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Abstract
Projective convolution (PC) is a provably passive and
numerically well-conditioned model-order reduction
technique for large RLC circuits including those with
floating capacitors or inductor loops. Unlike moment-
matching which operates in the frequency domain, PC is
positioned squarely in the time domain: it matches the
impulse response of a circuit by projecting with the
Krylov space formed by solving the discretized
differential equations of the circuit.  PC gives excellent
results for coupled lines, large RLC meshes, and clock
trees.

Introduction

Most model-order reduction techniques work in the
framework of matching moments in the complex
frequency domain--an idea introduced by Pileggi and
Rohrer in their 1990 seminal paper on AWE [1].  In
1992, Chiprout and Nakhla extended the idea by doing
moment expansions at several points in the complex
plane [2].  In 1994, Feldmann and Freund introduced
PVL, which uses a Lanczos procedure to obtain a well-
conditioned basis for the moments [3].  In 1995, the same
authors proposed the idea of block reduction [4], while
Silveira et al. introduced Arnoldi as an alternative to the
Lanczos process [5], and Kerns et al. broached the key
concept of congruence transform to preserve passivity[6].
Recent papers have extended congruence techniques to
multi-point expansions and stable reduction of circuits
with inductance [7] [8] [9] [10].

Projective convolution, by contrast, attempts to match
a circuit's impulse response directly rather than matching
moments in the frequency domain.  This is an enviable
goal, since applications like timing verification are
primarily interested in a time-domain response.

We will show how the Krylov spaces that arise
naturally in solving recurrence relations can be used
advantageously to form a projection matrix.  Applying
this idea to the discretization of a circuit's differential
equations, we get projective convolution--projective
because it forms a reduced system by projection (to be
defined shortly); convolution because, like convolution, it
computes the response to an arbitrary stimulus from a
circuit's impulse response. As we shall see, PC projects

the circuit equations with a matrix formed by sampling
the impulse response of the circuit.

Circuit Equations

The equations for an N+1 terminal, time-invariant,
linear circuit can be written

( ) ,C
d

dt
G x Bj u B xT+ = = (1.1)

where j∈L N and u∈L N are port current and voltage
vectors, x∈L m is a vector of nodal voltages and selective
branch currents, B∈RmxN is the port incidence matrix,
and C∈Rmxm  and G∈Rmxm are the susceptance and
conductance matrices.  Here, L is the space of real-valued
functions of time defined for t>=0.  If C and G are
symmetric matrices, system W is called self-adjoint;
circuits consisting only of capacitors and resistors are
self-adjoint.  If C and G are positive semidefinite, then W
is called  positive semidefinite; the modified nodal
analysis equations of RLC circuits are positive
semidefinite.1

For brevity, we shall denote system (1.1) as

W C G Bm( , , ) .  The dimension m of the state vector x is
called the order of the system.  Our goal is to replace a

system W C G Bm( , , )  by another system 
~

(
~

,
~

,
~

)
~

W C G Bm  of

lower order, i.e. ~m m< , such that important
characteristics of  the two systems are similar.  We call
this the reduction problem.

System Properties

We unfold our subject in stages, beginning with the
concepts of reciprocity, stability, and passivity, since
these are properties we want to preserve during
reduction.

Definition 2.1.  The transfer function of a system

W C G Bm( , , ) is the NxN rational matrix

Z s B Cs G BT( ) ( )= + −1 (2.1)
where s is the complex frequency.

                                                       
1 The scalar α = x AxT

depends only on the symmetric part of A, for

α α α= + = +1
2

1
2( ) ( )T T Tx A A x .  A is positive semidefinite if

α ≥ 0 for all vectors x.
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Definition 2.2. A system W is reciprocal if its transfer
function Z(s) is symmetric, i.e. ZT(s)=Z(s).

Definition 2.3.  A system W is stable if  all poles of its
transfer function Z(s) are in the open left-half plane.  It is
asymptotically stable if the poles are in the closed left-
half plane.

Definition 2.4. A system W is passive if the rational
transfer function Z(s) satisfies (see [11]):

(1) Z(s*) = [ZT(s)]* for all complex s, where * means
conjugate transpose, and

(2) z Z s Z s z* *( ( ) ( ))+ ≥ 0  for all complex vectors z
and complex s with Re(s)>0.
A passive system is asymptotically stable since it

cannot have poles in the open right-half plane; moreover,
interconnections of passive systems are passive.

