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Abstract. Associated with every projection ~r: P --~ rr (P) of a polytope P is a partially 

ordered set of all "locally coherent strings": the families of proper faces of P that project to 

valid subdivisions oDr (P), partially ordered by the natural inclusion relation. The "General- 

ized Banes Conjecture" posed by Billera et al. [4] asked whether this partially ordered set al- 

ways has the homotopy type of a sphere of dimension dim(P)-dim(Tr (P)) - 1. We show that 

this is true in the cases when dim(rr (P)) = l (see [4]) and when dim(P) - dim(rr (P)) _< 2, 

but falls in general. For an explicit counterexample we produce a nondegenerate projection 

of a five-dimensional, simplicial, 2-neighborly polytope P with 10 vertices and 42 facets to 

a hexagon ~r(P) _c R 2. The construction of the counterexample is motivated by a geometric 

analysis of the relation between the fibers in an arbitrary projection of polytopes. 

1. Introduct ion 

In this paper we study the poset oJ (P,  zr ) of  all "locally coherent strings" (defined below) 

associated with a projection of  a convex polytope. In particular, we prove a new special 

case of the Generalized Baues Conjecture about the homotopy type of  this poset, and 

disprove the Conjecture by explicit counterexamples in the general case. 

The investigation of the posets ~o(P, rr) is motivated by problems that are concerned 

with the global (topological) structure of  a restricted set of  subdivisions of a fixed compact 

space. Such problems appear in very different frameworks, among them 

�9 model theory of  loop spaces (see [1] and [2]), 

�9 spaces of triangulations of  manifolds (see [15] for recent work), 

�9 triangulations of  point configurations and local transformations (see [10]-[12]), 
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�9 extension spaces of oriented matroids (see [17]), and 

�9 finite models of the finite-dimensional Grassmannians (see [13] and [14]). 

The Generalized Banes Conjecture, whose precise setting we now introduce, directly 

applies to several of the situations we have just listed, and provides a prototypical model 

for the others. 

Let 7r: P ~ zr(P) be a projection of polytopes. Here we assume that P is a d- 

polytope in Rd, :r(P) is a d'-polytope in R d', and 7r: R a ~ Rd' is an affine map. If~r 

maps more than one vertex of P to a single point in rr(P) we call ~r degenerate, while 

Jr is weakly nondegenerate otherwise. If each affine dependence between projections 

of vertices 7r(vl), ~r(v2) . . . . .  ~r(Vk) is induced by an affine dependence between the 

vertices ol . . . . .  vk in P, then we call Jr (strongly) nondegenerate. The main objects of 

study in this paper are the following. 

Definition 1.1. A locally 7r-coherent string--or a locally coherent string for short--is 

a collection ~ of nontrivial faces of P (that is, faces different from P and from 0), such 

that: 

�9 {Jr(F): F ~ .7"} is a polytopal subdivision of Jr(P) without repetitions, that is, the 

sets ~r (F) are distinct polytopes which form a polytopal complex with union ~r (P). 

�9 rr(F) ___ ~r(F') implies F = F '  N Jr-l(Jr(F)), for F, F '  ~ ~'. 

The finite set of all locally ~r-coherent strings is partially ordered by 

The resulting partially ordered set (poset) of locally ~r-coherent strings is denoted by 

to(P, rr). A string ~" ~ to(P, Jr) is called 

�9 tight ifdim(~r(F)) = dim(F) for all F E Jr, and 

�9 globally :r-coherent----or coherent for short--if a ~p ~ (IRa)*\{0} exists such that 

rr can be factorized into 

~r: P ~r,~) {(n'(x), ~(x)): .r E P} ~ Jr(P), 

such that (:r, ~)(.~-) is locally prl-coherent. The subposet of all coherent strings 

is denoted by tocoh(P, Jr) c to(P, Jr). 

For a part (a) of the following useful Lemma see Chapter 9 of [ 18]. Part (b) is an 

immediate consequence. 

Lemma 1.2 (Properties of Tight Strings). 

(a) A locally coherent string is minimal in to(P, 7r ( P ) ) if and only if  it is tight. 

(b) If  a tight locally coherent string is maximal, then it is an isolated element in 

to(P, ~r(P)). 

Definition 1.1 is equivalent to the definition of the set of all :r-induced subdivisions 

ofrt(P), denoted "S(P,  7r (P) )"  in the paper of Billera et al. [4]. Since in general there 
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may be many different locally zt-coherent strings that determine the same polytopal 

subdivision of Jr(P), we emphasize by our notation that one is dealing with objects in 

P rather than with subdivisions of rr(P). 

Billera and Sturmfels [5], [18, Theorem 9.6] showed that the subposet cocoh(P, st) is 

isomorphic to the poset of proper faces of the fiber polytope E (P, Jr) of the projection 

zr, a convex polytope of dimension d - d'. Thus the order complex (simplicial complex 

of chains, see [7]) of coeoh(P, rt) is homeomorphic to a sphere of dimension d - d' - 1. 

In general, the poset co(P, Jr) is strictly larger than cocoh(P, Jr), and not homeomorphic 

to a sphere. (See, e.g., p. 297 of [18].) However, in 1980 Baues conjectured in his work 

on a model theorem for looR~aces [2] (in somewhat different language) that for d' = 1 

the poset co(P, zt) of all locally coherent strings is homotopy equivalent to the sphere 

S d-2. In 1991 Billera et aL extended this to the following conjecture. 

Conjecture 1.3 (Generalized Baues Conjecture) [4], [16, Section 5]. For every projec- 

tion Jr: P --~ zr(P) of a d-polytope P c ~d to a d'-polytope st(P) c_. R d', the poset 

co(P, Jr) of all locally zr-coherent strings is homotopy equivalent to the (d - d' - 1)- 

sphere. 

