in iden-

tifying vulnerable regions in future projections. The models

project an increased frequency of low LAI conditions despite

higher mean LAIs, especially in the tropics (Fig. 4). While

much of the variability in LAI is driven by changes in pre-

cipitation, projections of lower mean LAI or Low-LAI fre-

quency can identify a slightly different set of vulnerable re-

gions (Fig. 5), and add to the information that precipitation

projections provide.

In order to characterize the model projections and evaluate

whether we can potentially use model skill in the current cli-
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mate to reduce the spread in the future projections (e.g., Flato

et al., 2013), we conducted a brief comparison of the mod-

els to available satellite-derived LAI data (Zhu et al., 2013),

similar to previous analyses (e.g., Anav et al., 2013a, b; Mao

et al., 2013; Sitch et al., 2015). Our results support the previ-

ous conclusions that the modeled LAI could be improved in

many aspects of the mean, seasonal and interannual variabil-

ity, although difficulties in the observational data may pre-

clude definitive assessment (Fig. 8).

We use two different methods for relating current model

skill to model projections, and find that combining multiple

metrics to choose better models (e.g similar to Steinacher

et al., 2010) seems to work more robustly than simply cor-

relating one metric against future projections (e.g., Cox et

al., 2013; Hoffman et al., 2014), because the different met-

rics suggest different future projections (Fig. 10). Overall,

the top-performing models (top half of the models from Ta-

ble 4) suggest smaller future increases in LAI in the tropics,

and more regions with more incidences of low-LAI condi-

tions than assessments that include all the models. This ap-

proach also reduces the spread among models in the tropics.

However, using only the top models did not make a large dif-

ference in projections in the mid- and high latitudes (Fig. 7).

Please note, however, that it is not clear that the models that

perform best in the current climate have more accurate pro-

jections, as discussed in more detail in Flato et al. (2013).

Finally, the spread among the models’ projections of LAI

was correlated with the models’ projections of precipitation

(Figs. 6b, 5). Thus our projections of LAI ultimately rest on

the ability of models to project future precipitation. Unfortu-

nately, in many regions the projected changes in precipitation

are not large enough to be statistically significantly outside

natural variability (e.g., Tebaldi et al., 2011) and there are

discrepancies between climate model and statistical model

predictions (e.g., Funk et al., 2014 vs. Tebaldi et al., 2011).

In addition to precipitation affecting the future projections

of LAI, increasing temperatures are likely to stress systems,

even if there is additional rainfall (e.g., Lobell et al., 2011),

expanding the regions at risk to increased drought (Fig. 5).

Because of the importance of LAI for biophysical and bio-

geochemical interactions, as well as the potential for LAI

to be useful to the impacts community, we encourage more

analysis of the drivers of LAI variability and changes in the

future, as well as improvements in the model mechanisms

responsible for the simulation of LAI.

The Supplement related to this article is available online

at doi:10.5194/esd-7-211-2016-supplement.
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