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PROJECTIONS ON TENSOR PRODUCT SPACES

BY

E. J. HALTON1 AND W. A. LIGHT

ABSTRACT. (S, E,p),(T, ©, v) are finite, nonatomic measure spaces. G and

H are finite-dimensional subspaces of Li(S) and L\(T) respectively. Both G

and H contain the constant functions. It is shown that the relative projection

constant of Li (S) ® H + G <g> L\ (T) in L\ (S X T) is at least 3.

I. Introduction. Suppose X is a normed linear space with subspace Y. A

projection P: X —> Y is a linear transformation whose range is Y and which acts

as the identity on Y. We set X(Y,X) = inf{||P||: P is a projection from X onto

Y}. This number is called the relative projection constant of Y in X. If we can find

a projection from X onto Y whose norm if A(Y, X), then this projection is called

minimal. Computing A(Y, X) even for quite "small" Y is usually a very difficult

task, and the best that can be done in most cases is to provide bounds.

In this area some recent work has focused attention on bivariate function spaces.

In particular several authors have considered the cases X = C(S x T), Y =

C(S) + C(T) or X = LP(S xT),Y = LP(S) + LP(T) (see [3, 4 and 6] for details).

Recently, Cheney and Franchetti [1] improved the results of [6] by showing that if

X = C(SxT) and Y = C(S)®H+G®C(T), where G and H are finite-dimensional

subspaces of C(S) and C(T) respectively and each containing the constant func-

tions, then X(Y, X) > 3. Jameson and Pinkus [6] had previously showed that if G

and H are just spanned by the constant functions, then X(Y, X) — 3.

In this paper we shall take G as an n-dimensional subspace of Li(S) or Loc(S)

spanned by {gi,..., gn}. H will be an m-dimensional subspace of Li(T) or Loo(T)

spanned by {hi,..., hm}. Both G and H will be assumed to contain the functions

which are constant almost everywhere with respect to the appropriate measure. S

and T will be finite, nonatomic measure spaces. We shall show that A(F, X) > 3

for X = L1{SxT),Y = L1{S)®H + G® Li(T).

II. Preliminary results. In this section we shall deal entirely with Li(S xT).

However, we shall be able to derive the same results in Loc(SxT). We shall indicate

at the end of this section the minor differences that arise in Loo (S X T). So let us

take X = Li(S xT),U = Li(S) eg) H, V = G <g> Li(T) and W = U + V. We shall
also assume without loss of generality that (S,T,,p) and (T,Q,v) are such that

p(S) = v(T) = 1. For x G X the sections xs, xt are defined by xs(£) = x(s,t) and

xt(s) — x(s,t) for almost all (s, t) belonging to S x T. Unadorned norm symbols

will denote Li-norms. Thus, for example,

||u|| =  / \u(s)\dp,        ugLi(S).
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162 E. J. HALTON AND W. A. LIGHT

The Loo-norms are written with a subscript, as

ll/lloo = esssup \f(s, i)|,        / G Loo(5 X T).

We begin with an elementary lemma whose proof can be found in [5], for example.

LEMMA 2.1. (i) There exists a constant ß such that each element wofW has

a representation w = u + v, where u G U, v G V and \\u\\ + \\v\\ < ß\\w\\.

(ii) There exists a constant 7 such that for all xt G Li(T), ||x¿|| < 7]] 52™ xtgi\\.

Here the constant ß depends only on U and V while the constant 7 depends only

on the choice of basis for G.

It is well known (see [2, p. 308]) that any finite nonatomic measure space can be

written as the union of a finite number of disjoint sets each with measure no more

than some prescribed tolerance e. This fact can be used to show that S and T may

be partitioned into sets S¿ and T,, where 1 < i < k and p(Si) = p(Tj) = 1/k. In

outline this is done as follows. Firstly, partition S into a finite number of disjoint

sets of length at most l/2fc. By taking unions if necessary we may assume that

1/2/c < p(Ai) < 1/k. Partition S\Ai into sets of measure at most l/4k. By taking

the union of as many of these sets as necessary together with Ai we obtain A2

with 3/4fc < p(A2) < 1/k. This defines the first two members of a sequence of sets

Ai,A2,A3,_ Now setting Si = U^Li An gives Si with measure 1/k as required.

Further members in the partition are produced by applying this technique to S\Si

and so on. With the aid of these partitions we define functional E{ G [Li(S)]* and

F, G [Li(T)]* by

Exu =  /   udp,        ugLi(S), l<i<k,
Js,

FjV= f  vdv,        vGLi(T), l<j<k.
St,

Now define functions xx G Li(S) and y¿ G Li(T) by

xl = k\St,        yl = k\Ti,        l<i<k.

Here xs, denotes the characteristic function of the set St. Since {S^} is a partition

of 5 we have X^=i x% = k and similarly X^=i Vi = k-   We shall set z¿¿ = Xiyj,

1 < i, j < k. It is clear that

II-E.II = \\Fi\\ = \\xi\\ = M = 1,        l<i<k,
and

Ei(xj) = Fz(yj) =8i:j,        l<i,j<k.