Even stronger, cocoh(P, Jr) is a retract of co(P, zr): the inclusion map 

cocoh(P, zr) ~ co(P, Jr) 

is a homotopy equivalence. 

Even for projections of reasonably small and simple polytopes, the poset ofalllocally 

coherent strings can be large and complicated. Up to now the main positive result, 

motivating the Generalized Baues Conjecture, was the following theorem, which settled 

the original conjecture by Banes [2]. 

Theorem 1.4 [4]. The Generalized Baues Conjecture holds for d' < 1. 

Actually, in [4] this is formulated only for the case where the projection is nondegen- 

erate. However, the proof can be extended to the general case without greater difficulty. 

Theorem 1.5 (Partial Results for Special Polytopes P). 

�9 I f  P is a simplex and dim(zr(P)) < 2, then the Generalized Baues Conjecture 

holds ([4], a proof was recently presented by Edetman and Reiner in [9]). 

�9 I f P  is a hypercube and dim0r(P)) < 2 or dim(P) - dim(st(P)) < 3, then the 

Generalized Baues Conjecture holds (see [17]). 

We refer to [5], [6], [14], and [16] for related discussions. Our main positive result is 

the following special case. 

Theorem 1.6. The Generalized Baues Conjecture holds for d - d' <_ 2. 

After preliminary work on the structure of locally coherent strings (including a char- 

acterization theorem in terms of functions on the chamber complex) in Section 2, we 

prove Theorem 1.6 in Section 3. 
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Theorem 1.7. The Generalized Baues Conjecture is false in general for d' > 2 and 

d - d '  >3. 

In Section 4 we present a construction method for polytope projections that have 

isolated elements in their posets of all locally coherent strings, thus proving Theorem 1.7. 

In order to provide more geometric/combinatorial intuition for "what goes wrong here," 

we present explicit coordinates for two counterexamples in Section 5, together with 

simple, independent proofs that these polytope projections violate the Generalized Banes 

Conjecture. These proofs depend on "hands-on" knowledge of the face lattices of the 

polytopes, as can be obtained from Fourier-Motzkin elimination (or any similar convex 

hull algorithm). 

The first example is one special instance of the construction method of Section 4. It 

is an extremely degenerate projection rrd*g: pd,g __~ jr(paeg) =: Qaeg, where pdeg is 

a 5-polytope with 10 vertices and 36 facets and QOeg is a triangle. Each vertex of paeg 

is projected by rr aeg either to a vertex or to the center of the triangle Q~g. In this case 

w(P deg, zr dog) has an isolated element. 

The second example---obtained by perturbation of the vertices of the first--is a 

strongly nondegenerate projection rr: P --* rr(P) =:  Q, where P is a 2-neighborly, 

simplicial 5-polytope with 10 vertices and 42(!) facets, and Q is a hexagon. Here w (P, rr ) 

is disconnected: the locally Coherent strings of one connected component all have three 

special 2-faces of P in common. 

By Theorems 1.4 and 1.6 these counterexamples have both minimal dimension and 

codimension. They easily imply that the Generalized Banes Conjecture also fails in any 

higher dimension and codimension. 

The most interesting cases of the Generalized Baues Conjecture that remain open are 

the following: 

�9 P is a simplex, and dim(:r(P)) > 2 (directly relevant for triangulations and their 

local transformations), 

�9 P is a hypercube, for dim(zr(P)) > 2 and dim(P) - dim(Tr(P)) > 3 (important 

for extension spaces of oriented matroids). 

2. Functions on the Chamber Complex 

In this section we point out two crucial facts. The first one describes a basic property 

of the chamber complex of a polytope projection, the second one is a "local coherence 

condition" in terms of the normal fans of the fibers of the projection. 

Given any linear or affine function lp on a space that contains the polytope P, we use 

PC' to denote the set of all points in P on which ~p is maximal. This set pC, is a face 

of P, and all nonempty faces of P have this form (ap = 0 corresponds to P itself). We 

use L(P) to denote the face lattice of P: the set of all faces of P _c R d, partially ordered 

by inclusion. This includes the trivial faces 0 and P. 

For a polytope projection zr: P ---> zr(P) =: Q as above, the chamber complex F is 

the set of intersections of all images of faces of P that contain a given point in Q, that is, 

F := {a(q): q ~ Q}, 
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where 

tr(q) := A{zr (F) :  q e ~r(F), F E L(P)} 

is the chamber ofq �9 Q. (It can be shown that F is a polytopal complex subdividing Q. 

The chamber complex F is the common refinement of all Jr-coherent subdivisions of Q, 

and therefore shellable.) 

There is no loss of generality if we assume from now on that the projection map 

rr: R a --+ R d' is the restriction to the last d' coordinates. For any q �9 Q thefiber o fq  

is the polytope 

Pq :----- {x E ]l~d-d': (x ,q)  E P}. 

Thus we consider the fibers as full-dimensional polytopes Pq in the (fixed) vector space 

R a-d'. Whenever we need to interpret a fiber as a subset of R a we write iq (Pq), where 

iq(X) :=  (X, q) �9 R a. The (surjective) map iq: (Ra) * --, (Ra-a') * is as usual defined 

by iq(a)(x) := ot(iq(X)) = t~(x, q). 

