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Abstract

We construct a projection-based cluster-additive transformation that block-diagonalizes wide
classes of lattice Hamiltonians H = H0 + V . Its cluster additivity is an essential ingredient
to set up perturbative or non-perturbative linked-cluster expansions for degenerate excita-
tion subspaces of H0. Our transformation generalizes the minimal transformation known
amongst others under the names Takahashi’s transformation, Schrieffer-Wolff transformation,
des Cloiseaux effective Hamiltonian, canonical van Vleck effective Hamiltonian or two-block or-
thogonalization method. The effective cluster-additive Hamiltonian and the transformation for
a given subspace of H, that is adiabatically connected to the eigenspace of H0 with eigenvalue
en0 , solely depends on the eigenspaces of H connected to em0 with em0 ≤ en0 . In contrast, other
cluster-additive transformations like the multi-block orthognalization method or perturbative
continuous unitary transformations need a larger basis. This can be exploited to implement
the transformation efficiently both perturbatively and non-perturbatively. As a benchmark,
we perform perturbative and non-perturbative linked-cluster expansions in the low-field or-
dered phase of the transverse-field Ising model on the square lattice for single spin-flips and
two spin-flip bound-states.
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1 Introduction

In order to solve the time-independent Schrödinger equation for a Hamiltonian on a lattice

H = H0 + λV (1)

one needs to find the eigenvalues and eigenfunctions of H. In many situations the part H0 is
easy to solve and can be written in diagonal form, while

[H0, V ] 6= 0 (2)

makes solving H a difficult problem. Since in the generic case one can not find solutions for
H, one has to resort to approximations. One of the oldest is perturbation theory. While the
first two orders of perturbation theory normally can be easily calculated by hand, high orders
are only accessible with computer aid and several methods for their computation exist. Albeit
many other numerical techniques exist nowadays, high-order series expansions are used as a
competitive technique to tackle quantum many-body problems [1–3]. Examples range from the
calculation of low- and high-field expansions for transverse-field Ising models [4,5], the analysis
of phase transitions in triangular-lattice bilayer Heisenberg models [6] and spectral densities of
two-particle excitations in dimerized Heisenberg quantum spin systems [2,7,8] to the study of
critical and Griffiths-McCoy singularities in quantum Ising spin-glasses [9] or the derivation of
spectral densities for Heisenberg quantum magnets with quenched disorder [10, 11], or to the
analysis of quantum phase diagrams of long-range transverse-field Ising models [12] and the
application to quantum phases with intrinsic topological order [13–15]. Also questions such as
the exploration of possible ground states in the kagome Heisenberg model [16] can be tackled
with perturbation theory.
The necessity of a perturbative starting point is not only a drawback but also helps in giving
a clear picture of the physical problem at hand. To analyse quantum phase diagrams one
usually investigates how the phase present at λ = 0 breaks down by applying extrapolation
techniques to high-order series expansions of relevant energies or observables. The accuracy
of those increases with higher orders of perturbation available. This shows that the efficiency
of the method used to derive the perturbative expansion is crucial.
A common approach to calculate quantities perturbatively on a lattice is to do a graph decom-
position. Instead of a large cluster the calculations are performed on many small ones, which
decreases memory requirements and is easily parallelized. The calculated values of a quantity
M on the subgraphs of the lattice are then multiplied with embedding factors to obtain the
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value of M up to a given order on the whole lattice making use of the inclusion-exclusion
principle. If for two disconnected parts A and B of the lattice the operator M(A ∪ B) is the
direct sum

M(A ∪B) = M(A)⊕M(B), (3)

the graph expansion can be restricted to connected subgraphs of the lattice. An operator
M that fulfils property (3) is called additive. However, not every transformation yields an
effective Hamiltonian that allows a decomposition of the form (3). In particular, there is an
efficient block-diagonalisation method, that only makes use of the projectors of eigenspaces of
H0 and H and is known under different names, for example as Takahashi’s transformation,
Schrieffer-Wolff transformation, des Cloiseaux effective Hamiltonian, canonical van Vleck ef-
fective Hamiltonian or two-block orthogonalization method [3, 17–20], which in general does
not allow to perform calculations on linked subgraphs of the lattice only. This is unfortu-
nate since this transformation can be efficiently calculated using matrix-vector multiplications
only [3].
Non-perturbative linked-cluster expansions (NLCEs) follow the same principles as perturba-
tive expansions but use non-perturbative cluster results, which are in many cases just the
exact results of the finite cluster. They were first introduced in [21] and were often used for
thermodynamic quantities [22] or ground-state expectation values [23]. For non-perturbative
expansions it is even more important that the expansion can be performed on linked clusters
only. Otherwise finding a hierarchy to truncate the expansion is difficult. For excited states
linked-cluster expansions were performed with flow-equations in an approach called graph-
based continuous unitary transformations (gCUT) [24]. Another expansion, but only relying
on the eigenvectors and energies of the block of interest, is the contractor renormalization
group method (CORE) [25]. In contrast to gCUT, it does not fulfil the linked-cluster prop-
erty in general. However, a great advantage is its efficiency only relying on the low-energy
eigenstates that can be calculated with numerical routines such as the Lanczos algorithm.
The CORE method is similar to the projective transformation mentioned above but is not as
efficient in the perturbative regime in the sense that it needs more clusters to converge to a
given order of perturbation.
In this paper we will introduce an optimal transformation: It shares the efficiency of the
projective method, can also be applied non-perturbatively using the exact lowest eigenvectors
and energies, but also allows for a cluster expansions with linked clusters only. We do this
by extending the projective transformation for an eigenspace adiabatically connected to en0 ,
where en0 denotes the energy of the degenerate subspaces of H0, to incorporate eigenstates
adiabatically connected to blocks m with em0 < en0 and not only those of en0 . Before describing
the important changes to the transformation we review other approaches to construct a gen-
uine linked-cluster transformation and inform about different equivalent formulations of the
classical projective transformation in Sec. 2. Then we exemplify the roots of the linked-cluster
violation of the projective transformation with a simple toy model. In Sec. 3 we show how these
problems can be cured for multi-particle excitations in general and also give a general form
of the transformation in terms of projection operators. As an application, in Sec. 4 we apply
the method to the low-field expansion of the TFIM on the square lattice, both perturbatively
and non-perturbatively. We conclude our work in Sec. 5.
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2 Block-diagonalisation methods

In this section, we first define what block-diagonal form we want to achieve with block-
diagonalisation methods and fix basic notation. Then we review existing cluster-additive
block-diagonalisation methods and the projective minimal transformation.