Theorem 2.1.  A self-adjoint system W is reciprocal.

Proof.  { ( ) } ( )B Cs G B B C s G BT T T T T+ = +− −1 1 .
Theorem 2.2.  A positive-semi-definite system W is

passive.  Proof. We show that the two conditions of

definition 2.4 are satisfied.  Let W C G Bm( , , )  be the
system, Z(s) its transfer function.  Since C, G, and B are
real, conjugating Z(s) merely conjugates s, so (1) is
trivially true.  Letting T=Cs+G, condition (2) requires

z B T T BzT* *( )− −+ ≥1 0 where T T− −≡* *[ ]1 .  But this is

the same as z B T T T T BzT* * *( )− −+ 1  or

w C C j C C G G wT T T*( ( ) ( ) ( ))σ ω+ + − + + (2.2)

where w T Bz s j= −1  and = +σ ω .  Since γ = w Cw*  is a

scalar, w C C wT T*( ) .− = − =γ γ 0  Hence (2.2) is

greater or equal to zero because C and G are positive
semi-definite by assumption.

Projection Methods

We now show that orthogonal projection preserves
reciprocity and passivity.

Definition 3.1. A orthogonal projection of a system

W C G Bm( , , )   by projection method PV, where V∈Rmxq,

is a system W C G Bq (
~

,
~

,
~

)  with matrices
~ ~ ~
C V CV G V GV B V BT T T= = = (3.1)

q is the dimension of PV, which is proper if q<m and
rank(V)=q.

The reader will recognize orthogonal projection to be
none other than the classic Galerkin process.  In (1.1)
we approximate the state vector x by a vector in the
column space of V, i.e. we let x Vy≈ for some y∈L  q.  In

general, equation (1.1) will no longer be exactly satisfied;
there will be some residue r∈Lm defined

by r C
d

dt
G Vy Bj≡ + −( ) .  In the Galerkin method, we

impose the condition that r be orthogonal to col-span(V)

at all times.  In other words, V rT = 0 .  This gives us

system W C G Bq (
~

,
~

,
~

)  defined by (3.1).
Definition 3.2.  Two orthogonal projectors are

equivalent if the columns of their projection matrices
span the same space.

Projecting a system W with equivalent projectors
results in essentially the same reduced system--i.e. the
projected systems have the same impulse responses in
exact arithmetic.  But in practice, VTV should not be too
ill-conditioned;  ideally, VTV≈I.

Lemma 3.1.  The orthogonal projection of a self-
adjoint system is self-adjoint.

Proof. 
~

( )
~

C V CV V C V V CV CT T T T T T= = = = , since

C CT = .  
~ ~
G GT = similarly.

Lemma 3.2.  The orthogonal projection of a positive-
(semi)definite system is positive-(semi)definite.

Proof. For all x∈Rq, x Cx x V CVx w CwT T T T~
= = ≥ 0 ,

where w Vx= , since C is positive semi-definite.  The
same argument applies to G.

An immediate consequence of these lemmas and
theorems 2.1 and 2.2 of the last section is:

Theorem 3.1.  The orthogonal projection of a self-
adjoint system is reciprocal; the orthogonal projection of
a positive semi-definite system is passive.

Krylov Spaces

Definition 4.1. The Krylov space generated by
matrices A∈Rmxm and B∈RmxN is Kn(A,B)=col-
span{[B,AB,...,An-1B]}.  Here [B,AB,...,An-1B] is the
matrix whose columns are the columns of B followed by
the columns of AB, etc.

Definition 4.2. Any matrix V such that col-
span(V)=Kn(A,B) is called a Krylov projector .

Krylov spaces arise naturally from solving recurrence
relations.

Theorem 4.1.  The two-term matrix recurrence
relation
EX B EX GXn n0 1 0= + =−,   (4.1)

where E,G∈Rmxm and B∈RnxN has solution sequence

{ ( ) }X E G E B X Rn
n

n
mxN= − ∈− −1 1 ,  .  Hence col-span{

[X0,X1,...,Xn]}=Kn(-E
-1G,E-1B); in other words, the

matrix [X0,X1,...,Xn] compounded from the columns of
the solution sequence of (4.1) is a Krylov projector.