The nonempty faces of the fibers Pq can be represented in the form P : ,  where gr is a 

linear functional ~p �9 (Ra-a') *. Now if P :  is any nonempty face of a fiber Pq, then we 

use [~p] to denote the (closed, polyhedral) cone in (Ra-a') * of all linear functions that 

are maximal on the face Pq~ of Pq. This set [ap] is the normal cone of the face P : .  If 

q' is another point that lies in the relative interior of the same chamber of the chamber 

complex as p, then the normal cones of the face Pqr of Pq and P :  of Pq, coincide (that 

is, the fibers Pq and Pq, are normally equivalent, see, e.g., [5]). Thus we can use the 

notation [~p]o for the normal cone of the face that ~ defines in the fiber, called the normal 

cone over a induced by 1#. Moreover, let N(tr) denote the fan consisting of all normal 

cones over ~r, the normal fan over a (that is, the normal fan of the fiber over a point in 

the relative interior of 0). 

For each face Pq~ of a fiber Pq there is a unique minimal face of P that contains 

P~ (the intersection of all faces that contain P~). We use Fq.~, to denote this face of P 

corresponding to the face Pqr of Pq. For its normal cone in (Rd) * we use the notation 

Cp(Fq,~). Figure 1 depicts the situation for d = 2 and d' = 1. 

The following lemma collects the elementary basic facts. 

R~-r 

c~(r,,,)k 

I. 
: :q Q ~ R a' 

Fig. 1. The face Fq., 1, induced by %/, e (Rd-d') *. 
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Lemma 2.1 (Basic Facts). The faces of  the polytope P, of the fibers Pq, and the cham- 

bers a ~ F, are related as foUows: 

(i) The chamber of  q E Q is given by 

o'(q) = N ~r(Fq,~t). 

(ii) For all q E Q and ~/, ~ '  E (]Rd-a') ", 

P : < P : ' r  

(iii) For all q, q' E Q and ~ E (Ra-a') *, 

G.,<G.,'. 

q' ~ relint rr(Fq,q,) 

q' ~ 3rr(Fq,~) 

7 r ( F q , , ~ t )  C 7 r ( F q , r  

yr ( Fq,  , ~t ( ' l  . . . (3 Fq ,  , qt ) 

Fr C 

= Jr(Fq,,~,) n . . .  n ~ (Fq, .~ ) .  

(iv) Letq'  E a (q ) , q  E Q,x  E Pq~,X' E P : , a n d a  E Cp(Fq,q,).Then 

iq, (ct) (x')  = iq (or) (x). 

(v) The normal cone C p ( Fq,~ ) of Fq,~ in (IRa) * is mapped by i~ onto the normal 

cone of P :  in (]Rd-a') *. 

(vi) For each face F of P there are q E Q and ~p E (~d-a' ). such that 

r = 

As a corollary of (iii) we get that if qt is fixed, then the face Fq.~ does not change if 

q moves in the relative interior of the chamber a (q). Hence with each chamber a and 

each functional ~p we can associate a well-defined face of P, via 

Fa,~, := Fq,~, q E relint(a). 

The following"normal fan relation" of the chamber was used in the special case d' = 1 

by Billera et al. [4] in their proof of the Banes Conjecture. Here we state its general 

validity. 

Lemma 2.2. If  r is a face of a in the chamber complex F, then for each q/ ~ (Rd-a') * 

the normal cone over z defined by ~ is contained in the corresponding normal cone 

over cr : 

< c r ~ r  =,, [r _c [r 

Hence, the normal fan over a is a refinement of the normal fan over r: 

N(a)  ~ N(r ) .  
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Fig. 2. The normal fan relation. 

Proof Let 99 = iq(Ot) be a linear functional o n  (~d--d')* in [lp]~ with q ~ relint(tr) 

and some t~ in the normal cone Cj,(Fa,~,) of F.,~, in P by Lemma 2.1(v). Then 

~o = iq(Ct) E tq(Cp(F.,r )). 

However, this is contained in iq, (Ce (F,,,r for each q' 6 cr (Lemma 2.1 (iv)), especially 

forq '  ~ r. 

We know from Lemma 2.1(iii) that if ~ is a face of or, then F,,r is a face of Fo,, for 

all ~ ~ (Ra-a') *. Hence, again from Lemma 2.1(v) we derive 

l q , (Cp(F~r , , ) )  ~ iq,(Ce(F~,,)) = [~p]~, 

which completes the proof. [] 

Remark 2.3. In general we cannot expect a strict refinement (see Fig. 2), because the 

map iq, does not preserve strict inclusions if the projection is degenerate. However, if we 

restrict ourselves to nondegenerate projections, then the cone inclusion has to be proper 

for at least one ~ e (Ra-a') *, and therefore the fan refinement is strict. 

The following proposition describes the relations between the fibers over adjacent 

chambers even metrically. 

Proposition 2.4. Let cr ~ F be a chamber with vertices vl . . . . .  Vk and 

q = ~ Li Ui 

i=1 

with ~,i > 0 and )'-~i=1 i = 1. Then Pq is the Minkowski sum of the fibers over the 

vertices of it, scaled as in the representation of q in or, 

Pq = ~-~ Zi Po,. 
i=1 
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Proof. Consider the polytope projection 

fro: Po := zr-l(o ") ~ tr. 

In this very special case the fiber over each vertex vi of tr is the convex hull of ver- 

tices vi,l . . . . .  vi,l(o of P,, and these are the only vertices of Po. This yields the claim 

after a straightforward computation. 1"3 

Corollary 2.5. The normal fan over the relative interior of a chamber tr E F is exactly 

the common refinement of the normal fans over the faces of a. 

Any locally coherent string can be interpreted as a function which associates a face of 

Pq to every point q e Q in some "locally coherent" way. This selection must be constant 

(in the sense that the same face Fo,r is chosen) in the relative interior of every chamber. 

No locally coherent string can contain a whole d'-dimensional fiber Pq for some q e Q, 

because this would imply that P itself is contained in that string. Complete fibers Pq of 

dimension smaller than d'---e.g., for q in the boundary of Q----can always be expressed 

by nonzero normal vectors. (For example, if a fiber consists only of one vertex any 

nonzero vector will do the job.) Hence, we interpret the selection functions as functions 

from F to S a-a'-l, where ~po ~ S a-a'-t induces a face of a fiber over a - -which  is a 

proper one whenever the fiber is full-dimensional--and therefore a proper face of P. 