2.1 Block-diagonalised form and cluster-additivity

The Hilbert space H of finite dimension N can be written as the direct sum of the eigenspaces
H n

0 of the operator H0:

H =
N⊕
n=0

H n
0 (4)

As H0 is assumed to have block diagonal form we have

H0 =
N⊕
n=0

Hn0 , (5)

where the ordering of eigenvalues of the eigenspaces is em0 ≤ en0 for m ≤ n. In more explicit
form the parts Hn0 fulfil

H0 v =

(
N⊕
n=0

Hn0

)
v =

(
N⊕
n=0

Hn0 v0,n

)
(6)

for v =
∑N

n=0 v0,n and v0,n ∈ H n
0 . For a block-diagonalising unitary transformation T and

the corresponding effective Hamiltonian Heff = T †HT , unitarity implies

H =
N⊕
n=0

H n
eff =

N⊕
n=0

TH n
0 (7)

as well as Heff to be block-diagonal so that it can be written as

Heff =

N⊕
n=0

Hneff , (8)

i.e.

Heff v =

(
N⊕
n=0

Hneff

)
v =

(
N⊕
n=0

Hneff vn

)
(9)

for v =
∑N

n=0 vn and vn ∈H n
eff .

After having defined the block-diagonalised form of the effective Hamiltonian (8) resulting
from a unitary transformation T , we next introduce the concept of cluster-additivity for such
transformations. Historically, first linked-cluster expansions for perturbative ground-state en-
ergy calculations were performed in 1955 [26] and applied to calculate zero-temperature ground
state properties in high orders later in the 1980s using Nickel’s cluster expansion method from
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unpublished work [21,27]. The transformation used to calculate ground-state properties is not
important since the ground-state additivity

e0(A ∪B) = e0(A) + e0(B) (10)

is always fulfilled for disconnected clusters A and B assuming a non-degenerate ground-state
subspace. With Nickel’s cluster expansion method even excitation gaps could be calculated [4]
by grouping terms in orders of the number of sites of the lattice, although a restriction to
linked clusters was not sufficient for that. Still, these calculations were more efficient than
calculations on linked-clusters using a cluster-additive transformation [28] due to the higher
efficiency of the method. The proper formalism to derive the right cluster-additive part of the
effective one-particle Hamiltonian was written down in 1996 by Gelfand [29]. A more extensive
review can be found in [30]. The decisive point was to not do a linked-cluster expansion for
the effective Hamiltonian in the one-particle space H1

eff but to the effective Hamiltonian minus
the ground-state energy:

H̄1
eff |1(A ∪B) ≡ H1

eff(A ∪B)− e0(A ∪B) = H̄1
eff |1(A)⊕ H̄1

eff |1(B) (11)

This was generalized to a proper cluster expansion for two particles around 2000 [2,7,31] and
was further generalized to multi-particle excitations in 2003 [32]. They introduced the notion
of cluster additivity: An effective cluster additive Hamiltonian takes the form

Heff(A ∪B) = Heff(A)⊗ 1B + 1A ⊗Heff(B) (12)

on disconnected parts A and B of the lattice. We stress that this form is different to the
direct sum in Eq. (3). However, if the effective Hamiltonian takes the cluster-additive form
of Eq. (12), it can be decomposed into additive parts and a linked-cluster expansion can be
performed. These additive parts, denoted by H̄neff , are inductively defined by

H0
eff = H̄0

eff

H1
eff = H̄0

eff |1 + H̄1
eff |1

...

HNeff =

N∑
n=0

H̄neff |N .

(13)

The first two equations are precisely what was described by Gelfand [29]. To understand the
action of H̄meff |n on a state one has to expand the state in the position basis. Then, for each
position basis state, one finds all product state decompositions into two position basis states.
H̄meff |n then acts with an identity on the one part of the product state having energy en0 − em0
in H0, and with H̄meff |m on the other part.

2.2 Cluster-additive block diagonalisation methods

The subtractions of Eq. (13) are necessary to perform linked-cluster expansions but not suf-
ficient. For degenerate subspaces of H0 the transformation used is not uniquely determined
and the cluster-additivity property of (12) is not necessarily given. There are two prominent
approaches to construct cluster-additive effective Hamiltonians. Both make use of the linking
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structure of the commutator.
The first one are continuous unitary transformations (CUTs), which are defined by the flow
equations

[η,H] = ∂lH (14)

with η(l) the anti-Hermitian generator of the transformation. In physics they were introduced
1993 by Wegner [33] and Glazek and Wilson [34] with the double-bracket flow, which was
known in mathematics already in 1988 [35]. To use flow equations to study eigenvalue problems
was already proposed by Rutishauser in 1954 with an infinitesimal version of the QR algorithm
[36]. The Toda flow is another famous flow known from the study of the Toda lattice in
statistical mechanics [37]. Its relation to a matrix flow for tridiagonal matrices was understood
by Flachka and Moser in 1974 and 1975 [38, 39]. This flow was generalized and applied to
banded matrices by Mielke 1998 [40]. Stein was one of the first to solve continuous unitary
transformations of that flow perturbatively in 1997 [41] and the flow was generalized further by
Knetter and Uhrig in 2000, where they introduced the quasi-particle generator ηQP [1]. They
obtained a general perturbative solution for this flow equation under the special condition
of equidistant spectrum of H0 and called it perturbative continuous unitary transformations
(pCUT). In an eigenbasis of H0 the quasi-particle generator ηQP can be defined as

ηQP,i,j(l) = sgn(H0,i,i −H0,j,j)Hi,j(l). (15)

By stating H(0) is linked we define what processes are considered as linked. The off-diagonal
parts of H(0) are assumed to be local operators. Two local operators commute when they act
on disconnected parts of the lattice. As ηQP(0) decouples all blocks of H(0), it is also linked
and can be written as a sum of local operators. Then by definition of the flow equation (14),
the cluster-additivity property is ensured during the flow as the commutator vanishes for local
operators acting on disconnected clusters.
The second genuinely linked-cluster transformation is the multi-block orthogonalization method
(MBOT) [2, 7]. A similar construction can also be found in [42]. As the name indicates, also
here it is crucial that all blocks of the Hamiltonian are decoupled. This transformation is
constructed with the matrix exponential and a global generator S, i.e. T = exp(−S). It
makes use of the connection between Lie algebra and matrix exponential as well as the linked
structure established by the commutator expansion

exp(S)H exp(−S) =

∞∑
n=0

[(S)n,H]

n!
, where [(S)n,H] ≡ [S, . . . [S, [S︸ ︷︷ ︸

n times

,H]] . . . ]. (16)

It is constructed order by order demanding that up to a given order all off-diagonal elements
between different blocks of Heff vanish. As the first order part of X has to decouple all
blocks, it can be written as a sum of local operators. From the form of (16) it is then ensured
that the transformation is linked cluster in the next order if S contains only linked-terms
in all previous orders. For the sake of completeness we mention that in [42] also a local
transformation constructed order by order as