Two-term recurrence relations have the desirable
property that the solution sequence can be orthogonal-
ized on the fly:  at each step we can replace Xn-1 by a
matrix Yn-1 such that col-span(Yn-1)=col-span(Xn-1), then
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solve EX GYn n+ =−1 0 .  This procedure preserves

column spaces,
 colspan Y Y colspan X Xn n{[ , , ]} {[ , , ]}0 0Κ Κ=

Let us  denote a two-term recurrence relation like
(4.1) by R(E,G,B).  Recurrence relations can be projected
just like system equations: the orthogonal projection of R
by projector V is the new recurrence relation
~

( , , )R V EV V GV V BT T T .  We shall use the next result to
prove theorem 5.1.

Theorem 4.2.  Let R(E,G,B) be (4.1) with solution

sequence {Xi} and let PVR=
~

( , , )R V EV V GV V BT T T be its

projection with solution sequence {
~

}X i .  If the projection

matrix V spans the initial n+1 terms in the solution
sequence of R, that is, if col-span(V)⊃col-
span{[X0,X1,...,Xn]}, then

 X VX i ni i= =
~

,...,0 (4.2)

Proof.  Because of the col-span assumptions for V, we

know that there exist matrices 
~
X i  satisfying (4.2).

These 
~
X i  satisfy 

~
R  since Xi satisfy R, e.g.

V EVX V GVX V EX GX VT
i

T
i

T
i i

T~ ~
( ) ( )+ = + = =− −1 1 0 0 .

There is no other possibility, since the solution sequences

of R and 
~
R , if they exists (E and VTEV must be

nonsingular), are unique.

Time Domain Response Matching

We have seen that if we reduce an N-port, self-
adjoint, positive-semidefinite circuit by orthogonal
projection, the projected system is both reciprocal and
passive.  One way to choose the projection matrix is to
orthogonalize on the fly solutions to a two-term
recurrence relation. But what recurrence relation should
we use?  To find the time domain response of system
(1.1), we must solve a system of differential equations.
But this is commonly done by replacing (1.1) with a
discretized system of recurrence relations!  Why not use
these recurrence relations to get our projection matrix?

Definition 5.1.  When W C G Bm( , , ) is replaced by the
recurrence system

R
C

h
G

C

h
G B( , ( ) , )+

−
+ −α α1 (5.1)

where α is a constant between 0 and 1, the replacement is
called a discretization.  If the solution sequence for (5.1)
is {Xj}, then the sequence

{ ( ( ) ), }U B X Xj
T

j j= + − ≡−α α1 01  X-1 (5.2)

is the numerical impulse response of W.  The
integration method is Forward Euler if α=0,
Trapezoidal if α=1/2, and Backward Euler if α=1.

Denote the mapping from (1.1) to (5.1) by D h
α , the

discretization operator.  Likewise, denote the numerical
impulse response operator by NIR, so that

{Uj}=NIR(W, D h
α ).

Here is the main result of projective convolution
theory:

Theorem 5.1.  Given a system W, let {Xj} be the

solution sequence of D h
α W.  Let V be a full column rank

matrix such that col-span([X0,...,Xn]}⊂col-span(V).
Then the initial n+1 terms of the numerical impulse
responses of W and PVW match.

Proof.  Let {Xj} be the solution sequence of D Wh
α

, and

{
~

}X j  the corresponding solution sequence of P D WV
h
α .

By Theorem 4.2 the initial n+1 terms of D Wh
α

and its

projection stand in the relation

X VX j nj j= =
~

,...,0 .  But then for these terms

NIR W D B X X

B V X X NIR P W D

h
j

T
j j

T
j j V

h
j

( , ) ( ( ) )

(
~

( )
~

) ( , )

α

α

α α

α α

= + − =

+ − =

−

−

1

1

1

1

where NIR W Dh
j( , )α is the j'th term in the numerical

impulse response of W using discretization D Wh
α

.

Definition 5.2.  Orthogonal projection by a matrix V
satisfying the conditions of theorem 5.1 is called
projective convolution.

Loosely speaking, theorem 5.1 says that projective
convolution preserves the impulse response. This is true
strictly only for the discretization method and step-size
used in forming V, but in practice PC is surprisingly
effective.  Perhaps this is because PC is a Krylov method:
Krylov spaces have an uncanny ability to approximate

matrix functions (like the matrix function e BAt that is
the impulse response of &x Ax Bu= + ).