The following criterion (see [4] for the case d' = 1) describes the admissible selection 

functions in terms of normal cones. 

Proposition 2.6 (Cone Condition). A function 

~3: { ~ -'~ •o 

defines a locally rr-coherent string of Q via 

.~'(~b) := (Fo,r tr ~ F) 

if and only if for all o, r ~ F with r < o one has 

relint[~Po]o __c relint[@~]r. 

Furthermore, every locally coherent string arises from a selection function ~b in this 

way. Two functions ~b and ~b' define the same string, .~(~b) = ~(~b'), if and only if 

[~ra]o = [~ ' ]o  holds for all r E F. 

The proof is a careful check of definitions, where Lemma 2.1 yields the necessary 

details. 

Definition 2.7. A function ~p as in Proposition 2.6 is called locally coherent. Two 

functions ~b, ~b' are equivalent if they define the same locally coherent string. In this 

case we write 

[r = r e ' ]  

for their equivalence class. 
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Because of Lemma 2.2 the crucial function values are just those over the chambers 

of maximal dimension. 

P r o l ~ ' i t i o a  2 .8  ( P a i r w i s e  C o n e  C o n d i t i o n ) .  The cone condition in Proposition 2 . 6  is 

equivalent to the following: 

[r ]o, ~,2 = [ 9 ~  1o, no~ 

for all d'-dimensional chambers or1, tr2 E F such that (71 0 (7 2 ~ 0. Any function that 

respects the pairwise cone condition for the chambers of dimension d' can be completed 

to a locally coherent function. 

Figure 3 illustrates Propositions 2.6 and 2.8 for the situation d = 3 and d' = 1. 

Fig. 3. The pah'wise cone condition. For example, a choice of I over ~2 and 5 over ~3 is locally coherent 

and would imply the choice of 3 over a23. If 2 is chosen over r then 5 is not a consistem choice over ~3. 

However, in this case 6 or 7 are "good choices" over a3--with respect to the pairwise cone condition--which 

both determine 4 over a23. Observe that, for example, the open normal cone at 6 is the intersection of the open 

normal cones at 8 and 4 (compare Corollary 2.5). 
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3. Validity in Low Codinaension 

In this section we prove Theorem 1.6, by presenting an explicit retraction of the following 

models of the order complexes of to(P, ~r) and tOcoh(P, Zr), namely 

and 

~2 = {~/, ~ ( s t ) r :  [r = [r for all r < a ~ P} 

f2coh = {~P 6 (s l ) r :  ~o = ~ for all r , a  ~ F}. 

The topology of the order complexes coincides with the topology induced by the canon- 

ical metric on f2, f2coh C (S1) r,  induced from ($I) r viewed as a product of copies of 

the metric space S I. 

Let tr E F. From now on we call two values ~Pl and aP2 in S l locally coherent with 

respect to tr, if 

[r = [~2],~. (1) 

A function 

~p: F ~ S 1 

defines a locally coherent string if and only if all function values of intersecting chambers 

are pairwise locally coherent with respect to the intersection of their preimages. (This is 

the palrwise cone condition of Proposition 2.8.) 

The crucial observation for the situation in codimension 2 is that the local coherence 

property reduces to a distance property for function values in the universal cover of Sa: 

if we replace two locally coherent function values by values in the closed interval they 

span, then they stay locally coherent. In higher codimensions this fails in general. 

Proof of Theorem 1.6 (in seven steps). 

Step 1. From now on we write qo for the barycenter of the chamber a ~ F. For a function 

Jr --, s 

I 
that defines a locally coherent string let 

~:  Q --~ S 1 

be the unique piecewise linear function on Q with 

r = ff-o 

for all chambers tr ~ F. Here "piecewise linear" means that whenever q is in the 

simplex spanned by the barycenters of the chambers tri, i = 1 . . . . .  k, with barycentric 
k 

coordinates ~-i . . . . .  Zk > 0 and ~]i=~ Zi = 1, its function value is given by 

(b(q) = E~=i ~.i(b(qe,) 
k ~. ^ 

II ~_,i=l i~(qo,)ll 
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This yields a well-defined continuous function: the function ~p defines a locally coherent 

string and thus the function values on pairwise adjacent chambers lie inside some open 

hemisphere in S 1 (see Corollary 2.5). 

Step 2. For the rest of the proof let ao be a fixed chamber of F, let ~b: F --+ S ~ be a 

locally coherent function, and let ~0 := V:o0 be its value for cro. For 3~ e S 1 let 

~x: [{z ~ C: Ilzll = 1} ~ 81 , 

I 1 ~--> ~. 

be an isometry that coordinatizes S l . Let 

be a path in Q that starts at qoo- Then 

w: [0, 11 ~ Q 

~ . ( w ) :  {[0, 1] --+ S 1, 

t ~-> (~b o w)(t)  

is a path in S ~ that starts at ~P0- 

Step 3. Let 

[ R ~  { z ~ C : l l z l ,  1}, 
P: I t  ~-~ exp(2~i t )  

be the universal covering of {z e C: IIzll = 1} and let 

P~': ~ (~x o p)( t )  

be the universal covering of S l where the parameter ~. describes different coordinate 

systems on S I . For a path 

u: [0, 1] --+ S I 

with u(0) = ~. let 

Lx(u) :=  Lpx(u, 0): [0, 1] --+ R 

be its lifting with Lx(u)(O) = O. We know from the theory of coverings that liftings of 

paths that are hornotopic relative to ~[0, I] have the same endpoint. 