T = exp(−λS1) · . . . · exp(−λnSn) (17)

is introduced.
Both pCUT and MBOT can be constructed order by order in a model-independent form
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for Hamiltonians with equidistant H0. There is also a model-dependent method to use ηQP

perturbatively (epCUT) and non-perturbatively (deepCUT) [43] for H0 with non-equidistant
spectrum directly in the thermodynamic limit. Also, recently an extension of the pCUT
approach to multiple quasiparticle types as well as non-Hermitian Hamiltonians and open
systems was introduced under the name pcst++ [44]. It should also be possible to write down
model-independent perturbative expressions for MBOT andH0 with non-equidistant spectrum
similarly as in the Schrieffer-Wolff expansion of the minimal transformation but now using
projectors on all eigenspaces of H0. Unfortunately, it is hard to transfer the MBOT method to
non-perturbative exact calculations on finite graphs since it is difficult to find a transformation
that sets all block-diagonal parts of S to zero while block-diagonalising the Hamiltonian. Also
how to efficiently truncate the basis states for MBOT is not clear non-perturbatively. In
contrast, the application of flow equations using ηQP to non-perturbative problems on finite
systems is straightforward and was used in the gCUT approach [24]. With regards to basis
truncations it is important to realize that one can use a modified version of the generator ηQP

ηnQP,i,j(l) =
(
1−Θ(H0,i,i − en+1

0 ) Θ(H0,j,j − en+1
0 )

)
sgn(H0,i,i −H0,j,j)Hi,j(l) (18)

and still obtain the same effective Hamiltonian in the blocks m ≤ n [45]. To see this we
introduce the set of indices in the n-particle block sn. Then we note that the special form of
ηQP leaves the flow in lower subspaces m ≤ n invariant under unitary transformations of the
higher subspaces m > n as can be seen by∑

k

Hi,k(l)Hk,j(l) =
∑
k

(HUi,k)(l)(U †H(l))k,j (19)

with i, j in the subspaces
⋃
m≤n sm and k in the higher-energy spaces

⋃
m>n sm and U a

unitary matrix acting on the states k. As a consequence, one can efficiently truncate the basis
states using the Krylov subspace of

⊕n
m=0 H m

0 when targeting the subspace n of Heff with the
quasi-particle generator because states of higher orders of the Krylov subspace only contribute
at larger times l of the flow. This efficient way of truncating is a big advantage of the special
form of ηQP and distinguishes this generator. With this we conclude the discussion of existing
cluster-additive block-diagonalisation methods.

2.3 Projective block-diagonalisation method

Another type of transformation is the projective transformation T constructed of the eigen-
states and energies of the block n of interest. This transformation can be given in an order-
independent form, needs minimal information to be constructed, has minimal norm ‖1 − T‖
and in many situations can be implemented numerically more efficiently than the previous
transformations because only matrix-vector multiplications are needed and for most cases
obtaining energies and eigenstates with Krylov-based algorithms is faster than solving differ-
ential equations. Unfortunately, it only allows for a linked-cluster expansion of excitations
under special circumstances.
The projective transformation is constructed by projectors Pn on the eigenspaces of H0 and
projectors P̄n on the adiabatically connected eigenspaces of Heff . Projectors are idempotent
operators, i.e. P 2

n = Pn and P̄ 2
n = P̄n. For v ∈H

Pn v ∈H n
0 (20)

7
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and
P̄n v ∈H n

eff . (21)

Further, from the orthogonality of the subspaces the resolution of identity

1 =
∑
n

Pn =
∑
n

P̄n (22)

follows. A good educational introduction to perturbation theory described in the framework
of projection operators is given in [46].
We first state the form of the projective transformation introduced by Takahashi [18]:

T =
∑
n

Tn (23)

Tn = P̄nPn

(∑
m

PmP̄mPm

)−1/2

(24)

He further used a result of Kato [47] for the perturbative form of the projector P̄n

P̄n = Pn −
∞∑
s=1

∑
k1+···+ks+1=s, ki≤0

Sk1n V S
k2
n V . . . V S

ks+1
n , (25)

where S0
n ≡ −Pn, Skn ≡

(
1−Pn
en0−H0

)k
and realized that Pn

(∑
m PmP̄mPm

)−1/2
Pn can be

expanded similarly using Kato’s expression. Note that while PnP̄nPn can not be inverted its
restriction to the subspace H n

0 can. The local expressibility of the transformation is important
as it shows that the transformation has no contributions on subgraphs of the lattice with a
larger number of bonds than the perturbation order. The transformation T is symmetric in
the diagonal blocks as can be seen by

PnTPn = PnTnPn = PnP̄nPn

(∑
m

PmP̄mPm

)−1/2

Pn = Pn

(∑
m

PmP̄mPm

)1/2

Pn (26)

and

PnT
†Pn = PnT

†
nPn = Pn

(∑
m

PmP̄mPm

)−1/2

PnP̄nPn = Pn

(∑
m

PmP̄mPm

)1/2

Pn. (27)

This shows equivalence of the perturbative expansion of T with the two-block orthogonaliza-
tion method (TBOT) [3] as for TBOT in [3] it was shown that any perturbative transformation
that decouples two blocks of the Hamiltonian is uniquely determined by demanding symmetric
diagonal blocks.
The projective transformation can also be written in the form of a Schrieffer-Wolff trans-
formation TSW = exp(−SSW) that decouples block n from the rest. We understand as a
Schrieffer-Wolff transformation TSW any transformation with a particular anti-block-diagonal
form of SSW. Introducing

R =
∑

m,m 6=n
Pm (28)

8
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it can be written as

TSW =
(
P̄nPn + R̄R

) (
PnP̄nPn +RR̄R

)−1/2
= exp(−SSW), (29)

where SSW takes the form

SSW =

(
0 SSW,n,R

−S†SW,n,R 0

)
. (30)

That SSW has to take such a form follows at least perturbatively from the uniqueness of SSW,
the symmetry of TSW in its diagonal blocks, and the fact that an exponential of an anti-
block diagonal SSW as in Eq. (30) yields a transformation that is symmetric in the diagonal
blocks. In [19] the transformation is constructed perturbatively by an SSW of that form and
it is called canonical form of van Vleck perturbation theory. A review of the Schrieffer-Wolff
transformation also constructs the transformation order by order this way [48], while also
giving a very convenient form of the transformation as direct rotation

TSW =
√

(P̄n − R̄)(Pn −R) (31)

between Pn and P̄n, i.e.
T †SWP̄nTSW = Pn. (32)

The equivalence between (29) and (31) is most easily seen by comparing(
P̄nPn + R̄R

)2
= P̄nPnP̄nPn + R̄RR̄R+ P̄nPnR̄R+ R̄RP̄nPn (33)

and

(P̄n − R̄)(Pn −R)
(
PnP̄nPn +RR̄R

)
= P̄nPnP̄nPn + R̄RR̄R− P̄nRR̄R− R̄PnP̄nPn. (34)