We also define Dab G [Li(S x T)]* by Dabz = Ea(Fbzs) for all z G Li(S x T) and

1 < a,b< k.

LEMMA 2.2.   Let P be a projection from Li(S x T) onto W.  Then we have

k k

WpW >¿¿¿ ICA*)(P*i)|.
a,b=l i,j=i

PROOF.  We have for any z G Li(S x T) with \\z\\ = 1,

]\P\\ > \\Pz\\ = sup i // 0 • Pzdo: 4> belongs to the unit ball in ¿„(5 x T) \ .
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Now since the functional Dab: 1 < a,b < k, have disjoint support and are of unit

norm we may write

k k

\\P\\ >  E l(A,*)(P*)l    or    ||P|| >   ¿ \(Dab)(PZlJ)\.
a, 6=1 a,6=1

Summing each side of this inequality over 1 < i, j < k gives

k k

&\\p\\ >Í2Í2 \{Dab)(Pzl3)\
a, 6=1 i,j=l

which is equivalent to the required result.    D

LEMMA 2.3.   For any projection P from Li(S x T) onto W we have

k

^|| > 3 - -^ Y^(Dab)(Pzab),
a,6=l

PROOF. Consider first
fc /     k       \

Y,(Dab)(Pzl3) = (Dab)    P^j= (Dab)(P(ky3)) = (Dab)(ky3) = 8b].

¿=i V  ¿=i   /
Similarly, Ylj = i(Dab)(Pzij) = 8ai- This allows us to reason as follows:

k k

k2wpw >EE \^ab)(Pzl3)\
a,6=1 i,j = l

k

^E
a,6=1

E   (Dab)(Pzl3) + J2(Dab)(Pzaj)
¿,i=i 3 = 1

+ J2(Dab)(Pzlb) - (Dab)(Pzab)
i=\

k

E
a,6=l
£ - ¿(Díi)(P2i)) + 2¿(0„,)(P2a))

i,3=l J=l

+ 2j2(Dab)(Pzlb) - 2(Dab)(Pzab
¿=i

E ("I + 2¿aa + 2¿66 " 2(Dab)(Pzab))
a,6=1

fc

I
a,6=1

3fc2 - 2 Ë (Dab)(Pzab).    D
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We conclude this section as promised, with a brief discussion of the Loo-case.

Lemma 2.3 is really not dependent on the norm employed so much as the closedness

of U + V. We define E{, Fu x%, yu 1 < i < k, as before but now ||£¿|| = ||F,-|| =

1/k and ||x¿|| = \\yl\\ = k, 1 < i < k. We continue to have the biorthogonality

property. The change of scaling does not affect Lemma 2.2 and since Lemma 2.3

is an algebraic result resting only on the biorthogonality conditions we continue to

have the following result.

LEMMA 2.4. Let P be any projection from Loc(S xT) onto L00(S)IS> H + G ®

Loo(T), where H is finite dimensional in L^T), G is finite dimensional in L00(S)

and G and H contain the functions which are constant almost everywhere on S and

T respectively.  Then

P^3-k2    E(öa6)(P^a6).k2
a,b=L

III. Main theorem. With the aid of the results in the previous section we can

now deduce the required result in Li(S x T).

THEOREM 3.1. Let G,H be finite-dimensional subspaces of Li(S) and L¡(T)

respectively such that they each contain the functions which are constant almost

everywhere with respect to the appropriate measure.  Then

X(Li(S)®H + G®Li(T),Li(SxT)) > 3.

PROOF.  By Lemma 2.1 we can express Pzab as

n m

PZab = Uab + Vab = E XT  9i + E y<J '6/lJ '
i=l 3=\

where \\uab\\ + \\vab\\ < ß\\Pzab\\. Then

k k

E (Dab)(pZab) = e
a,6=1 a,6=1

k

<E
a,6=1

YJEa(gl)Fb(x1-b) + Y,Ea(yf)Fb(h3)
i=i

E \Ea{9i)\ \Fb(xf)\ + E \EÁvf)\ \Fb(h3:
3 = 11=1

Now by Lemma 2.1 again we may argue as follows

\Fb(xf)\ < \\xf\\ < 1
Ea.b

Xr    9i < ßl\\Pzab\\ < ß^PW

Similarly, \Ea(y¿'b) < ß8\\P\\, where 8 is an appropriate constant depending only

on the basis chosen for H. Hence, there exists a real number R > 0 such that

E  (Dab)(PZab) < R\\P\\    E
a.6=1 ,6=1

El£a(g,:)l + ElW
i=l j=l

Now by our definition of Ea, Fb, 1 < a, b < k, we have

k k

J2\Ea(gz)\ < ]]gt\\, J2\Fb(h3)\ < \\h3
a=i 6=1
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and so

Hence,

E (Dab)(Pzab) < kR\\P\\
a,6=1

E u«+
¿=i 2JN

3 = 1

|P||>3-
k2

E  {F>ab)(PZab
a,6=1

>3- 7-ÄIIPI
k ¿11*11 +

¿=i 3 = 1

\h3]\

Since this inequality holds for all natural numbers k, we have the required result.    G
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