Step 4. We now lift the "distance" between the considered function values to ]R in order 

to get maximum and minimum values. 

Definition 3.1. We define the twist of~,  to be the following function: 

aF --+ R, 
twist,~ : (2) 

L ~ o f ~ . ) f w ) ( 1 ) ,  

where w: [0, 1] --+ Q is a path from qoo to qo. 
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Fig. 4. The twist of ~r. 

In other words: coordinatize S 1 properly, take a path from the barycenter of tr0 to 

the barycenter of tr, consider the corresponding path induced by the piecewise linear 

extension ~ of ~/,, and take the endpoint of its lifting to R. This is well defined by step 

3 because all paths in Q are homotopic. From the definition we get that twistr = O. 

Figure 4 shows the twist of the chamber tr. 

A locally coherent string is globally coherent if and only if it can be described by a 

function ~b with twistr = {0}. In addition we have PV, o o twist~ = ~,, which makes 

it possible to recover the function ~b from its twist or to define a new function ~,' by 

simply changing the twist of ~b (with twist of ero unchanged) and projecting it via P~,o. 

Step 5. The following lemma shows that local coherence in this special case is preserved 

under "pushing together" lifted function values--this is the crucial point that cannot be 

generalized to higher codimension. 

Lemma 3.2. Let ~b: F --* S 1 be a locally coherent function, in particular ~o,, ~P~32, 

and ~2  are pairwise locally coherent with respect to er12 := erl N t72. Without loss of 

generality, let twistr < twistr Then each pair of values V/t, ~2 contained in 

the am 

p,o([twist,(r twist~(r c S 1 

is locally coherent with respect to erl2 as well. 
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Proof Letw0.~: [0, 1] ~ Q be an arbitrary path from q,, o toq,,~,andletw~.2: [0, 1] 

Q be the polygonal path which leads straight from q,,, to q,,,~ and then straight from q~,~ 

to qo~. (The following will not depend on parametrization.) Because of local coherence 

over  0"12 we have 

$,,, E relint[~k,,,xla,2, (3) 

r ~ relint[r (4) 

r 6 relint[~p,,,~]o,2. (5) 

By definition, each q on the straight line from qa~ to q,,~2 is mapped by ~ to a point 

between ~(qot) = r and @(q~,,~) = ~0,~2. ("Between" is well defined because all these 

points lie in the same pointed cone [r Analogously, each q on the straight line 

from qo,~ to qa~ is mapped by ~b to a point between ~(qo,~) = r and ~(q,,~) = ~2.  

Hence we get 

~b.(wi.2)(t) ~ relint[r forall t E [0, 1]. (6) 

Therefore, if we compute the twist of ~Pl and ~02 using the paths w0A and w0,1 �9 Wl,2 

(the concatenation of w0. l and w~,2), we get that all values in the interval 

[ twist~p ( ~r l ) , tw i s t s (a2)]  

project into the open cone relint[~Po,2]o,2, and hence produce local coherent pairs. [] 

If a twist is extremal, then there is only one direction in • with other twist values. 

That means we can "retwist" all chambers that yield this extremal value until their twist 

meets the next occurring different twist. So at the next step we introduce a "twist cutoff" 

homotopy. 

Step 6. Let M(~b) be the maximum of all absolute values of q,-twists taken over all 

chambers cr ~ F. Define 

IF  x [0, 1] ~ ItL 
twist~o ( ~, t)" / (or, t) ~ max{rain{twists(or), tM(@)}, -tM(~b)}. 

Step 7. Now we are in position to define the final "retwist" homotopy. Let 

Jr • [0, II ~ S l, 
/ (or, t) ~-~ p~oo(twistr t)). 

Then @l(a) = ~'o and ~b0(a) = ap0 for all tr ~ F. Hence, ~b 1 = ~b ~ f2 and ~b o ~ f2coh. 
This yields the desired retraction 

H: 

with 

f2•  ~ S l, 

(~, t) ~ ~b t 

H(fl ,  1) = ida and H(f2, 0) = f2coh. 

This retraction is continuous in t by definition. It is continuous in ~b because it contracts 

distances between functions according to the maximum metric. [] 
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This proof and the proof of Theorem 1.4 by Billera etal.  [4] suggest a duality between 

the geometric situations in the case dim(Q) = 1 and the case dim(P) - dim(Q) = 2, 

as would be expected from an oriented matroid perspective (see also Billera et al. [3]): 

�9 In the case of dimension 1 the polytope Q is linearly ordered and therefore has a 

"maximum chamber" with a local coherence condition only in one direction. The 

retraction can start at this chamber moving its function value to that of the next 

adjacent chamber, no matter what the dimension of the image sphere is. 

�9 In the case of codimension 2 the chambers can yield a very complicated structure 

of local coherence conditions between their function values, but in this case the 

lifting of the image of this structure can be easily retracted in R starting from its 

boundary, i.e., from the extremal values. 

Analysis of the key points in the proof of Theorem 1.6 also led us to the crucial 

structures for the counterexamples in Sections 4 and 5. 

4. How To Construct a Counterexample 

In this section we introduce the main idea for the construction of a counterexample 

in dimension dim(Q) = 2 and codimension dim(P) - dim(Q) = 3. We start with a 

configuration of three two-dimensional chambers 0-1,0-2, 0-3 that form a subdivision F of 

Q (see Fig. 5(a)). The corresponding edges in the boundary of Q are rt, r2, and r3. We 

denote 0-i n 0-j by trij, and thus the inner vertex 0-1 n 0-2 n 0-3 by o'123 . Analogously, we 

set ri n rj =:  rij. 

We want to construct functions s F ---, S 2 that satisfy the "local coherence condi- 

tion" (Proposition 2.6) with respect to the fiber structure of some polytope projection. 