The expressions are identical since 1 = Pn + R and P̄nR̄ = 0. In [48] the transformation is
constructed perturbatively order by order using the form of the matrix exponential Eq. (30).
This is not necessary as Takahashi’s form of the transformation for the effective low-energy
block is exactly identical and can be written down non-inductively. Another unique property
of TSW is that it has minimal norm ‖1−TSW‖ of all possible transformations that decouple the
block n from the rest [48, 49]. In contrast to the MBOT transformation, the global generator
only is anti-block-diagonal with respect to two blocks and because of that has non-local anti-
block-diagonal terms in general.
At last we state the form of the transformation given in [20]. It is very similar to Takahashi’s
form but given in terms of eigenvectors instead of projectors. This form will be particularly
useful for the construction of the cluster-additive projective transformation in Sec. 3. The
eigenvectors and energies X0 and D0 of H0 and X and D of H fulfil

HX0 = X0D0 (35)

and
HX = XD. (36)

Projection operators and eigenvectors are related by

Pn,i,j =
∑
k∈sn

X0,i,kX
†
0,k,j (37)
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and
P̄n,i,j =

∑
k∈sn

Xi,kX
†
k,j , (38)

where the ordering of basis states and energies is such that X0,i,j is only non-zero for i, j ∈ sn.
Here we remind that the set of indices in the n-particle block is denoted by sn. Introducing

XPn ≡ PnXPn (39)

one can then write the transformation as

Tn,i,j =
∑
k

Xi,k

XPn †

(∑
m

XPm XPm †

)−1/2

k,j

(40)

with k ∈ sn. In [20] it was proved that this transformation has minimal norm ‖1 − T‖,
which shows that also when one wants to decouple all blocks and not just two as in TSW this
is the transformation with minimal norm. The MBOT method, which is a Schrieffer-Wolff
transformation of local anti-block-diagonal operators, is different and consequently does not
have minimal norm. Hence, only when one decouples two blocks an anti-block-diagonal SSW

leads to a transformation with minimal norm ‖1− TSW‖.
For the effective Hamiltonian in the desired block n only the part XPn XPn † contributes. By
denoting the restriction of XPn to the basis states sn with XPn

sn the part of the transformation
that creates the effective Hamiltonian in block n can be written as

Tn,i,sn =
∑
k∈sn

Xi,k

(
XPn †
sn

(
XPn
sn XPn †

sn

)−1/2
)
k, sn

. (41)

As these are the only basis states for which XPn has non-zero matrix elements this re-
stricts the transformation to the relevant part for each block and can help making consid-
erations easier. In particular, for two disconnected clusters A and B and transformations
Tl,A in A and Tk,B in B and a transformation Tn,sl⊗sk on A ∪ B in the subspace n, where
en0 − e0

0 = (el0 − e0
0) + (ek0 − e0

0), that projects only on the states sl ⊗ sk (but only on this, not
on the whole block n on A ∪B) one finds

Heff,sl⊗sk(A ∪B) = Heff,sl(A)⊗ 1B + 1A ⊗Heff,sk(B) (42)

as ∑
i,j

X†sl⊗sk,iHi,jXj,sl⊗sk = Dsl(A)⊗ 1B + 1A ⊗Dsk(B) (43)

and(
XPn †
sl⊗sk

(
XPn
sl⊗skX

Pn †
sl⊗sk

)−1/2
)

=

(
XPl †
sl

(
XPl
sl
XPl †
sl

)−1/2
)
⊗
(
XPk †
sk

(
XPk
sk

XPk †
sk

)−1/2
)
.

(44)
This was also shown in [48] and shows that the effective Hamiltonian of the projective trans-
formation allows to perform a linked-cluster decomposition for degenerate ground states. For
excitations it is not helpful since one can not separate excitations in A∪B with one excitation
in A and ground state in B from ground state in A and one excitation in B. The problems
caused by this will become obvious in the next subsection, where we show the failure of a
linked-cluster expansion for spin-flip excitations in a simple toy model.
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2.4 Failure of linked-cluster expansion for excited states with projective
method

Gelfand realized that a linked-cluster expansion for elementary excitations is possible with
non-cluster additive transformations as long as the elementary excitations have a different
quantum number than the ground state [29]. To show the failure of a linked-cluster expansion
for the minimal transformation we therefore consider a high-field expansion of the Hamiltonian
given as the sum of the transverse-field Ising chain, where this is given, and a parity breaking
term σz,νσx,ν+1:

H =
∑
ν

σzν +
∑
ν

(
λσxνσ

x
ν+1 + µ

(
σzνσ

x
ν+1 + σxνσ

z
ν+1

))
(45)

The Pauli matrices σx/zν describe spins-1/2 on site ν. For µ 6= 0 ground state and spin-flip
excitations are coupled to each other. Now we consider two disconnected clusters A and B.
The Hamiltonian on A ∪B can be written as

H = HA +HB, (46)

where
[HA,HB] = 0 (47)

holds. Consequently the eigenfunctions of HA∪B take the form

|Ψ〉A∪B = |Ψ〉A ⊗ |Ψ〉B (48)

and have an energy

H |Ψ〉 = (HA |Ψ〉A)⊗ |Ψ〉B + |Ψ〉A ⊗ (HA |Ψ〉B) = (eA + eB) |Ψ〉 . (49)

For spin-flip excitations on A ∪B it follows that they are either build of a ground state on A
and a spin-flip excitation on B or vice versa:

|Ψ〉1, A∪B = |Ψ〉1, A ⊗ |Ψ〉0, B ∨ |Ψ〉1, A∪B = |Ψ〉0, A ⊗ |Ψ〉1, B (50)

For the case µ = 0 where the parity is not broken, P0 |Ψ〉1 = 0. Then XP1
s1 is block-diagonal

in the A- and B-blocks

XP1
s1 =

(
XP1
s1,A

XP0
s0,B

0

0 XP1
s1,B

XP0
s0,A

)
(51)

and additivity of H̄1
eff is given

T †1HT1 − e0(A ∪B) = H̄1
eff(A ∪B) = H̄1

eff(A)⊕ H̄1
eff(B). (52)

This is not the case when µ 6= 0. Then P0 |Ψ〉1 6= 0 and XP1
s1 is not block-diagonal in the A-

and B-blocks any more

XP1
s1 =

XP1
s1,A

XP0
s0,B

XP0
s1,A

XP1
s0,B

XP0
s1,B

XP1
s0,A

XP1
s1,B

XP0
s0,A

 . (53)
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Consequently, additivity of H̄1
eff

T †1HT1 − e0(A ∪B) = H̄1
eff(A ∪B) 6= H̄1

eff(A)⊕ H̄1
eff(B). (54)

is not given any more. If one performs calculations for the model with µ = 1 one finds
these non-linked terms in order four. Particles can then hop between disconnected clusters
as illustrated in Fig. 1, which is never allowed in a linked-cluster expansion. The crucial
step for the construction of a cluster additive projective transformation is to modify XP1

s1 to
restore block-diagonal form for the general case µ 6= 0 and to eliminate these hopping elements
between disconnected clusters.