There is the practical issue of how many terms of the
solution sequence {Xj} to use in forming V.  We get
adaptive error control if we add terms until two
successive reduced systems agree in their response to
within a given tolerance.  It is important to realize that
the discretization step size h used to generate V can be
quite large in practice (see the examples).

Relation To Moment Matching

We next uncover a relation between projective
convolution and the traditional method of moments.
Recall that moment matching substitutes

X s M M s M s( ) ~ ~ ...= + + +0 1 2
2 , where ~s s s= − 0 , into

the Laplace transform of (1.1):
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{ ~ ( )}( ~ .... )Cs Cs G M M s B+ + + + =0 0 1   (6.1)

Equating powers of ~s  yields recurrence relation
RM(Cs0+G,C,B) whose solution sequence {Mj} are called
moments about s0. It then solves RM for the first n+1
moments,  builds up a well-conditioned matrix VM such
that col-span(VM)=col-span{[M0,...,Mn]}, and orthogo-
nally projects.  This in our nomenclature is the modern
method of moments [10].

Theorem 6.1. Projective convolution using backward
Euler discretization is equivalent to reduction by moment
matching about the frequency s0=1/h.
Proof.  Moment matching leads to the recurrence system

RM(Cs0+G,C,B); with 1/h=s0, D h
α  leads to RBE(Cs0+G,-

Cs0,B).  From (4.1), the solution sequences {Xj} of RBE

and {Mj} of RM are related by X s Mj
j

j= − −( )0
1 ;  being

proportional, col-span([X0,...,Xn]}=col-span([M0,...,Mn])
and the orthogonal projections of the two methods are
equivalent.2

Examples

We draw our examples from the realm of printed
circuit board networks rather than VLSI circuits because
we feel these wider-bandwidth, inductive circuits better
showcase PC's stability and numerical conditioning as
well as its easy accommodation of inductance.  Our
experience is that PC is also highly effective with VLSI
circuits, but convergence is much quicker (i.e. fewer NIR
terms are required for a given accuracy).

Transmission Line Mesh

First consider an 8x12 mesh of 1 inch, 50 ohm
transmission lines modeled by 3 RLC  sections per inch;
this leads to an system of 1177 variables.  Figure 1 shows
a 2x3 version of the mesh; the actual circuit has 96,
rather than 6, cells.

Figure 1.  A 2 x 3 mesh
                                                       
2 Interestingly, before the introduction of Arnoldi and Lanczos methods,
one proposal for improving the stability of AWE was to scale the frequency
s by some s0≈1/h, h being the dominant time constant of the circuit.
Projective convolution automatically does this scaling.

A 50 ohm, 0.5ns saturating-ramp driver is attached to
one corner of the mesh, while the response at the center
and opposite corner are monitored.  Fixing h=1.0 ns, we
reduce the circuit to a 21 variable system using α=0.5
(Trapezoidal) and α=1 (backward Euler).  See Figure 2.
While the D1 2  response is almost indistinguishable from

the unreduced system, D1 exhibits pre-arrival-time ripple

at the far corner.
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Figure 2. Response for 8 x 12 mesh

Balanced Clock Tree

Next, consider a 5-level balanced tree such as might
be encountered in routing a clock; each branch is a 2
inch, 50 ohm line.  With a 1 pF load at each leaf, the root
is driven by a 50 ohm, 0.5 ns ramp source.

Figure 3. 5-level balanced tree

Figure 4 compares a D1 2 (h=1.0 ns, order 13)

projected system to the unreduced system of 621
variables; the responses, given for each level of the tree,
are almost indistinguishable.
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Figure 4. Response of clock tree

Coupled Lines

The last example is a pair of 4 inch lines modeled by
40 coupled RLC sections (R=0.014 ohm, L=1 nH, C=0.4
pF, and Cm=0.08 pF per section).  Figure 5 plots the
response at the four ports of the original (order 162) and
a D1 2 projected (h=1 ns, order 16) system; again, the

responses nearly coincide.
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Figure 5. Two coupled lines

Conclusion

Conceptually and practically projective convolution
has much to recommend it. Practically, it replicates
almost perfectly the responses of coupled lines, meshes,
trees--even when low-loss transmission lines are used,
which is certainly the harder case.  By projecting into a
Krylov subspace derived from the impulse response of a
circuit, it is, by construction, made to reproduce that
response.
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