First we assign to each 0"~ a fixed value r in S 2 such that the cone spanned by the gro, 

in (R3) * is full-dimensional. Since ~b ought to be locally coherent this leads to several 

restrictions on the possible structures of the normal fans over the chambers. 

(a) (b) 

Fig. 5. A simple chamber complex (a) and a sketch for a possible "locally coherent" choice of function 
values on this complex (b). 
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There is a consistent choice for 1pot2 only if lpo, and r lie in the same open cone of 

the normal fan over relint(trl2). In general, this open cone (which describes the correct 

selections for r ,) does not contain ~Po3. These cones are the crucial ones because, for 

local coherence at the inner vertex tr123, we just have to choose a vector in the open cone 

of the normal fan over a123 that contains the rest of the configuration, which is always 

possible (see Lemma 2.2). The generic topological picture of the situation in the sphere 

S 2 is as in Fig. 503), which is a superposition of cones from the normal fans over ai/ 

and ~7123. 

If the vectors ~, arc in general position with respect to some fiber structure, then the 

locally rr-cohercnt string jr0 they dctcrminc in a polytope projection that induces this 

fiber structure is tight. In the following we describe what "has to go wrong" to get a fiber 

structure in which this tight string is not dominated by a nontight one jr > .T0. (In this 

case the tight string is stuck: this is the situation of Lcmma 1.2(b).) 

To get from .To to jr, wc have to move at least one of the vectors ~'o, to a more special 

position, that is, to to the boundary of the normal conc it lics in. It can now be seen 

that for every movement of a function valuc of a maximal chamber--say ~Po,--to a face 

of the normal conc associated with an edge, say r a movcmcnt of the other normal 

vectorIhCre r in that cone to the same facc is required in order to stay 

locally coherent. 

The idea is now to producc a configuration of normal cones of the fibers such that for 

each cone corresponding to the starting values of the function ~b no face is reachable by 

both the function valucs of thc maximal chambers in a way such that the intermediate 

functions stay locally coherent. 

Consider the "basket ball" with three segments in Fig. 6(a): thc normal fan of a triangle 

in R 3 intersected with the 2-sphere. Wc take three perturbed copies of this configuration 

such that the superposition locally looks as in Fig. 603). The rounded triangle bounding 

thc configuration sketches thc normal cone of ~j over (r123 (its exact shape is not 

important, it could havc, for examplc, more than six cxtremal rays). Togcthcr with the 

three basket balls it provides the three triangular "prisons" which the function values are 

placed into. These function values arc pairwise locally cohcrcnt because ~o, and r 

- -  [ ~ a l  ]ol3 

(a) (b) 

Fig. 6. The "basket-ball obstruction." 
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Fig. 7. A part of the normal fan over the vertex r12 of Q (a), over u123 (b). over the corresponding edge 
aj2 (c), and over the adjacent two-dimensional chamber ~rl (d). If 1//o t is chosen in the interior of the shaded 
cone, and if ~'a2 and ~o3 are chosen analogously with respect to the rotational symmetry we get the basket-ball 
obstruction of Fig. 6. 

lie in the same cone IV/a, ],,t2 over O"12 , and so on. There is no possibility of  pushing the 

function values to a more special position without violating the pairwise cone condition. 

Assume, without loss of  generality, r moves to a face of  [~:~, ]~ while no other 

function value has reached a more special position earlier. Then ~:,,2 has to move to the 

same face at the same momen t - -bu t  then it must have passed over a face of  [~:,,3 ],,23 in the 

meantime: a contradiction (see the "funny star-like thing," a flash where the contradiction 

occurs, in Fig. 6(b)). 

In the same manner all possibilities of  moving function values over the 2-chambers 

fail. Hence this provides an obstruction for homotopies on the starting function g, which 

we call the "basket-ball obstruction." 

The configuration of Fig. 6 is realized by the following innocent-looking construction 

that is illustrated in Fig. 7. 

�9 Let rr: ]R 5 --* R 2 be the projection to the last two coordinates. 

�9 Put three triangles into R 5 in the following way: each triangle projects down to 

one vertex of the triangle Q, such that the superposition of  their normal fans in R 3 

(basket balls!) locally looks like the configuration inside [~Pl ],,,23 in Fig. 6 (b) - - the  

local b...asket-baU obstruction. 

�9 Let  pdeg be their convex hull in ~5. At this point the normal fan over 0-123 is the 

common refinement of  the three basket balls (Corollary 2.5). 

�9 Position a single vertex into ]R 5 such that it projects to the O-cell 0-123 in the center 

of  F. The resulting fiber over 0-123 will just  be the convex hull of  the old fiber over 

o123 and the new vertex. Choose the new vertex v in such a way that its normal 

cone in the fiber realizes the cone [grl ]o,23 of Fig. 6(b). (From the primal point of  

view we put the vertex "beyond" those faces of  the fiber that have normal cones 

in the local basket-ball obstruction. Hence, in the new normal fan over a123 the 

local basket-ball obstruction is replace~d by the normal cone of the new vertex.) 

The resulting polytope pdeg = conv(pdeg, V) has 10 vertices. 

�9 Because of Proposition 2.2 the normal fans over the edges o ' i /of  F are the common 

refinement of  the normal fan over 0-123 and the normal fan over the corresponding 

vertex of Q. Over a vertex of Q there is one basket ball and over a123 there is a fan 

that contains a cone that "locks" the basket-ball obstruction into one cone. 

�9 Define the function values on O" i as in Fig. 6(b) and the function values on 0"ij 

somewhere inside the corresponding cones [ ~ ,  ]~ij = lap,: ]~,j. 
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�9 Complete this function on the boundary of Q (Proposition 2.8). This yields a tight 

locally coherent string that is not dominated by a coarser one, i.e., an isolated 

element in to(P, rr) (see Lemma 1.2(b)). 