Figure 1: The figure depicts a hopping process of one particle (yellow ball) between
two disconnected clusters. For the Hamiltonian (45) such hopping elements are
seen in the effective one-particle Hamiltonian in order four of perturbation. These
processes are a manifestation of the violation of cluster-additivity of the minimal
projective transformation.

3 Projective cluster-additive transformation

In the last section we reviewed the minimal projective transformation and showed an example
where the failure of linked-cluster expansion for excited states was shown. In particular,
the problem could be seen in the non-block diagonal form of XP1

s1 in (53). It is the major
achievement of this paper to introduce the projective cluster-additive transformation T pca

which cures this problem.

3.1 Cluster-additivity for single particle states

It is necessary to modify XP1
s1 to X̃P1

s1 to obtain a cluster-additive transformation for single-
particle states. To achieve this we modify the eigenstates of H. For ground-state energies
additivity is always given and consequently the ground state |Ψ〉0 is not modified:

|Ψ̃〉0 = |Ψ〉0 (55)

For single-particle eigenstates |Ψ〉1 we modify in the following way,

|Ψ̃〉1 = |Ψ〉1 − (1/〈0|Ψ0〉) 〈0|Ψ1〉 |Ψ〉0 , (56)

where |0〉 denotes the unperturbed ground state. Note that in general the states |Ψ̃〉1 as well
as |Ψ̃〉0 and |Ψ̃〉1 are not orthogonal and normalized any more. The ground-state subtraction
of |Ψ〉0 in |Ψ̃〉1 leads to

P0 |Ψ̃〉1 = 0. (57)

12
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As long as 〈0|Ψ0〉 6= 0 this subtraction is unique. Recalling the form (50) of a single-particle
eigenstate on two disconnected clusters A ∪B we find

|Ψ̃〉1, A∪B = |Ψ̃〉1, A ⊗ |Ψ̃〉0, B . (58)

X̃P1
s1 then takes the form

X̃P1
s1 =

(
X̃P1
s1,A

X̃P0
s0,B

0

0 X̃P1
s1,B

X̃P0
s0,A

)
(59)

because X̃P0
s1,A

= X̃P0
s1,B

= 0. The linked-cluster transformation of the single-particle block can
now be conveniently written as

T pca
1,i,s1

=
∑
k∈s1

Xi,k

(
X̃P1 †
s1

(
X̃P1
s1 X̃P1 †

s1

)−1/2
)
k,s1

. (60)

Particularly important is the part

T pca
1,s1,s1

=

(
X̃P1 †
s1

(
X̃P1
s1 X̃P1 †

s1

)−1/2
)
s1,s1

(61)

since its form determines the matrix elements of Hneff . As we have already seen, this part is
block-diagonal

T pca
1,A∪B = T pca

1,A ⊕ T
pca

1,B . (62)

The other part of the transformation just yields a diagonal matrix∑
i,j

X†s1,iHi,jXj,s1
= DA ⊕DB. (63)

Combining the direct sum of eigenvalues on A ∪B

DA ⊕DB − e0(A ∪B) = e1
A ⊕ e1

B (64)

with the form of T pca
1 in Eq. (62) one obtains additivity of H̄1

eff :∑
r,k

T pca,†
1,s1,r
Hr,kT pca

1,k,s1
− e0(A ∪B) = H̄1

eff(A ∪B) = H̄1
eff(A)⊕ H̄1

eff(B) (65)

For one-particle excitations we now already have constructed the right transformation. The
more general case of multi-particle excitations will be discussed in the next subsection.

3.2 Cluster-additivity for multi-particle excitations

As mentioned before, the cluster additivity of the effective Hamiltonian implies that we can
construct additive irreducible operators in every block of interest of the effective Hamiltonian.
To show cluster-additivity for multi-particle excitations we again make use of the tensor prod-
uct structure of eigenstates on A ∪ B with A and B not connected for n-particle states |Ψ〉n
with energy ea0, A + eb0, B = en0, A∪B of H0:

|Ψ〉n,A∪B = |Ψ〉a,A ⊗ |Ψ〉b, B . (66)

13
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What changes compared to single-particle excitations is the transformation of eigenstates
|Ψ〉 → |Ψ̃〉 for the construction of the transformation. For a state with energy en0 we demand
that the projection on eigenstates of H0 with em0 < en0 is zero, i.e. for

R =
∑

m,m<n

Pm (67)

we need to have
R |Ψ̃〉n = 0. (68)

This has to be achieved by subtracting lower-energy eigenstates of |Ψ̃〉n. As long as

Yn−1 = Xi,j , i, j ∈ ∪m<nsm , (69)

is invertible the construction is always possible and unique. Assuming non-singular Yn−1, the
transformed states |Ψ̃〉n are defined as

|Ψ̃〉n = |Ψ〉n −
∑
m<n

[
Y −1
n−1 (R |Ψ〉n)

]
m
|Ψ〉m . (70)

The singular values of Yn−1 are the square roots of the eigenvalues of

Wn−1 =
∑
m<n

Pm
∑
m<n

P̄m
∑
m<n

Pm. (71)

As we discuss later in the context of NLCEs (see Subsec. 4.2), particle-decay highly influences
the convergence properties of the expansion. For particle-decay of n-particle states it is impor-
tant to investigate the behaviour of Wn and not of Wn−1. The reason is that particle-decay of
the n-particle states would show up as a problem in the construction of m-particle states with
m > n. When the smallest eigenvalue of Wn drops to almost zero sharply, this is a hallmark
of particle-decay. The transformation from |Ψ〉n to |Ψ̃〉n can be visualized as

P0 |Ψ〉n
...

Pn |Ψ〉n
...

PN |Ψ〉n

→


0
...

Pn |Ψ̃〉n
...