In Section 5 we present a version of pdeg with explicit coordinates in •5. Moreover, 

we slightly perturb the vertices of pdeg tO get a simplicial, nondegenerate counterexample 

P. For each of them we provide another, simple way to see that it violates the Generalized 

Baues Conjecture. 

5. An Explicit Counterexample 

Throughout this section we use homogeneous coordinates in order to get a nice three- 
fold rotational symmetry for Qdeg and Q without square roots. We use projections that 
delete the first three coordinates. The following list contains as rows the (homogeneous) 
coordinates for ten points in R 5 in convex position: 

DIM = 6 

CONE'SECTION 

( i) 1 0 0 1 0 0 

( 2) 0 3/2 1 1 0 0 

( 3) 0 1 3/2 1 0 0 

( 4) 0 1 0 0 1 0 

( 5) 1 0 3/2 0 1 0 

( 6) 3/2 0 1 0 1 0 

7) 

8 

9 

0 0 1 0 0 1 

3/2 1 0 0 0 1 

1 3/2 0 0 0 1 

I0 

END 

2 2 2 1/3 1/3 1/3 

The first nine rows correspond to the three triangles of the abstract construction 

in Section 4, the tenth one represents the additional vertex. The chamber complex of 

the projection to the last three coordinates is as in Fig. 5(a). The normal fans of the 

three triangles in ]l~ 3 form the basket ball obstruction. The additional vertex yields the 

midpoint of the chamber complex and bounds the obstruction over the edges of the 

chamber complex. Figure 8 is an attempt to visualize the construction. 

The above listing is in correct input format for the PORTA program by Christof [8]. 

This program easily produces a complete list of all 36 facets of P, and the vertex-facet 
incidence matrix in Fig. 10. 

The following tight locally coherent string--where the faces F deg, F~ eg, F d~g (see 

Fig. 9) are given by their vertices labeled as in the listing above---correspond to the three 
given function values in Fig. 6: 

.T'0 deg := {(1, 4, 10), (4, 7, 10), (7, I, 10)}, 
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Fig. 8. A sketch of rrdeg: P~g --* Qdeg: Over each vertex of Qdeg one perturbed basket ball is positioned. 

Adding the tenth vertex in the middle provides a bounding cone around the basket-ball obstruction. (The 

gray vertices and the dotted lines are drawn to indicate the positions of the fans with respect to each other.) 

The 5-polytope pdeg is the convex hull of the three dark triangles---each of them in an R 3 over one vertex 

of Qdeg--and the additional vertex (10) in the mi dd l e . .  

where the actual string contains all the nonempty faces of the three triangles that are 

listed. 

Once we have this, it is very easy to see independently from Section 4 that this is a 

counterexample to the Generalized Baues Conjecture. To form a strictly coarser string 

we must replace at least one of the faces FI deg, F2 eg, F deg in .7--0 d~g by a face ~d~g of pdeg 

that contains F/deg. This can be described by adding one or more vertices to F, dCg such 

that we get a face. From the definition of a locally coherent string it follows that a new 

vertex v has to be added (combinatorially) to all faces of.T'0 deg whose projection contains 

~(v). 
From the vertex-facet incidence matrix we can compute for each face F in ~-d~g all 

sets V of vertices in pd~g \ F such that vert(F) t2 V are the vertices of a face in pdeg. They 
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Fig. 9. The medium-dark triangles correspond to the isolated locally coherent string {(1.4, 10), (4, 7, 10), 
(7, 1, 10)} that is defined by the function values ffa~, ~2, and ff',,3 for the chambers trl, o2, and o3. 

correspond exactly to the faces in the link of F in pdeg denoted by lk(F) :=  lkpd~ (F). 

It turns out that all links are 4-gons, namely 

lk(1 ,4 ,10)  = ( 2 - 9 - 8 - 6 - 2 ) ,  

lk(4 ,7 ,10)  = ( 5 - 3 - 2 - 9 - 5 ) ,  

/k(7 ,1 ,10)  = ( 8 - 6 - 5 - 3 - 8 ) .  

Because of  the rotational symmetry it suffices to test the vertices in lk(1, 4, 10). 

For example adding vertex 2 to the face (1,4, 10) requires adding vertex 2 to the face 

(7, 1, 10) because rr(7, 1, 10) contains ~r(2)--but vertex 2 is not contained in the link 

of  (7, 1, I0). Analogous contradictions occur in all other cases. This proves that .~.deg 

is in fact an isolated element in to(P dCg, yr). This example corresponds exactly to the 

construction at the end of Section 4. 
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s~rong v a l i d i t y  table  

kP 
\ 0  

I \ z  

N\6  1 6 # 

E \ r  

Q \ S  

6 \  

\ 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

2 * . . . *  .s 5 

4 . . . .  * . * * * *  : 5 

S . ,  . 1 1  1 . . ! 1  : 5 

8 * . . * . .  5 

9 " * * . .  * . . . *  5 

10 . . . * *  * * " * .  : 6 

1 1  " * ' . .  . ' * ' .  : 6 

12 "'''" * .... : 6 

13 * . * ' *  . * . . .  : 5 

14 *'.', . * . ' .  : 5 

1S ",.'. ***.. : 5 

16 . . . * *  * S �9 .=*  

17 *,*.. .'*," : 5 

18  * * . " .  * . . . *  : 5 

I I  

\ /  

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

il 
\ /  

. . * * ,  . * . . *  : 5 

. , . * . . * . * *  5 

* . * . *  . * _ . *  : 5 

* * . *  . . . .  * ,  : 5 

* . . . .  * * * .  �9 5 

. , * * *  . . . .  * : 5 

. . . .  * * * * - =  6 

- ,  . . . . .  * * ,  : 5 

. . . .  * * * * .  * : 5 

] 21121 12112 

I 06606 60667  

Fig. 10. The vertex-facet incidence matrix of pdeg, 

The coordinates of pdeg can be slightly perturbed in order to make the projection non- 

degenerate. We claim that the following listing contains the coordinates of a simplicial, 
nondegenerate counterexample P: 