PN |Ψ̃〉n

 . (72)

Since this subtraction is unique for non-singular YN−1 in Eq. (69), it follows

|Ψ̃〉n,A∪B = |Ψ̃〉a,A ⊗ |Ψ̃〉b, B . (73)

Eq. (73) is at the heart of the cluster-additivity of the transformation. It follows

X̃Pn
sa⊗sb = X̃Pa

sa, A
⊗ X̃Pb

sb, B
(74)

and with that for the transformation

X̃Pn †
sa⊗sb

(
X̃Pn
sa⊗sbX̃

Pn †
sa⊗sb

)−1/2
= X̃Pa †

sa, A

(
X̃Pa

sa, A
X̃Pa †
sa, A

)−1/2
⊗ X̃Pb †

sb, B

(
X̃Pb
sb, B

X̃Pb †
sb, B

)−1/2
. (75)
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Then with ∑
i,j

X†sa⊗sb,iHi,jXj,sa⊗sb = Dsa, A ⊗ 1B + 1A ⊗Dsb, B (76)

cluster-additivity of the transformation is a consequence of

A† (Dsa, A ⊗ 1B + 1A ⊗Dsb, B)A = Haeff(A)⊗ 1B + 1A ⊗Hbeff(B), (77)

where A =

(
X̃Pn †
sa⊗sb

(
X̃Pn
sa⊗sbX̃

Pn †
sa⊗sb

)−1/2
)
. The transformation as a whole acting on all

particle blocks can also be written down and is given as

T pca = X

(∑
m

X̃Pm

)†(∑
m

X̃Pm

) (∑
m

X̃Pm

)†−1/2

. (78)

with X̃Pn = PnX̃Pn.

3.3 Explicit form of transformation in terms of projection operators

It is important to have the transformation also explicitly given in terms of projection opera-
tors as this allows for a local expression of the transformation using Kato’s formula Eq.(25)
and implies that reduced graph contributions are zero for graphs with more bonds than the
perturbation order. For the explicit form we first define

R̄n ≡

(∑
m

RmR̄mRm

)−1

R̄n (79)

with
Rn ≡

∑
m<n

Pm. (80)

The transformation then takes the form

T pca =

(∑
m

(
P̄m − P̄mR̄m

)
Pm

)(∑
m

Pm

((
P̄m − P̄mR̄m

)† (
P̄m − P̄mR̄m

))
Pm

)−1/2

.

(81)
To proof the equivalence of (78) and (81) we need to find a way to express XPn(X̃† −X†) in
terms of projection operators. We first note that the conditions

Pn(X̃† −X†)Rn = −PnX†Rn

(subtractions of lower-energy states yield RnX̃Pn = 0) and

Pn(X̃† −X†)R̄n = Pn

(
X̃† −X†

)
(only states with lower energy than in block n are subtracted) determine Pn(X̃†−X†) uniquely.
We need to show that both these conditions are also fulfilled for −PnX†R̄n to show that
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−P̄nR̄n = XPn

(
X̃† −X†

)
. The latter condition is obviously fulfilled by the construction of

Eq. (79). For the first condition we note that

PnX
†R̄nRn = PnX

†

(∑
m

RmR̄mRm

)−1

RnR̄nRn = PnX
†Rn. (82)

This proves the equivalence of Eq. (78) and Eq. (81) and establishes the form of the transfor-
mation in terms of projection operators only. It is important to have shown this equivalence
since perturbatively it follows that one can expand the transformation in local terms using
Kato’s formula.

4 Low-field expansion for transverse-field Ising model on square
lattice

As an application we investigate the ferromagnetic transverse-field Ising model on the square
lattice in the lwo-field ordered phase. The Hamiltonian of this paradigmatic model can be
written down with Pauli matrices and takes the form

H = −1

4

∑
〈ν,ν′〉

σz,ν σz,ν′ + h
∑
ν

σx,ν = H0 + hV, (83)

with
H0 = −1

4

∑
〈ν,ν′〉

σz,ν σz,ν′ (84)

and
V =

∑
ν

σx,ν . (85)

The Hamiltonian commutes with the spin-flip transformation
∏
ν σx,ν . In the ordered phase

this Z2 symmetry is broken and the model undergoes a second-order phase transition in the
3d Ising universality class towards the disordered high-field phase when h is increased. Good
estimates of the critical point were obtained using high-field series expansions and quantum
Monte Carlo simulations and yielded hc ≈ 0.7610 [4,50]. Best estimates of the critical exponent
can be obtained using the conformal bootstrap method and quantum Monte Carlo simulations
[51,52]. The first two digits of the correlation length exponent are given as ν = 0.63. On finite
systems the parity symmetry is not broken. In order to perform linked-cluster expansions one
therefore goes into a dual picture that is isospectral to the original one in the infinite system
but has a unique polarized ground state for h = 0. As in [28] we define new pseudo-spin-1/2
degrees of freedom and new Pauli matrices

σ̃z,β = σ̃z,〈ν,ν′〉 = σz,ν σz,ν′ (86)

that takes the eigenvalues ±1 of the Ising interaction on every bond 〈ν, ν ′〉. This means that
the degrees of freedom are located on the bonds and not on the sites any more. The dual
Hamiltonian in this basis can be decomposed into an unperturbed and perturbed part in the
following way:

H̃ = H̃0 + hṼ (87)
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with
H̃0 = −1

4

∑
β

σ̃z,β (88)

and
Ṽ =

∑
s

Ãs, (89)

where the plaquette operator Ã takes the form

Ãs =
∏

β∈s(ν)

σ̃x,β. (90)

The index β runs over the four bonds s(ν) that are connected to the site ν in the original
degrees of freedom.
In this section we are going to employ our transformation T pca to the low-field phase of the
model and derive series and NLCE results for the spin-flip and bound-state excitation gap
in this model. Bound states arise in this model because flipping two adjacent spins in the
ground state yields a state with lower energy in H0 than flipping two spins further apart. We
analyse the series results in the next subsection 4.1 and further calculate the same quantities
non-perturbatively in subsection 4.2.

4.1 Perturbative results for single spin flip and bound states

Perturbative low-field expansion were most efficiently performed with a transformation of same
complexity as the minimal transformation [5]. Even though this calculation was done on a
large number of also non-linked graphs - since it did not allow for a linked-cluster expansion
of excitations because of couplings between ground state and excitations - it reached much
higher orders than a calculation on only linked-clusters with the pCUT method [28]. Our
approach is thus ideal having same complexity as the minimal transformation but allowing for
a linked-cluster expansion.
We calculated graph embeddings on the square lattice using a hypergraph expansion [53] and
obtained the embedding factors for all graphs with up to 13 sites in the original lattice. The
elementary excitation in the low-field phase is a spin-flip. Next higher excitations are bound
states adiabatically connected to two spin flips on adjacent spins. We calculated the spin-flip
gap up to order 24 extending the results of [5] by 4 orders and the bound-state gap up to order
22 extending the results of [28] by 10 orders. It is possible to reach such high orders with
graphs of only up to 13 sites since in the low-field expansion of excitations with a spin-flips
on a graph with N sites the minimal order for a reduced graph contribution is 2(N − a). This
property is also called strong-double-touch. We checked that both series agree with the known
results of [5, 28].
As for our method it is only important to obtain the eigenspaces and energies of the excitation
of interest and those of all excitations with lower energy, we used one of the most efficient
methods for calculating eigenspaces and energies perturbatively, which is the two-block orthog-
onalization method (TBOT) form of the minimal transformation. A description of TBOT is
given in [3]. With the information obtained this way we then construct the cluster-additive
projective transformation to perform the linked-cluster expansion for both the spin-flip and
bound-state gap. Almost all resources are needed for the TBOT calculation. Hence, we are as
efficient as TBOT but only need to consider linked-clusters making the method very efficient.