DIM = 6 

CONE'SECTION 

I) 1 

2) 0 

3) 0 

0 0 1 0 0 

3/2 1 1 -i/ii -1/21 

1 3/2 1 -1/20 -i/i0 

4) 0 1 0 0 1 0 

5) 1 0 3/2 -1/21 1 -I/ii 

6) 3/2 0 1 -I/I0 1 -1/20 

( 7) 0 0 1 0 0 1 

( 8) 3/2 1 0 -i/Ii -1/21 1 

( 9) 1 3/2 0 -1/20 -i/i0 1 

( i0) 2 2 2 1/3 1/3 1/3 

END 

All the vertices of P project to pairwise different points in the plane. We again inspect 

the vertex-facet incidence matrix, see Fig. 12. Each facet has exactly five vertices, so P 

is a simplicial polytope. Consider the chamber complex of the projection in Fig. 11--a 

computer-generated drawing which also shows that P is 2-neighborly. The projections 

of the three faces (1, 4, 10), (4, 7, 10), and (7, 1, 10) do not cover Q. However, for 
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9 8 A 

r " ! i ! / ,  

:'/ ill 

~ / ,// ,/ 

/ 

10 

'\ ') 
' \ \  ' 4 ,  

,. ,,i(:, \t,, \ 

Fig. 11. The chamber complex of 7r. 

chambers that are not covered we find, for example, the following fight completion: 

{(1, 4, 10), (1, 2, 4), (2, 3, 4), (3, 4, 5), 

(4, 7, 10), (4, 5, 7), (5, 6, 7), (6, 7, 8), 

(7, 1, 10), (7, 8, 9), (8, 9, 1), (9, 1, 2)}. 

This is not an isolated element in ~o (P, Jr), because there are local changes possible on 

the new faces. For example, the faces (1,2, 4) and (2, 3, 4) are dominated by (1, 2, 3, 4), 

etc. However, a local change of (1, 4, 10), (4, 7, 10), or (7, 1, 10) is not possible. To 

see this, we first check that no facet of P contains more than one of these three faces. 

Consider again Fig. 11. If, without loss of generality, we take any face F in P that contains 

(1, 4, 10) we observe that some new edge of F projects into the interior of zr(4, 7, 10) 

or rr(7, 1, 10). (The link of (1, 4, 10) is again (2 - 9 - 8 - 6 - 2), etc.) For example, 

if we replace (1, 4, 10) by (1, 2, 4, 10), then the projection of the new edge (2, 10) cuts 

through the interior of rr(7, 1, 10). Thus we have produced overlapping projections, a 
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i I ; rong  v a l ~ d i c y  ~ a b l e  

\ P  

\ 0  
I \ I  

N \ N  1 6 1 

E \ T  

O \ S  

S \  

\ 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 ** . .  5 

2 * *  * . .  5 

3 ****.  * . . . .  : 5 

4 *. -** * * . . .  : 5 

5 * . " *  . * , . .  : 5 

6 ****- . * . , ,  : 5 

7 "-  ,* ,  * " * . .  5 

9 * * . * ,  . * . * .  : 5 

lO * . .  . * . * .  5 

11 * * * : 5 

12 . ,  . * .  *','**, 5 

13 * . . * .  . * * " .  : 5 

14 . . . .  * * * ' * .  : 5 

15 * . ' * . . . , , * * .  : 5 

1 6  . * * � 9  . . . .  * : 5 

17 . * . � 9  * . .  ,* 5 

18 . * * . *  * . . . *  : 5 

l g  � 9  * , . . *  : 5 

20 * * � 9  � 9  : 5 

21 � 9  * . . . *  : 5 

t l  

V 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

II  

v 

* . ,  . "  * * . . *  : 5 

* . * . , ,  . * . . *  5 

, , , ,  . * .  5 
, , ,  : K 

* . , * . * *  5 

�9 * * 5 . ,  �9 , . n  : 

. . . * *  . * . * *  : 5 

* * . *  . . . .  **  : 5 

* * *  : 5 

* 5 . . . . . .  . . .  : 

* * 5 

* * :  5 

, . . . .  , , . n  : 5 

* . . * . . . * * *  : 5 

. . . .  * * * * . *  : 5 

. . . .  * . * * * � 9  : 5 

* . * . .  * : 5 . . . .  

* * :  5 

I 21221 22122 

I 38038 03807 

F i g .  1 2 .  T h e  v e r t e x - f a c e t  i n c i d e n c e  m a t r i x  o f  P .  

contradiction to the fact that every locally coherent string defines a polyhedral subdivision 

after projection. 

We see that any locally coherent string in the connected component of .To must 

contain the three faces (1, 4, 10), (4, 7, 10), and (7, 1, 10). However, obviously there is 

the following locally coherent string where the face (1, 4, 7) replaces the three "rigid" 

faces: 

.T~ := { (1 ,4 ,7 ) , (1 ,2 ,4 ) , (2 ,3 ,4 ) , (3 ,4 ,5 ) ,  

(4, 5, 7), (5, 6, 7), (6, 7, 8), 

(7, 8, 9), (8, 9, 1), (9, 1, 2)}. 

Thus we conclude that there are at least two connected components in w(P,  rt), in 

contradiction to the Generalized Baues Conjecture. 
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