17



SciPost Physics Submission

We denote the series for the zero momentum single spin-flip gap by ∆ and the one for the zero
momentum bound-state gap by ∆bs. They read respectively

∆ = 2− 3h2 + 3.5833h4 − 23.140h6 + 133.22h8 − 849.05h10 + 5738.0h12

− 40573h14 + 29615 · 10h16 − 22157 · 102 h18 + 16906 · 103 h20

− 13105 · 104 h22 + 10292 · 105 h24

(91)

and

∆bs = 3− 22.916h4 − 13.334h6 + 263.64h8 + 5213.1h10 − 7214.0h12 − 31023 · 10h14

− 24296 · 102 h16 + 19814 · 103 h16 + 30204 · 104 h20 + 57170 · 104 h22.
(92)

Note that we displayed the first five digits of the coefficients and did not round to the last
digit. This accuracy can be guaranteed, while for more digits calculations would have needed
to be performed with higher accuracy than double precision.
To analyse the behaviour of these series we used Padé and DLog-Padé extrapolations. A good
and extensive review about extrapolation techniques in general and especially these two is [54].
Padé approximations are a well established tool to enhance the convergence of a perturbative
series and DLog-Padé extrapolations in particular mimic the algebraic behaviour of critical
quantities in the vicinity of a quantum phase transition.
The series ∆ of the gap is consistently alternating up to high orders. Many DLog-Padé extrap-
olations of ∆ break down because of spurious poles. To estimate the reliability of DLog-Padé
extrapolations it is helpful to study the convergence behaviour of the DLog-Padé families of
order [n, n + d] with d fixed. We found that only the families with d = ±2 show converging
behaviour and that the family d = 2 looks better converged. The critical point of the extrap-
olation of the highest order, i.e. the [10, 12] DLog-Padé extrapolant, yields a critical point of
hc = 0.762 and a critical exponent of ν = 0.649.
An extrapolation analysis of ∆bs is in principle also reasonable as the bound-state mode
is stable and expected to close with the same critical exponent as the spin-flip gap, i.e.
ν(∆) = ν(∆bs). Indeed, there are field theoretic calculations of Caselle et al. [55,56] predicting
∆bs/∆|h=hc ≈ 1.8. This quantity was also calculated with exact diagonalisation yielding a
value of 1.84(3) [57]. Unfortunately, the series of the bound state ∆bs shows a complicated
behaviour and no convergence of Padé or DLog-Padé extrapolations was found. In [28] ∆bs/∆
was investigated with Padé and DLog-Padé extrapolations but only one extrapolation, the
DLog-Padé [4, 6], showed non-spurious behaviour and a value close to the numerical value
of 1.84(3) as in [57]. Having calculated ten orders of perturbation more than in [28] one
could hope that we find more extrapolations consistent with the predictions and calculations
of [55–57]. However, this is not the case and the additional orders rather show that the DLog-
Padé family of the DLog-Padé [4, 6] extrapolant does not seem to converge with higher orders.
At least up to the calculated orders so far, no behaviour of the series extrapolations that is
consistent with the expectation of ∆bs/∆|h=hc ≈ 1.8 could be found.

4.2 Non-perturbative results for single spin flip and bound states

Non-perturbative linked-cluster expansions (NLCEs) for the low-field phase of the transverse-
field Ising model were so far only performed for ground-state energies and ground-state ex-
pectation values of observables [58, 59]. In these papers the linked-cluster expansion for the
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ground state was not performed in the dual picture but in a more optimised setting to cap-
ture fluctuations of the environment that act back onto the closed finite system of a graph.
Here we stay in the dual picture because a modified coupling due to the environment is not
obvious for excited states. With NLCEs one can obtain converging results for larger values
of h than with perturbation theory. As long as the correlation lengths are captured within
the length scale of graphs considered it is reasonable to assume that NLCEs can converge. In
contrast to perturbative expansions where order of perturbation and length scales are coupled,
for NLCEs this is not the case any more since an exact calculation on a graph can be thought
of as a resummation of an infinite order expansion on that graph. Consequently, convergence
properties of both approaches can be different.
With the NLCE applying our transformation T pca we also calculated ∆ and ∆bs using exact
diagonalisations with ARPACK routines to obtain the low-energy spectrum and eigenvectors
of H. In Fig. 2 we show plots of the spin-flip gap for different numbers of vertices of the
graphs used in the expansion and compare with extrapolations of the series results. The
NLCE converges to values of h ≈ 0.5 extending the convergence of the bare series. We also
show Wynn extrapolations [60] with regards to the number of nodes of graphs in Fig. 2. Wynn
extrapolations of a series So depending on an expansion parameter o are defined as

So+1So−1 − S2
o

So+1 − 2S0 + So−1
. (93)

These extrapolations extend the convergence of the NLCE a bit further but it still breaks
down before the critical point at hc ≈ 0.7610 [4, 50]. One way to access critical exponents
with NLCEs is to scale the spin-flip energy gap with respect to the number of vertices Nv

of graphs used in the expansion at the position hc ≈ 0.7610 of the estimated critical point.
A logarithmic plot of this is shown in Fig. 3 together with a linear fit. This fit yielded an
exponent of κ = −0.51. As in this model one would expect the gap to scale with the inverse
correlation length this result implies that not the number of vertices Nv but the square root
of it scales in the same way as the correlation length. Although this analysis does not allow
for a very precise determination of the critical point it clearly is consistent with a critical
value of hc ≈ 0.7610 and hence shows that critical behaviour can be captured with NLCEs of
excitation gaps.
The NLCE expansion of the bound-state gap converges up to h ≈ 0.35. For a perturbative
calculation of the bound-state energy it does not matter if one subtracts only the ground-state
parts from the bound-state eigenvectors or both the ground-state and single-spin flip part as
described in Eq. (70). Interestingly, the NLCE broke down earlier when only the ground-state
part was subtracted so we always also subtracted the spin-flip part. Results are shown in
Fig. 4. The reason for worse convergence in comparison to ∆ is energetic overlap between
bound states and the two-spin flip continuum [28]. This is a well known problem in all sorts of
effective Hamiltonian theories and for example also shows up in quantum chemistry as intruder
state problem on finite systems [61] or in graph-based continuous unitary transformations
(gCUT) [62]. Only a finite number of eigenstates and eigenvectors exists in a finite system.
Energetic overlap between two different sorts of formerly gapped quasi-particles shows up as an
avoided level crossing. These avoided level crossings are also connected to exceptional points in
the complex plane of the perturbation parameter that we follow adiabatically [63]. As pointed
out in [61] either one follows adiabatically the low-lying state and looses transferability of the
expansion or one tracks the right states but then has a problem of smoothness of the expansion
around the avoided level crossing. A promising solution to overcome this problem was found
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Figure 2: The figure shows an NLCE expansion of the spin-flip gap ∆ in dependence
of the number of vertices of the graphs taken into account. The expansion converges
until around h ≈ 0.5. The phase transition point hc ≈ 0.7610 [4, 50] is highlighted
as a black vertical line. Wynn extrapolations of the NLCE expansion converge up to
slightly larger values of h but converge only slowly towards the critical point. Padé
extrapolations are also shown together with the bare series.

Figure 3: The plot shows the scaling of the energy gap ∆ in the dependence of the
maximum number of vertices Nv of graphs used in the NLCE in a double-logarithmic
plot. A linear fit of good quality shows that the behaviour is algebraic with an
exponent of κ = −0.51.
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in [62], where in the region of an avoided level crossing not exact but only approximate
eigenstates where used to track the right diabatic states as good as possible and not the
adiabatic ones any more. They used continuous unitary transformations based on the quasi-
particle generator in Eq. (15) [1] but using a modified generator around the anti-level crossing.
Next to observable characteristics they took a quantity known from the CORE method as
characteristic to identify such pseudo-particle decay. For single-particle excitations not coupled
to the ground state this quantity behaves similar as the minimal eigenvalue of Eq. (4.2)

Wn =
∑

m<n+1

Pm
∑

m<n+1

P̄m
∑

m<n+1

Pm.

While a generalization to the generic case seems not so clear within the CORE approach
Wn naturally shows up in our approach and can be used to identify particle-decay of higher
energetic excitations or excitations coupled to the ground state. Indeed, Fig. 5 shows a graph
where avoided level crossings related to the quasi-particle decay occur. As can be seen, the
minimal eigenvalue wmin of Eq. (4.2) drops to zero as the two eigenvalues of the bound states
and spin-flip states approach each other. While decay is expected for high-energy momentum
modes in the thermodynamic limit the low-energy modes of the bound states are expected to
remain stable. Hence, it could be possible to keep some decay channels open but to still do a
linked-cluster expansion for the stable bound-state modes. A solution to this problem in our
approach could be to not use exact projective eigenspaces around an avoided level crossing
but only approximate eigenspaces in the spirit of [62], still demanding pairwise orthogonality
of each space. A treatment of this problem is beyond the scope of this paper. We stress that
it is not clear if a parameter-free or even cluster-additive solution to this problem exists in
general.

Figure 4: The figure shows an NLCE expansion of the bound-state gap ∆bs in de-
pendence of the number of nodes of the graphs taken into account. The expansion
converges only until around h ≈ 0.35. The convergence problems are caused by
avoided level crossings occurring on finite graphs. As more graphs are taken into
account in the expansion convergence becomes gradually worse. Padé extrapolations
and bare series results are also shown.
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Figure 5: The figure shows the behaviour of the minimal eigenvalue wmin,A of W2

(blue line) in the vicinity of an avoided level crossing for the calculation of the
effective Hamiltonian on a finite graph, which is plotted in the inset of the figure. In
the same plot the energy difference ∆E between the lower end of the two-spin flip
continuum and the maximum of the bound-state dispersion is plotted (red). One
clearly recognizes that wmin,A drops to a very small value as ∆E decreases. As a
blue dashed line the minimal eigenvalue wmin,B of a modifiedW2 is shown, where one
takes the formerly lower two-spin flip continuum continuum state for the calculation
of the bound-state effective Hamiltonian and rejects the state that was formerly the
one with highest energy of the bound states. The plot clearly suggests further away
from the avoided level crossing the dashed blue curve would continue the solid blue
one smoothly.
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5 Conclusions

We described how to construct a cluster-additive transformation for excitations of a Hamil-
tonian H = H0 + λV with energies en adiabatically connected to the energies en0 of H0. The
transformation only depends on the projectors of eigenspaces em0 ≤ en0 of H0 and the projec-
tors of the adiabatically connected eigenspaces of H. In that respect the transformation needs
minimal information content compared to other genuine cluster-additive transformations while
generalizing the well known minimal transformation, which uses projectors on the eigenspace
en0 and the adiabatically connected space of H only, but is not cluster-additive in general. We
also give the transformation explicitly in terms of projection operators, which implies basis in-
dependence and local expressibility of the perturbative expansion following from the projector
expansion of Kato (25). As an application we performed a low-field linked-cluster expansion
for spin-flip and two spin-flip bound state excitations in the transverse-field Ising model on
the square lattice. We did this both perturbatively and non-perturbatively.
Both in the perturbative and non-perturbative setting the method is computationally very
efficient. The complexity for perturbative calculations is similar to the TBOT method, which
is the most efficient method for high-order matrix perturbation theory we know of. Non-
perturbatively the complexity is that of Krylov-based diagonalisation methods. While pertur-
batively it is hard to come up with further improvements of the method, in non-perturbative
applications using exact eigenvectors of finite-lattice Hamiltonians problems arising in the
vicinity of avoided level crossings still present a major obstacle. Promising approaches to
overcome this problem were given in [62]. To find a parameter-free and cluster-additive way of
dealing with avoided-level crossings in the construction of effective Hamiltonians remains an
important task for the future. If this is achieved the proposed transformation provides a highly
efficient tool to perform linked-cluster expansions for excitations in generic Hamiltonians with
the possibility to describe decay of excitations accurately and efficiently.
We want to end the paper with possible applications of the introduced method. The minimal
transformation only allows for a perturbative linked-cluster expansion of excitations that are in
a different symmetry sector than the ground state. In almost all low-field expansions this is not
the case. While it is possible to perform such expansions with pCUT or MBOT these methods
are less efficient than the method we propose. Hence, it promises to reach higher orders in
low-field expansions in general, what we already showed specifically for the transverse-field
Ising model on the square lattice. High-field expansions of models where the ground state is
coupled with the first excited states can also be computationally very demanding. An example
is the Kitaev model in a field [64,65]. The proposed transformation could help to reach higher
orders for that system. Another advantage compared to pCUT is that we do not need an
equidistant spectrum of H0. In [66] it was proposed to use the model independent structure
of the pCUT solution to treat systems with disorder or long-range interacting systems and
this idea, coined white-graph expansion, was also successfully applied [10, 12]. Using pertur-
bative expansions of projectors we can do the same with this transformation but in a more
general setting of non-equidistant H0. This can be utilized to perform white-graph expansions
for the resolvent revealing the possibility of long-range low-field linked-cluster expansions and
low-field linked-cluster expansions in the presence of quenched disorder.
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